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Abstract 5 

In recent years, much technical progress has been done regarding plant phenotyping including the model 6 

species Arabidopsis thaliana. With automated, high-throughput platforms and the development of improved 7 

algorithms for the rosette segmentation task, it is now possible to massively extract reliable shape and size 8 

parameters for genetic, physiological and environmental studies. The development of low-cost phenotyping 9 

platforms and freeware resources make it possible to widely expand phenotypic analysis tools for 10 

Arabidopsis. However, objective descriptors of shape parameters that could be used independently of 11 

platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even 12 

sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. 13 

Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main 14 

source of data and analytical tools in the emerging field of phenomics studies. It has been used for 15 

taxonomists and paleontologists for decades and is now a mature discipline. By combining geometry, 16 

multivariate analysis and powerful statistical techniques, it offers the possibility to reproducibly and 17 

accurately account for shape variations amongst groups. Based on the location of homologous landmarks 18 

points over photographed or scanned specimens, these tools could identify the existence and degree of shape 19 

variation and measure them in standard units. Here, it is proposed a particular scheme of landmarks 20 

placement on Arabidopsis rosette images to study shape variation in the case study of viral infection 21 

processes. Several freeware-based geometric morphometric tools are applied in order to exemplify the 22 

usefulness of this approach to the study of phenotypes in this model plant. These methods are concisely 23 

presented and explained. Shape differences between controls and infected plants are quantified throughout 24 

the infectious process and visualized with the appealing graphs that are a hallmark of these techniques and 25 

render complex mathematical analysis simple outcomes to interpret. Quantitative comparisons between two 26 

unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest 27 

automatons and plant segmentation procedures, geometric morphometric tools could boost phenotypic 28 

features extraction and processing in an objective, reproducible manner. 29 
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Introduction 34 

Plant phenotyping is the process of recording quantitative and qualitative plant traits. It is key to study plant 35 

responses to the environment [1].  36 

A 2016 IPPN survey (https://www.plant-phenotyping.org/ippn-survey_2016) between plant scientists found 37 

that most participants think that plant phenotyping will play an important role in the future, being stress 38 

assessing and the model plant Arabidopsis thaliana mentioned between the topics of main interest.  39 

Recently, many new techniques have been developed to facilitate and improve quantitative plant phenomics 40 

(i.e. the full set of phenotypic features of an individual), going from destructive to non-destructive and even 41 

high-throughput phenotyping [2]. Whereas the throughput is an important aspect of phenotyping, spatial and 42 

temporal resolutions, as well as accuracy, should be considered [3]. 43 

Several workers [4–8] have developed freely available software that overcome the difficult task of rosette 44 

segmentation (an issue still under investigation) by different means. This software allows several rosette 45 

parameters to be computed such as area and perimeter in addition to other more complex descriptors.  46 

However, the persistence of ad hoc descriptors [9,10] and the lack of a gold standard in this actively 47 

developing field, could give rise to reproducibility issues, due to different growing substrate-segmentation 48 

algorithms combinations. Moreover,  different approaches give sometimes the same name to different 49 

parameters (e.g. “roundness” in ImageJ [11] vs. [7]) or different names to the same parameter (e.g. “solidity” 50 

in [8] equals “compactness” in [4,7] and “surface coverage” in [2]). The need of developing objective, 51 

mathematically and statistically sound and more accurate shape descriptors in plants has been stressed out in 52 

recent reviews on the topic [12–14]. 53 

Nonetheless, image datasets analyses require a conceptual and statistical corpus of knowledge that is not 54 

always present in a plant biologist’s research field. Plant phenotyping relies on skills and technologies that 55 

are used to characterize qualitative or quantitative traits regardless of the throughput of the analyses [1]. One 56 

such knowledge corpus is morphometrics [15]. 57 

Traditional morphometric analyses such as measures and ratios of length, depth and width were widely used 58 

in Paleontological and Zoological studies throughout the 20th century. To the end of that century the seminal 59 

work of [16] was re-evaluated under the light of multivariate analysis and novel mathematical developments 60 

[17,18], giving rise to modern geometric morphometrics (GM), in which was called a “revolution” in 61 

morphometrics [19–21]. 62 

GM combines geometry, multivariate morphometrics, computer science and imaging techniques for a 63 

powerful and accurate study of organismal forms. This family of methods in quantitative biology is proposed 64 

to be the main source of data and analytical tools in the emerging field of phenomics [22]. Formally, GM is 65 

“a collection of approaches for the multivariate statistical analysis of Cartesian coordinate data, usually (but 66 
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not always) limited to landmark point locations” (http://life.bio.sunysb.edu/morph/glossary/gloss1.html). 67 

Landmark methods have been successfully applied to various species, and have the advantage of being easy 68 

to understand [23].  69 

Besides enhanced statistical power and better descriptive and graphical tools, GM allow researchers to 70 

decompose form in size and shape, and the whole configuration of the organism under study is analyzed, 71 

rather relying on the description of relative displacements of pairs of points. 72 

GM is now a mature discipline that has been widely applied in biology [24–26] (see [27] for a review). In 73 

plants, leaves of grapevine [28] and oak [29,30] were studied using GM methods. 74 

Plant viruses cause important worldwide economic losses in crops [31]. Symptoms include plant stunting, 75 

changes in leaf morphology, and sometimes plant death [32] and vary depending on various aspects 76 

including genetic compatibility and environmental conditions.  77 

Even given a particular host-virus interaction, different viral strains trigger different symptomatology, which 78 

are more or less subtle for the observer to distinguish [33–35]. Comparing the severity of qualitative viral 79 

symptoms is a difficult task performed mainly by visually rating symptoms (e.g. [36]). Consequently, 80 

morphological differences could be difficult to describe and reproducibility issues could arise. 81 

Arabidopsis thaliana (L.) Heynh. has been extensively used in studies of influences of environmental factors 82 

on plants, paving the path to the development and testing of experimental techniques or data analysis 83 

methods [37]. The Arabidopsis rosette is a nearly two-dimensional structure in the vegetative phase [8], 84 

which facilitates image acquisition and interpretation. 85 

Here, it is proposed a case study where GM tools are applied to study and quantitatively describe 86 

morphometric changes triggered in A. thaliana plants by RNA viruses belonging to two unrelated families. It 87 

is proposed a particular selection of landmarks to locate in the Arabidopsis rosette during its vegetative 88 

phase. The study spans from the earlier stages of viral infection to later ones, when symptoms are already 89 

visually detectable by naked eye. Comparisons are made between discriminant power of computer-assisted 90 

classification and expert human eye. Symptoms severity provoked by both viruses is also compared, based 91 

on the relative morphometric changes induced relative to healthy controls. Changes in allometric growth, 92 

phenotypic trajectories and morphospace occupation patterns are also investigated. Size analyses are also 93 

performed and the problem of growth and development modeling is discussed in the context of viral 94 

infections. Throughout this work, several bioinformatics resources are applied, in order both to extract the 95 

higher degree of information available, but also to exemplify different and complementary possibilities that 96 

nowadays GM offers for the accurate description of shape in Arabidopsis. 97 

 98 

Materials and Methods 99 
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Plant growth conditions 100 

A. thaliana Col-0 seeds were stratified at 4°C for 3 days. Plants were grown under short days conditions (10 101 

h light/14 h dark cycle, T(°C)= 23/21, Hr(%)= 60/65, and a light intensity of 150 μE m-2 s-1) in a controlled 102 

environmental chamber (Conviron PGR14; Conviron, Winnipeg, Manitoba, Canada). Plants were grown in 103 

individual pots in trays and treatments were assigned to plants in all trays. One experiment was performed 104 

with ORMV and two independent experiments were carried on with TuMV-UK1. 105 

Virus infection assays 106 

ORMV (Oilseed Rape Mosaic Virus) [38] was maintained in Nicotiana tabacum (cv. Xhanti nn) and 107 

infective sap was obtained after grinding infected leaves with mortar and pestle in 50 mM phosphate buffer 108 

pH=7.5. TuMV (Turnip Mosaic Virus)-UK1 strain (accession number X65978) [39] was maintained in 109 

infected A. thaliana Col-0. Fresh sap was obtained immediately prior to use to inoculate plants with sodium 110 

sulfite buffer (1% K2HPO4 + 0,1% Na2SO3 [wt/vol]). Mock-inoculated plants were rubbed with 111 

carborundum dust with either 50 mM phosphate buffer pH=7.5 or sodium sulfite buffer, respectively. Plants 112 

were mechanically inoculated in their third true leaf at stage 1.08 at 21 DPS, [40] because those leaves were 113 

almost fully developed by the time of the procedure and therefore constituted a source tissue for the export of 114 

virions to the rest of the plant. 115 

Image acquisition 116 

Zenithal photographs of individual plants growing in pots were taken with a Canon PowerShot SX50HS 117 

camera mounted in a monopod at maximal resolution. Photographs were taken at the same time of the day in 118 

successive days to minimize error. A ruler was placed in each image acquisition and only its central part (60-119 

80 mm) was taken into account to avoid image distortion at the edges of the photograph [41].  120 

Landmark configuration and digitization 121 

Specimens were imaged at each DPI and  .JPG files were opened with TPSUtil software, a member of the 122 

TPS Series of GM tools [42,43] thatprepares the data for further analyses. Opening the output .TPS files with 123 

with TPSDig2 is the first step to digitization of landmarks. The 11 landmarks were digitized in the same 124 

order on each picture, after setting a scale factor with a ruler, at each DPI. Eleven landmarks were recorded 125 

for each plant. Landmarks were selected to fulfill the basic requirements for 2D approximation [44] (see 126 

main text). Following [45] criteria, landmark 11 (which is situated at the centre of the rosette) is a Type 1 127 

landmark. Landmarks 1, 2, 3, 4 and 5 (which are located at the tip of leaves #8 to #12 and are the maxima of 128 

curvature of that structure) and landmarks 6, 7, 8, 9 and 10 (which are located at the intersection of the 129 

petiole and the lamina of each leaf from #8 to #12) cannot be unambiguously assigned due to the continuous 130 

nature of the leaf curvature and are Type 2 landmarks. Each specimen was digitized in less than 1 minute. 131 

The Output of TPSDig2 is a .TPS file containing information about specimen name, scale factor, and raw 132 
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coordinates of each landmark for all specimens digitized. Landmark digitization was repeated to estimate 133 

measurement error for each specimen a week after the first digitization. 134 

Validation of the tangent space approximation 135 

For a given M-dimensional structure with K landmarks (here, M = 2 and K = 11) it can be imagined an 136 

individual´s shape as a point in an M X K multidimensional space (a hypersphere). After centering and 137 

rescaling, 3 dimensions are lost and shapes are said to be in a pre-shape space; they are not rotated yet. The 138 

distance in the surface of the hypersphere at which rotation differences between shapes are minimal, is called 139 

Procrustes distance. Afterwards, a reference (average) shape is selected and all other shapes are rotated to 140 

minimize distances relative to it, generating a shape space and losing one more dimension (remaining 2K-4). 141 

Because distances over curved multidimensional spaces are non-Euclidean, conventional tools of statistical 142 

inference cannot be used. Fortunately, for most biological shapes an approximation to Euclidean distances is 143 

valid, by projecting shape points to a tangent Euclidean space (for a visual explanation see [44]). This 144 

assumption should, however, be tested when new forms are being analyzed. The TPSSmall program is used 145 

to determine whether the amount of variation in shape in a data set is small enough to permit statistical 146 

analyses to be performed in the linear tangent space approximate to Kendall's shape space which is non-147 

linear. Since TPSSmall does not perform reflections, datasets analyzed with TPSDig2 were opened again and 148 

specimens reflected when necessary to leave all clockwise rosettes. 149 

Statistical analyses 150 

Except otherwise stated, shape analyses were performed using MorphoJ [46] and the TPS series [42], as 151 

described in the main text. 152 

Student´s t, Mann-Whitney, paired Hotelling´s tests and rosette growth parameters analyses were executed in 153 

PAST [47]. 154 

PTAs based on [48] were run in R [49]. 155 

Linear and nonlinear regressions for growth and development modeling and analysis of residuals 156 

autocorrelations were performed in PAST and Infostat [50], since both software yield complementary 157 

information. Lack-of-fit tests were performed in Infostat. 158 

Excel 2010 was used for Durbin-Watson panel test, Holm´s-Bonferroni sequential test for multiple 159 

comparisons [51,52] and hyperellipses calculations using Real Statistics for Excel 2010 (ver. 4.14) [53]. 160 

 161 

 162 

Results 163 

This work aims to introduce the use of GM tools for the analysis of Arabidopsis rosette phenotypes in an 164 

objective and repeatable way. As such, it is not intended to offer a complete introductory explanation of each 165 
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GM tool, an objective that is beyond the scope of this paper. Such a task was already performed by [30] and 166 

for a complete introductory explanation of GM tools applied in biological systems it is recommended the 167 

lecture of [44]. Software used in this work frequently has its own user´s manual and informative examples 168 

[42,46,47,50]. Nevertheless, with the purpose to facilitate the comprehension of this work to newcomers in 169 

the field of GM, each tool is briefly described prior to its application throughout the Results section. 170 

Morphometrics aims at analyzing the variation and covariation of the size and shape of objects, defining 171 

altogether their form. Shape and form might be confusing words, used as synonyms in many languages [10]. 172 

Hereafter, it will be followed the GM definition of shape in the sense of  [17] that it is “all the geometric 173 

information that remains when location, scale and rotational effects are filtered out from an object”.  174 

Landmarks digitization, Procrustes fit and outliers detection 175 

At the heart of GM analyses is the concept of landmarks. Landmarks are discrete anatomical loci that can be 176 

recognized as the same point in all specimens in the study. They are homologous points both in an 177 

anatomical and mathematical sense. The selection of landmarks is based in the observance of five basic 178 

principles [44]: 179 

1) Homology. Landmarks are sequentially numerated and each landmark must correspond to the same 180 

number of landmark in all specimens under study. 181 

2) Adequate Coverage of the Form. Landmarks should be chosen in a way they cover up the maximum 182 

possible extent of the form of interest. It is important to bear in mind that a region not included between 183 

landmarks is not analyzed. 184 

3) Repeatability. The same landmarks should be easily identified in the same structure in order to avoid 185 

measurement error. 186 

4) Consistency of Relative Position. This attribute guarantees that landmarks do not interchange relative 187 

positions. 188 

5) Coplanarity. For 2D-landmarks, an assumption of coplanarity is required to avoid measurement error. 189 

  There is no absolute landmark configuration on any given structure. The choice of the number of 190 

landmarks and their configuration depend on the hypotheses being tested. Here, the focus of the analyses is 191 

on the phenotypic impact of viral infections on the Arabidopsis rosette through time. Hence, short-day 192 

conditions were chosen to delay flowering, allowing the plant´s aerial part to remain near two-dimensional 193 

during the experiment. To encompass as broadly as possible the phenotypic changes experienced by the plant 194 

during the infection, chosen landmarks should not only be present from earlier stages to the infection to later 195 

ones, but also be placed in regions that experience dramatic changes upon infection. A relatively reduced 196 

number of landmarks can be used to describe complex forms [30,54].  197 

An 11-landmark configuration for the Arabidopsis rosette is shown in Figure 1A (see Materials and 198 

Methods). Plants were inoculated in their third true leaf (24 plants were mock-inoculated and 17 were 199 
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ORMV-infected) and images were acquired starting from three days post-inoculation (DPI) to 12 DPI (see 200 

Materials and Methods). Leaves below number 8 were not chosen for landmark placement for three main 201 

reasons: a) they are hidden for younger leaves at later stages of infection b) these old leaves had almost 202 

finished their growth by the time the first photographs were taken (and the form covered would be a less 203 

informative one for the process of shape and size change upon viral infection) and c) the senescence process 204 

of older leaves lead to morphological changes derived from dehydration and death. Younger leaves (beyond 205 

leaf number 12) were not chosen because they were not present at the earlier stages of infections, therefore 206 

violating the requisite of repeatability of landmarks. 207 

A flowchart of data analyses throughout this paper is shown in Figure 1B. Image datasets for all DPIs and 208 

both treatments were handled and digitized for further analyses using the TPSUtil and TPSDig2 software 209 

generating .TPS output files. Digitization process was performed twice (see Materials and Methods). 210 

Several freeware could be used to extract shape information from .TPS files [44]. Here, the MorphoJ 211 

software [46] was chosen mainly because of its ease to use and comprehensive tools available. MorphoJ 212 

creates new datasets from several file extensions, including .TPS. The “Supplementary file ORMV.morphoj” 213 

was created and 16 datasets were generated, one for each DPI and digitization instance. Specimens were 214 

classified according with ID, Treatment, DPI and Digitization for each dataset. Combinations of classifiers 215 

were also done to perform further grouped analyses. 216 

The first step of shape analysis in GM consists in extracting shape coordinates from raw data obtained at the 217 

digitization step. The procedure that has become standard in GM studies is the Generalized Procrustes 218 

Analysis (GPA).  219 

The purpose of Procrustes procedures is to remove from the specimens all information that is not relevant for 220 

shape comparisons, including size. Specimens are firstly translated at the origin (“superimposed”) by 221 

subtracting the coordinates of its centroid from the corresponding (X or Y) coordinates of each landmark. 222 

Then, differences in size are removed rescaling each specimen to the mean centroid size (CS) (CS is 223 

calculated as the square root of the summed squared distances of each landmark from the centroid, giving a 224 

linearized measure of size). Differences in rotation are eliminated by rotating specimens minimizing the 225 

summed squared distances between homologous landmarks (over all landmarks) between the forms. The 226 

process starts with the first specimen, and then an average shape is found that now serves as a reference. It 227 

proceeds iteratively over all specimens until no further minimization of average distances are found [55]. 228 

MorphoJ performs a full Procrustes fit, which is a variant of the analysis that is more conservative and 229 

resistant to outliers of shape. 230 

In Arabidopsis, the arrangement of organs along the stem (phyllotaxy) follows a predictable pattern, the 231 

Fibonacci series. Phyllotaxy orientation can be either clockwise or counter-clockwise [56]. This should be 232 
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taken into account because clockwise and counter-clockwise rosettes are biological enantiomorphs like right 233 

and left hands and must not be superimposed by GPA. Opportunely, MorphoJ automatically performs 234 

reflections on every specimen when executing a GPA and therefore it is not a problem at this stage, but care 235 

must be taken when using different software.  236 

After executing a full Procrustes fit of each dataset, they were inspected for the presence of outliers. The 237 

shape of one Mock-inoculated plant (M2) diverted the most from the rest in 11 out of 16 datasets. Therefore, 238 

it was excluded from all datasets for successive analyses.  239 

Afterwards, datasets were combined and the “Combined dataset 3-12 DPI” was created with 640 240 

observations included following a common GPA. Then, a wireframe was created that connects consecutive 241 

landmarks. This tool aids visualization, as will be explained later. Next, the “Combined dataset 3-12 DPI” 242 

was subdivided by DPI. This creates one dataset for each DPI, each one with the two digitization outputs for 243 

each plant.  244 

Validation of the tangent (Euclidean) space approximation 245 

Prior to conducting further analyses, a basic assumption of GPA-based GM analysis should be tested: that the 246 

projections of shapes in Kendall´s shape space onto a tangent Euclidean shape space are good 247 

approximations for the studied shapes. This task is performed by basically comparing the Procrustes 248 

distances (the conventional measure of a morphometric distance in geometric morphometrics [57]) obtained 249 

using both shape spaces (see Materials and Methods). Two subsets of data were created for each DPI, one 250 

with Mock-inoculated and the other with ORMV-infected plants. Next, datasets were manually combined 251 

using a text editor to create three main datasets (Mock, ORMV and ALL plants). TPSSmall (v.1.33) was then 252 

used to compare statistics for distance to reference shape both in Tangent (Euclidean) and Procrustes 253 

(Kendall´s) shape space for both treatments separately and for all plants together (Supplementary Table 1). 254 

Results showed that maximum Procrustes distances from mean (reference) shape were 0.371 (ORMV), 0.405 255 

(Mock) and 0.400 (ALL). They are all well below the largest possible Procrustes distance (π/2 = 1.571). 256 

Mean Procrustes distances from mean (reference) shape were 0.168 (ORMV), 0.186 (Mock) and 0.184 257 

(ALL). This indicates a closer arrangement of ORMV shapes in shape space relative to Mock-inoculated 258 

plants. Tangent and Procrustes distances were very similar (Supplementary Table 1) and regressions through 259 

the origin for distance in tangent space, Y, regressed onto Procrustes distance, X, showed slopes > 0.98 and 260 

correlations > 0.9999 for all groups (Supplementary Table 1 and Supplementary Figure 1). This results are in 261 

line with several similar analysis performed onto a variety of biological forms [30,58–60]. 262 

Testing measurement error and variation between treatments using Procrustes ANOVA 263 

As mentioned before, two digitizations were performed on each plant at each DPI, in order to evaluate 264 

measurement error. This procedure is important because digitization error should always account for far less 265 
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variance in the subsequent analyses than specimens and treatments do [30]. There are the differences 266 

between specimens and particularly between treatments that are worth investigating, not human error in 267 

landmark placement. Purposely, datasets for each DPI were combined and subjected to a hierarchical 268 

analysis of variance (ANOVA). In MorphoJ this is a Procrustes ANOVA, with “Treatment” as an additional 269 

main effect, “ID” for the individuals and “Digitization” as the Error1 source. In Procrustes ANOVA, 270 

variance is partitioned by means of hierarchical sum of squares (SS) which implies that each effect is 271 

adjusted for effects that appear earlier in the hierarchy. This is taking into account the nested structure of the 272 

data (an issue that is crucial if the design is unbalanced, i.e., with unequal sample sizes as is here the case), 273 

thus allowing one to quantify differences in Treatments and plants regardless of Treatment. The variance 274 

unexplained by any of these effects is measurement error and it is estimated using the differences between 275 

digitizations. Hence, total variance was decomposed into main (treatment) and random (ID and digitization) 276 

components and was expressed as a percentage of total variance for each DPI. The analysis is executed 277 

simultaneously for both size and shape. Results are shown in Supplementary Table 2. Explained variance (as 278 

a % SS) for which measurement error accounted for was in the range of 0.01 and 0.12 for size and 0.40 and 279 

1.15 for shape over all DPIs. Thus, measurement error was negligible throughout the digitization process. 280 

Detailed analysis of results shown in Supplementary Table 2 revealed that for size, the Individual (ID) effect 281 

was highly significant at each DPI as evidenced by Goodall´s F-test (p < 0.0001). Treatment effect was 282 

insignificant from 3 to 5 DPI but starting from 6 DPI the virus affected the plant´s size (0.0001 < p < 0.03). 283 

For shape, the Individual effect was also highly significant at each DPI as evidenced both by Goodall´s F-test 284 

(p < 0.0001) and by MANOVA (standing for Multivariate Analysis of Variance) results (p < 0.0001). 285 

Treatment impacted earlier shape than size, since as soon as 5 DPI differences in shape were detected (p < 286 

0.001).  287 

Ordination Methods and shape change visualization 288 

PCA 289 

Once shape variables (the 22 Procrustes Coordinates) are extracted for all specimens at each DPI, it is useful 290 

to plot differences between individuals and treatments. However, patterns of variation and covariation 291 

between lots of variables are difficult to envision particularly because geometric shape variables are neither 292 

biologically nor statistically independent [44]. PCA is a technique that allows simplifying those patterns and 293 

making them easier to interpret. By performing a PCA, shape variables are replaced with complex variables 294 

(principal components, PCs) that do not covary but carry all the information. Moreover, as PC axis are 295 

orthogonal and independent, and most of the variation in the sample usually can be described with only a few 296 

PCs, shape analysis could be restricted to very few axes, avoiding the need of jointly interpret dozens of 297 

variables. It is important to keep in mind that PCA is useful for the comparison between individuals, not 298 
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groups, and though a powerful descriptive tool, it does not involve any statistical test. Therefore, the relative 299 

separation of groups in a PCA plot does not allow one to extract conclusions about significant differences (or 300 

its absence).  301 

Firstly, this technique was used to inspection error measurement (previously quantified by Procrustes 302 

ANOVA, Supplementary Table 2). A covariance matrix was created for the “Combined dataset 3-12 DPI” 303 

and then a PCA was performed. Scatterplots were generated for the first 4 PCs, which together account for 304 

87.2 % of the total variance (Figure 2). The proximity of equally colored points indicates a small digitization 305 

error. 306 

As measurement error explained a negligible percentage of variance, digitizations were averaged within 307 

specimens and DPIs. From the “Combined dataset 3-12 DPI” it was created the “Combined dataset 3-12 DPI, 308 

averaged by ID DPI” dataset, which contains all the 320 averaged observations. The averaged data were used 309 

to find the directions of maximal variance between individuals. A covariance matrix was generated and a 310 

PCA performed. PC1 accounted for 64.2 % of total variance and the first 4 PCs summed up to 87.4 % of it. 311 

PCs 4 and beyond accounted for less than 5 % of variation each and are therefore of little biological interest. 312 

Afterwards, PCA output was used for which is one of its main purposes in GM: visualization of shape 313 

change. Three types of graphs were obtained: PC shape changes (a diagram showing the shape changes 314 

associated with the PCs); Eigenvalues (a histogram showing the percentages of total variance for which the 315 

PCs account) and PC scores (a scatterplot of PC scores).  316 

PC Scatterplots show the distribution of specimens along the axes of maximum variance (Figure 3A, B). To 317 

aid visualization, dots corresponding to early stages (3-6 DPI) were lightly colored and later ones (7-12 DPI) 318 

were darker colored. Results evidenced that PC1 is a development-related axis, because clearly separated 319 

early (mostly negative values) from late (positive values) stages of the experiment (Figure 3A). Moreover, at 320 

later stages ORMV-infected plants scored less positive in this axis, suggesting that infected plants retained a 321 

more juvenile (pedomorphic) shape. Positive extremes of PC2-4 are related to ORMV shapes. 322 

To this point, GM visualization tools are used to better understand what these relative positions on 323 

scatterplots mean respect to shape differences. 324 

Visualization of shape changes  325 

Prior to showing graphs from the “PC shape changes” tab, a brief description of common GM visualization 326 

tools is needed in order to accurately interpret the results. After the GPA, every configuration in the sample 327 

is optimally aligned to the average configuration and nearly optimally aligned to every other configuration in 328 

the sample. GPA removed differences attributable to size, position and orientation from configurations. All 329 

differences that remain are shape variation. Accordingly, shape differences are found using the relative 330 

displacements of the landmarks from one shape to another shape nearby in shape space [61]. By 331 
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superimposing a target shape to a starting shape and looking for the relative displacement of homologous 332 

landmarks from one shape to another, insights on how variation between shapes occurs can be obtained and 333 

hypotheses about the underlying mechanisms, proposed.  334 

A key concept to bear in mind is that it is fundamentally wrong to consider landmarks displacements in an 335 

isolated manner [44,61]. This is because all the landmarks included in the GPA jointly determine the 336 

alignment of each configuration in relation to the mean shape. Then, variation in the position of each 337 

landmark after superimposition is relative to the positions of all other landmarks. Though a shift is shown at 338 

every landmark, these shifts are relative to all other landmarks. Lollipop and wireframe graphs are based on 339 

these assumptions (see below). 340 

Shape variation could be depicted by means of transformation grids. Transformation grids are 341 

mathematically constructed following the thin-plate spline technique, whose detailed explanation is far from 342 

the objective of this work and has been explained elsewhere (Klingenberg, 2013; Zelditch et al., 2012). 343 

Briefly, landmarks of a starting shape are placed on a grid of an imaginary infinitely thin metal plate. 344 

Landmarks of a target configuration are placed on another grid of equal characteristics, and both metal sheets 345 

are superimposed. Each landmark in the starting shape (e.g., mean shape) is linked to its homologous to 346 

reach the target configuration, and the deformation caused in the spline is calculated finding the smoothest 347 

interpolating function that estimates energy changes in the spline between landmarks. Importantly, 348 

differently from lollipop or wireframe graphs, transformation grids distribute the change in landmark 349 

positions to the space between landmarks, were no objective information is available. Then, whereas a 350 

powerful descriptive tool, transformation grids must be carefully interpreted, especially regarding regions of 351 

the object that do not have landmarks nearly positioned (Klingenberg, 2013; Zelditch et al., 2012,). More 352 

details and examples are given below. 353 

Wireframe graphs (Figure 3C-F) connect the landmarks with straight lines for the starting and target shapes, 354 

thus showing the relative displacements of landmarks from a mean shape. Negative values of PC1 mostly 355 

correspond to juvenile (and infected) shapes; positive values of PC1 belong to healthy controls and adults. 356 

Hence, by depicting the –PC1 component, target shapes have negative values (Figure 3C). It can be seen that 357 

–PC1 explains the relative shortening of leaves #11 (landmarks 4 and 9) and #12 (landmarks 5 and 10). It 358 

makes sense, since younger plants have yet to develop these relatively new leaves. Petioles of leaves #10, 359 

#11 and #12 are particularly shortened. Relative to these shortenings, older leaves (#8 and #9) are relatively 360 

longer but, interestingly, only its laminae, since its petioles are not relatively elongated. Taken together, PC1 361 

reveals that ORMV impaired the elongation of newer leaves to their normal extent. PC2 (Figure 3D) 362 
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associates with relative radial displacements of leaves; tips of leaves #8 and #9 (landmarks 1 and 2) come 363 

close together, lowering the typical angle between successive leaves from near 137.5° to close to 90°. These 364 

relative displacements determine that leaves #9 and #10 form an exaggerated angle of near 180°. PC3 (Figure 365 

3E) also mostly relates to radial changes in the infected rosette: leaf #10 is relatively displaced towards leaf 366 

#8 and the main effect is, again, the increase of the angle between leaves #9 and #10 to near 180°. PC4 367 

(Figure 3F) explains less proportion of total variance (4.5%) and its effect is less clear; it is mostly related to 368 

the relative displacement of the lamina of leaf #11 towards leaf #9, almost without altering its petiole, which 369 

functions as a hinge. Leaves #9 and #10 are, as a combination of the effects depicted by PC2 and PC3, both 370 

relatively displaced towards leaf #8. Taken together, the wireframe visualization of the first four PCs (which 371 

account for more than 87% of total variance) show that ORMV induces the relative shortening of laminae 372 

and (especially) petioles of newest leaves, which relates to a pedomorphic shape, and provokes the relative 373 

displacement of leaves #9 and #10 towards leaf #8.  374 

Displacement vectors (called ‘‘lollipop graphs’’ in MorphoJ) are arrows drawn between a landmark in a 375 

starting shape and the same landmark in a target shape. The dot in the lollipop represents the starting position 376 

and the vector is represented by a line departing from it (but in some software the inverse convention is 377 

followed, i. e., PAST). Though these visualization are being displaced in the GM literature in favor of more 378 

advanced tools [61], here it is presented the case for –PC1, showing the  relative displacements of landmarks 379 

(Figure 3G). It can be directly compared with Figure 3C.  380 

Lastly, transformation grids are exemplified for –PC1 in Figure 3H-I. Figure 3H depicts the starting (mean) 381 

shape. Figure 3I show the transformed grid for –PC1. The compression of the grid in the central zone is the 382 

result of the relative displacement of landmarks 3, 8 (leaf #10), 4, 9 (leaf #11) and 5, 10 (leaf #12) towards 383 

the center of the rosette, whereas grid stretching is detected around landmarks 1 and 2 (revealing the relative 384 

expansion of laminae of leaves #8 and #9, since its petioles remain relatively immobile, landmarks 6 and 7). 385 

As stated above, visualization with these grids should be cautiously interpreted since the interpolation 386 

function deforms the grid between places where no landmarks are placed (and no information about even the 387 

existence of tissue is guaranteed). Therefore, only regions near landmarks should be discussed when viewing 388 

these graphs. To see these changes in more detail, PCA analyses were performed for each DPI. The 389 

“Combined dataset 3-12 DPI, averaged by ID DPI” was subdivided by DPI performing a common Procrustes 390 

fit, creating eight new datasets (DPIs) (raw data in Supplementary file ORMV.morphoJ) . Covariance 391 

matrices were generated and a PCA performed for each DPI dataset. PC1 accounted for between 27-43 % of 392 

total variance and the first 4 PCs summed up from 78 to 84 % of it. PCs beyond PC4 accounted for 5 % or 393 

less of variation each. Shape change visualization showed that PC1 gradually separated specimens belonging 394 
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to different treatments. Mock-inoculated plants were progressively more aligned with positive PC1 values. 395 

PC2 was more generally related to ORMV-infected plants in its positive values. Relative shortening of 396 

younger leaves and petioles, and relative displacement of leaves towards leaf #8 were progressively more 397 

accentuated (Supplementary Figure 2). 398 

Discriminant Analysis 399 

So far, differences between individuals were addressed with the aid of PCA. Afterwards a Discriminant 400 

Analysis (DA) was performed to test whether differences between treatments exist. 401 

DA is a technique mathematically related to PCA. It finds the axes that optimize between-group differences 402 

relative to within group variation. It can be used as a diagnostic tool [44]. It is here used for testing 403 

treatments using a series of tests for sample mean differences including an estimate of the accuracy of shape 404 

in predicting groups. The capability of DA to correctly assign specimens to treatments was assessed along 405 

the experiment using the averaged datasets for each DPI. In MorphoJ, Discriminant Function Analysis was 406 

requested selecting “Treatment” as classification criterion. By default, DA in MorphoJ performs a parametric 407 

Hotelling’s T-square test, and here there were also requested permutations tests for the Procrustes and 408 

Mahalanobis distances with 1000 random runs. Hotelling’s test is the multivariate equivalent of the common 409 

Student´s t-test. Procrustes and Mahalanobis distances show how far shapes from one group are from the 410 

mean of the other group. Results of the tests are shown in Table 1. At 5 DPI the three tests found shape 411 

differences between treatments (0.001<p<0.005). From 6 DPI and beyond, p-values were extremely 412 

significant (p<0.0001). These results coincide with those obtained by Procrustes ANOVA of shape 413 

(Supplementary Table 2). DA maximizes group separation for plotting their differences and predicting group 414 

affiliation (classification). The classification of a given specimen (through the discriminant axis) is done 415 

using functions that were calculated on samples that included that same specimen (resubstituting rate of 416 

assignment). Then, a degree of over-fitting is unavoidable and leads to an overestimate of the effectiveness 417 

of the DA. To overcome this problem, one solution is to use a cross-validation or jackknife procedure 418 

[30,44]. Jackknife procedure leaves one specimen at a time not used for constructing the Discriminant 419 

function and then tests the rate of correct specimen assignment. Only jackknife cross-validated classification 420 

tables provide reliable information on groups. Results of DA in group assignment are shown in Figure 4 for 421 

3, 7 and 12 DPI and detailed for all DPIs in Supplementary Table 3. As expected, resubstitution rates of 422 

assignment (Figure 4A, D, G) were higher than jackknifed counterparts (Figure 4B, E, H), but the latter 423 

reached high levels of accuracy (≥90 %) from 6 DPI and beyond (Supplementary Table 3). To test whether 424 

this level of accuracy was indeed good, these results were compared with classification/misclassification 425 

tables completed by human observers. The entire image dataset of 7 DPI was given to three expert 426 

researchers working with Arabidopsis (one of the authors (S. Asurmendi) and two other researchers from 427 
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another Institution). They were all blind to the assignment of treatments to each plant, except for one Mock-428 

inoculated and one ORMV-infected plant that were given as references. They classified the 38 remnant 429 

plants and results are shown in Supplementary Table 3. Human accuracy ranged from 55 to 72.5 %, with an 430 

average of 64.2 %. Therefore, DA outperformed expert human eye by 30 % at 7 DPI and yielded higher 431 

classification rates from 5 DPI. 432 

Wireframe graphs for 3, 7 and 12 DPI (Figure 4C, F, I) show the difference from Mock group to ORMV 433 

group. There is little difference at 3 DPI, if any (Figure 4C), consistently with nonsignificant differences 434 

found by DA at this stage. At 7 DPI (Figure 4F), the relative shortening of leaf #11 (landmarks 4 and 9) is 435 

evident, as is the relative increase in the angle between leaves #9 and #10. These tendencies persisted at 12 436 

DPI (Figure 4I). At this stage, petioles of leaves #11 and #12 are strongly relatively shortened. These results 437 

resemble those obtained in Figure 3C-F and approximately summarize shape changes explained by the first 4 438 

PCs, indicating that these shape differences not only separated juveniles from adults but are also hallmarks of 439 

shape change induced by ORMV. These results are interesting because discriminant axes not necessarily 440 

resemble PCA axes [44]. 441 

Allometric patterns and size correction 442 

As ORMV induced not only changes in shape, but also in size (Supplementary Table 2) it is worth 443 

investigating whether shape changes are associated to size differences. In principle, group differences could 444 

arise if individuals of one group are different in shape because they grew faster than the other group´s 445 

individuals and reached earlier a more advanced developmental stage. The association between a size 446 

variable and the corresponding shape variables is called allometry. Isometry, by contrast, is the condition 447 

where size and shape are independent of each other and usually serves as the hypothesis null. These concepts 448 

are rooted in the Gould-Mosimann school of allometry that conceptually separates size and shape [62]. 449 

Though size had been removed from forms after GPA, leaving shape differences free of it, there could be a 450 

linear relationship between them. Allometry can be statistically tested for by tests of multiple correlation.  451 

When groups are present, a single regression line through all groups cannot be fit to test allometry because 452 

lines could have group-specific slopes or intercepts [30]. As TPSRegr (see below) uses raw data coordinates 453 

and averaged by ID DPI datasets in MorpohoJ do not have them, these analyses were carried on with 454 

individual datasets from only the 1st Digitization. As proven earlier, differences between digitizations were 455 

negligible (Figure 2 and Supplementary Table 2).  456 

To test whether an allometric component is present in each group, separate regressions were performed for 457 

each treatment and DPI with Procrustes Coordinates as dependent variables and ln(CS) as the independent 458 

variable. Permutation tests were requested with 10.000 runs. Respective p-values and predicted SS from 459 

regressions (which correspond to allometric variation of shape) are shown in Figure 5A. Allometry 460 
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accounted for moderate to high proportions of the total shape variation since SS reached values of 36% at 6 461 

DPI (Mock). ORMV induced a reduction in the allometric component of shape variation as evidenced by 462 

lower predicted SSs along the experiment and non-significant values of allometry for all except 4 and 5 463 

DPIs. For both treatments and particularly for healthy controls, a bell-shaped curve is detected and a 464 

maximum of allometry is seen at 6 DPI for Mock plants but a day before for ORMV. Differences between 465 

treatments start sharply at 5 DPI, when allometry accounts for 32% of predicted SS for Mock but only 20% 466 

for ORMV. This analysis shows that for ORMV, shape variation is much less driven by size heterogeneity 467 

(at a given DPI) and that for Mock plants this situation (isometry) occurs at later stages of development (10-468 

12 DPI). 469 

When at least one group has regression slopes different from zero a series of tests could be done in order to 470 

control for size and repeat analyses to assess whether differences in shape are actually the result of size 471 

variation only [29,30,44,62]. TPSRegr (v. 1.41) was used firstly to determine whether group-specific slopes 472 

were parallel at each DPI (3-8). Only at 3 and 4 DPI this occurred (p > 0.05, slopes not statistically 473 

significant). As slopes were found to be parallel, it is possible to test whether they are separate parallel slopes 474 

or coincident (same Y-intercept). TPSRegr tests demonstrated that slopes are coincident (p > 0.05). Then, 475 

size-corrections could only be done for 3 and 4 DPI, since from 5 to 8 DPI slopes were different (p < 0.05) 476 

and groups follow its own allometric pattern and for 10 and 12 DPI there are isometry and size do not 477 

correlate with shape variation. Size-correction was done for 3 and 4 DPI separately in MorphoJ, using all 40 478 

plants. Shape variables were regressed onto ln(CS) for each dataset, pooling regressions within subgroups 479 

(treatments) and permutation tests with 10.000 runs were requested. Residuals from the analyses contain the 480 

size-free information about shape only and can be used to repeat DAs to test for improved accuracy of 481 

discrimination [62]. Results (Figure 5B-E) showed that group separation was not improved. This is 482 

somewhat expected since at this stage of viral infection there are no detectable differences in size nor shape 483 

yet (Figure 4 and Tables 1-3). This test and the large overlap between populations in the scatterplot of 484 

regression scores onto size (Figure 5F, G) suggest that the effect of size on shape is very similar for both 485 

treatments and DPIs: bigger rosettes have further distal displacements of leaves #10, 11 and 12 relative to 486 

older leaves (#8 and #9) and elongated petioles (Figure 5H, I) thus reflecting the differential internal growth 487 

of the rosette. Bigger, more mature rosettes have more developed newest leaves. 488 

Phenotypic Trajectory Analyses (PTA) 489 

Whilst the comparison of allometric vectors indicated that shape change is altered at definite DPIs during 490 

ORMV infection, a holistic view of ontogenetic alterations needs to measure phenotypic evolution across 491 

multiple levels. It allows ontogenetic patterns to be characterized as phenotypic trajectories through the 492 

morphospace, rather than phenotypic vectors. The method proposed by [48] “(...) may also be used for 493 
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determining how allometric or ontogenetic growth trajectories differ, or for quantifying patterns in other 494 

data that form a time-sequence” [48]. Briefly, phenotypic trajectories have three attributes: size, direction 495 

and shape. 496 

Trajectory size (MD) quantifies the path length of the phenotypic trajectory expressed by a particular group 497 

across levels. This represents the magnitude of phenotypic change displayed by that group. If trajectories of 498 

two or more groups compared over comparable time periods differ in trajectory size then it indicates 499 

differences in rates of morphological change.  500 

Trajectory direction (θ) is a multivariate angle that describes the general orientation of phenotypic evolution 501 

in the multivariate trait space. Statistical comparisons of trajectory direction can be used to provide an 502 

assessment of patterns of convergence, divergence, and parallelism. 503 

Trajectory shape (DShape) describes the shape of the path of phenotypic evolution through the multivariate 504 

trait space. This information is useful because it indicates whether there are differences in how each group 505 

occupies the morphospace through the time period. 506 

PTA analysis proceeds by starting from the PCs for all specimens at all DPIs. They were obtained from the 507 

“Combined dataset 3-12 DPI, averaged by ID DPI” of the Supplementary file ORMV.morphoj. The R script 508 

developed by [48] was run in RStudio [49]. 509 

PTA approach (with 1,000 residual randomization permutations) revealed significant differences in the 510 

magnitude of phenotypic evolution between the two treatments (MDMock,ORMV = 0.100, Psize = 0.003), 511 

implying that ORMV-infected plants experienced a lower rate of ontogenetic phenotypic evolution relative to 512 

controls. Overall direction of ontogenetic changes were also statistically significantly different (θMock,ORMV = 513 

18.34°, Pθ = 0.001). Finally, shape assessment analysis showed differences between treatments regarding 514 

trajectories over time (DShapeMock, ORMV  = 0.367, PShape = 0.001) (Table 2). When phenotypic trajectories are 515 

plotted through time for the first two principal components (Figure 6) these statistical conclusions are 516 

graphically confirmed. Group trajectories diverge from 3 DPI and trajectory lengths are evidently different, 517 

specifically regarding the relative stasis of the ORMV-infected group beyond 6 DPI. Both factors contribute 518 

to the overall difference found in trajectory shape.  519 

However, as pointed out by [63], no one method of disparity measurement is sufficient for all purposes. 520 

Using a combination of techniques should allow a clearer picture of disparity to emerge. With this aim, 521 

another available approach to compare shape trajectories through multivariate morphospace was used. 522 

Originally developed to study unequal morphological diversification in a clade of South American fishes 523 

[64], this approach is useful because allows investigating whether a group “explores” different amount of 524 

morphospace than others, additionally to possible differences in magnitude of phenotypic evolution. 525 
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Moreover, density parameters (D) could be calculated to determine whether the amount of morphological 526 

change is more or less constrained in the morphospace.  527 

The method was adapted to the present case study: as there is not a phylomorphospace and both treatments 528 

lack a “common ancestor” but each plant follow its own independent ontogenetic path, nodes and branches 529 

do not exist. Rather, each plant possesses its own trajectory without points in common. Taken these 530 

considerations into account, morphological trajectories were calculated for all plants. To do so, the 531 

“Combined dataset 3-12 DPI, averaged by ID DPI” of the Supplementary file ORMV.morphoj was 532 

subdivided by ID. Forty new datasets (Mock- and ORMV-inoculated plants from the same previously 533 

performed Procrustes fit) were obtained and Procrustes Coordinates and eigenvalues from the 7 PCs obtained 534 

were exported to an Excel spreadsheet. 535 

The morphometric change experienced by a plant throughout ontogeny equals the Euclidean distance (D) 536 

between successive points in morphospace that represent its shape at each DPI. As PCs from a PCA carry all 537 

the morphological information extracted from the Procrustes Coordinates, distances are simultaneously 538 

calculated over all the PCs using the Pythagorean Theorem. These distances are designated as morphometric 539 

path lengths (ΣD = MPL) (sensu [64]). Mock-inoculated plants traveled on average more distance through 540 

morphospace than infected ones (MPLMock = 0.6956 vs. MPLORMV = 0.5963, p = 0.00025, Mann-Whitney 541 

test). Other measures are traditionally used to detect changes in morphospace occupation patterns and the 542 

amount of difference between character states among specimens in morphospace [63], e.g. sum of variances 543 

(∑Var). Control plants had higher ∑Var values  than infected plants (∑Var Mock = 0.0350 vs. ∑VarORMV = 544 

0.0230, p = 2.52 x 10-6, Mann-Whitney test) a result that pointed to a higher increase in shape change in 545 

controls [63]. Morphospace density occupation measures could be obtained taking into accounts not only 546 

MPLs but also variances of the PCs across the experiment.  If a group folded an equivalent amount of 547 

morphometric change into a much smaller region of morphospace than the other, thus will have a higher 548 

density [64]. Morphometric path density (D) could be calculated as D1 = MPL/∑Var. ORMV-infected plants 549 

are more densely restricted in morphospace (D1(Mock) = 20.21 vs. D1(ORMV) = 26.93, p = 2.89 x 10-6, Mann-550 

Whitney test) (Table 2). 551 

An alternative measure of density (D2 = MPL/V) considers the volume (V) that the group occupies in 552 

morphospace. A variety of volumetric measures are possible [63]. This study considered the volume of a 553 

95% confidence hyperellipse. It was obtained by calculating the square root of the product of the eigenvalues 554 

of the PCs and comparing them with expected values for a X2 distribution at α = 0.05 (see Materials and 555 

Methods). Mock-inoculated plants have hyperellipses of higher volume on average than infected plants 556 

(Hyperellipse(IC95%)Mock = 0.0129 vs. Hyperellipse(IC95%)ORMV = 0.0073), but differences were not statistically 557 

significant (p = 0.11888, Mann-Whitney test). Similarly, density measures based on hyperellipses 558 
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calculations were not statistically significantly different (D2(Mock) = 111.47 vs. D2(ORMV) = 146.34, p = 559 

0.25051, Mann-Whitney test), although ORMV-infected plants had a higher average density. These 560 

differences in density measures could arise from the fact that hypervolume calculations can produce values 561 

that are extremely small and variable. Since the hypervolume is calculated by taking the product of univariate 562 

variances, any axis or axes with negligible variance will produce a value of hypervolume close to zero. 563 

Moreover, all multiplied variances are given the same weight and consequently, PC axes that represent a 564 

minimal percentage of the total variance could distort conclusions obtained with more informative axes. 565 

Thus, hypervolume can be very sensitive to variation in a single character. To avoid this issue, only the axes 566 

with significant variances are chosen to represent the disparity among points in morphospace [63]. Therefore, 567 

the analysis was repeated including only the first three PCs, which accounted for more than 95% of variance. 568 

Results were similar to previously obtained for all parameters but hyperellipse´s volumes were found to be 569 

statistically significantly different (Hyperellipse (IC95%)Mock = 0.022 vs. Hyperellipse(IC95%)ORMV = 0.014, p = 570 

0.0052597, Mann-Whitney test) as the D2 parameter (D2(Mock) = 32.97 vs. D2(ORMV) = 41.87, p = 0.040172, 571 

Mann-Whitney test) (Table 2). 572 

Taken together, PTA showed that Mock-inoculated and ORMV-infected plants follow separate paths through 573 

morphospace. They differ in length, direction and shape (Figure 6), but also explore distinct regions of 574 

morphospace in a disparate quantity. Control plants experience more diversification of shape, as evidenced 575 

by the comparative length of trajectories (MD and MPL), have a higher amount of difference between shape 576 

states through the experiment in morphospace (∑Var) and explore more ample regions of morphospace (D1, 577 

D2) (Table 2). On the whole, ORMV infection not only alters the direction of ontogenetic shape development 578 

but also diminishes shape change. 579 

Growth and Development modeling 580 

 Even after finding that Mock- and ORMV-infected plants follow different ontogenetic trajectories of 581 

shape it is possible to compare their rates and timings of growth and development. When groups have 582 

different ontogenetic trajectories of shape, it is necessary to use a formalism that can be used when 583 

treatments follow group-specific ontogenetic trajectories [44]. One such possibility is to compare the rates 584 

and timings at which groups depart from their own juvenile forms [65], an approach that can be applied to 585 

compare growth [66] and development [67] rates between groups with different ontogenetic trajectories. To 586 

linearize the relationship between size and age, ln(CS) was regressed on ln(DPI) and growth rates were 587 

compared. Results showed higher growth rate for Mock (1.06, CI95%=1.00-1.12) than for ORMV (0.72 588 

CI95%=0.64-0.79) (p(same slope)= 3,0309E-12) (Figure 7A). Lack-of –fit was assessed for both regressions and 589 

rejected (p= 0.9975 and p= 0.3144 respectively), thus indicating the goodness of fit for both linear 590 

regressions. To compare developmental rates, it was measured the rate at which shape progressively 591 
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differentiates away from that of the youngest age class (3 DPI) from 4 to 12 DPI. The degree of 592 

differentiation is measured by the morphometric distance between each individual and the average of the 593 

youngest age class [67], using Euclidean distances as approximations of Procrustes distances (Supplementary 594 

Figure 1 and Supplementary Table 1). Linear regressions with Euclidean distances (D) as a dependent 595 

variable and ln(DPI) as a regressor indicated a higher developmental rate for Mock- (0.34, CI95%=0.32-0.36) 596 

relative to ORMV-infected plants (0.24, CI95%=0.22-0.26) (p(same slope)= 5,4657E-13) (Figure 7B). Lack-of –fit 597 

was rejected (p= 0.1626 and p= 0.3278 respectively). Healthy controls depart more from its own juvenile 598 

shape from 8 DPI and beyond (Figure 7C), indicating that developmental change was relatively impaired by 599 

ORMV. Together, these results indicated that ORMV reduced both growth and morphological change. 600 

Alternatively, nonlinear models have been widely applied to studies of growth in several biological 601 

species (reviewed in [44]), including Arabidopsis [6]. The latter decided to apply a logistic model regarding 602 

Arabidopsis growth from seedling stage on the basis of the prevalence of that model in plant growth studies. 603 

However for the present study it was decided to follow a less aprioristic approach, more in line with that of 604 

[67] who tested several nonlinear models and compared their relative performance regarding absence of 605 

residuals autocorrelation, percentage of variance explained and minimal parameterization. Here, five 606 

nonlinear models were chosen to compare: Logistic, Gompertz, Exponential, Monomolecular and Richards 607 

[67]. For development analysis (Euclidean distances respect to 3 DPI mean shape) Logistic model fitted the 608 

best, with minimal Mean Square Error and low correlation between parameters, very close to the Gompertz 609 

model. However, all tested models showed a strong autocorrelation of residuals as evidenced for the Durbin-610 

Watson panel test (Appendix S1).  When the residuals are autocorrelated, it means that the current value is 611 

dependent of the previous (historic) values and that there is a definite unexplained pattern in the Y variable 612 

(Euclidean distance in this case study) that shows up in the disturbances. As a basic assumption of these 613 

analyses is the independence of residuals and particularly, their absence of autocorrelation, neither analyzed 614 

model fitted the development accurately. The same problem was found when the five growth models were 615 

applied to study growth, regardless choosing CS or ln (CS) as the dependent variable and DPI or ln(DPI) as 616 

the regressor (data not shown). An explanation for the autocorrelations of residuals is that data from 617 

successive DPIs (intra-group analyses) are not independent: every specimen is recorded at each DPI. This 618 

leads to a multivariate longitudinal data analysis situation, a branch of statistical analysis that has been 619 

recently addressed following different approaches [68], and whose level of complexity is beyond the scope 620 

of this work.  621 

However, intra-treatment paired comparisons of shape are possible using a paired Hotelling´s test (a 622 

multivariate analog of the paired t-test). It was found a strong effect of time on shape and differences are 623 

extremely statistically significant for Mock plants (Supplementary Table 4). 624 
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 Basic rosette growth and development parameters were studied (Figure 7). Rosette Growth, 625 

Absolute Growth Rate (AGR) and Relative Growth Rate (RGR) had been proposed as measures of rosette 626 

expansion and its velocity and rate, respectively [2,4]. Mock-inoculated plants were statistically significantly 627 

bigger from 6 DPI and beyond (Figure 7D).  The graphic lacks the typical sigmoidal shape of growth curves, 628 

probably because early stages of development (when landmarks used in this work were not present yet) were 629 

not included in the analysis and plant growth had not reached its plateau phase at 12 DPI yet. AGR and RGR 630 

analyses revealed an early change in growth tendencies between treatments. As early as between 3 and 4 631 

DPI, (two days before the detection of significant differences in rosette area) ORMV started to slow rosette 632 

growth relative to healthy controls (Figure 7E-F). AGR graphic (Figure 7E) shows that, in contrast with 633 

control plants, ORMV-infected plants grew less rapidly from one day to the following throughout the 634 

experiment with the exception of the period between 8 and 10 DPI. This indicated different growth 635 

acceleration for each treatment. Growth acceleration (Figure 7G) peaked between 5 and 6 DPI in control 636 

plants and remained near zero until 12 DPI, suggesting a stage of linear rate of expansion.  Later on, negative 637 

acceleration could indicate an entering in plateau phase reached by the region of the rosettes under study. In 638 

infected plants, however, acceleration between 5 and 6 DPI was negative and differed strongly from controls 639 

(difference = 1.94 mm2/day2, p= 0.0009, Mann-Whitney test), indicating that ORMV early slowed down the 640 

velocity of plant growth in a drastic manner. A trend towards more negative values of growth acceleration 641 

relative to controls was maintained in ORMV-infected plants until 10 DPI, though only marginally 642 

statistically significant. At 10-12 DPI both groups decelerate their growth, possibly indicating an entering in 643 

a plateau phase of growth. These results indicate that ORMV induces measurable changes in growth rates 644 

before the mean CS is found to be statistically significantly different from healthy controls, and that the 645 

acceleration of growth, which is characteristic from several growth models, is impaired by the virus.  646 

A similar approach was followed to investigate developmental differences between groups. Mean 647 

developmental rates were calculated between consecutive DPIs (Figure 7H). Mock –inoculated plants 648 

showed a higher mean developmental rate from 5 DPI to the end of the experiment. The Mean 649 

Developmental Acceleration (Figure 7I) showed a more complex pattern: Mock-inoculated plants peaked at 650 

5 DPI and after that, a deceleration of development was detected until 12 DPI. In infected plants, though, 651 

acceleration reached a maximum at 6 DPI and then sharply decreased towards more negative values than 652 

control plants, indicating a relative stagnation in morphological change. At 12 DPI ORMV induced a less 653 

negative value of Mean Acceleration of development than controls, although its velocity remained lower 654 

((Figure 7H-I).  655 

Taken together, these results show that ORMV impacts both growth and development very early after 656 

infection. Whereas a direct measure (CS) detected differences between treatments at 6 DPI, more elaborated 657 
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parameters (AGR, RGR and Mean Developmental Acceleration) allowed differences to be detected as soon 658 

as 4 DPI. Growth and developmental patterns differed between treatments in a dissimilar manner: AGR 659 

showed differences in growth velocities at 4 DPI, whilst Mean Developmental Rate was clearly different 660 

later on.  Acceleration graphics (Figure 7G,I) indicated that ORMV has an early effect in decelerating both 661 

growth and development, but the latter was more dramatically affected in comparison with relative growth 662 

deceleration whose decrease was more or less stepwise. Mock-inoculated plants peaked developmental 663 

acceleration at 5 DPI and growth acceleration the following day. ORMV-infected plants peaked 664 

developmental acceleration at 6 DPI but lost the subsequent growth acceleration phase (Figure 7G,I). This 665 

and other comparisons indicate that ORMV does not just induce delayed growth or morphological change 666 

patterns, but a more radical change in the coordination of both parameters. 667 

Comparison with TuMV infections 668 

 As stated earlier, one goal of applying the GM approach to the study of Arabidopsis is to make 669 

phenotypic comparisons in a more objective and repeatable manner. To this end, the same experimental setup 670 

was applied to the study of viral infections of A. thaliana with TuMV, an ssRNA+ virus unrelated to ORMV 671 

(http://viralzone.expasy.org/). The experiment spanned from 4 to 10 DPI since at 12 DPI excessive curling of 672 

some leaves induced by TuMV impaired the correct assignment of landmarks (Supplementary file TuMV 673 

1st.morphoj). Individual datasets were created for each DPI and Procrustes Coordinates extracted. A 674 

combined dataset was created and PCA carried on. After outliers exclusion, 27 Mock and 14 TuMV-675 

inoculated plants remained. PCA revealed that PC1 accounted for 49.2% of total variance (much less than 676 

the ORMV experiment accounted for) and PC1 plus PC2 accounted for 69.3% of total variance. Again, PC1 677 

mostly separates juveniles from adult rosettes and negative values related predominantly to infected plants 678 

which retained a more immature phenotype (Figure 8A). It was supported by the associated wireframe graph 679 

which depicts a relative shortening of leaves #11 and #12, similarly to ORMV-infected plants (Figure 3C). 680 

PC2 was strongly positively related to infected plants and, similarly to the ORMV case (Figure 3D), reflects 681 

the widening of the angle between leaves #9 and #10. PCs 3 and 4 (Figure 8B-C) accounted for 17.7% of 682 

total variance and are mainly negatively related to TuMV infection. Discriminant Analysis (Figure 8D-E) 683 

showed that, similarly as observed with ORMV, group means were statistically significantly different 684 

starting from 5 DPI. Wireframe graphs also evidenced a strong relative shortening of the petioles, similarly 685 

to that had been found under ORMV infections (Figure 4F,I), indicating that more compact rosettes are a 686 

common outcome of these viral infections. Discriminant power was slightly higher for almost all DPIs in the 687 

case of TuMV (Supplementary Table 5, Supplementary Table 3). Moreover, Procrustes Distances were 688 

higher for every DPI in the case of TuMV, which induced a Procrustes separation at 8 DPI only matched at 689 

12 DPI for ORMV-infected plants (Supplementary Table 5, Table 1). These results suggest that TuMV is a 690 
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more severe virus than ORMV is in Arabidopsis, since it induces a more pronounced departure from Mock 691 

mean shape.  692 

PTA supported this evidence: A subset of 4-10 DPI datasets were selected to compare ORMV with TuMV 693 

infections (Table 2, Figure 9A-B). Whilst trajectory size difference (MDMock,TuMV) was similar to the obtained 694 

with ORMV, the multivariate angle (θMock,TuMV) that separates infected form healthy trajectories more than 695 

doubled that of ORMV. Shape differences (DShapeMock, TuMV) between trajectories almost doubled. The 696 

majority of the other measures indicated a slower rate of shape change relative to Mock plants, similarly to 697 

ORMV infection, but relatively less marked (Table 2). To visualize and compare shape changes, 698 

transformation grids with Jacobian expansion factors and lollipops were done in PAST for 10 DPI plants 699 

(Figure 9C-D). Both viruses induced relative contraction of the rosette around leaf #11 (the most affected), 700 

but TuMV induced more severe deformations. To confirm these results and to test for the reproducibility of 701 

the analysis, an independent experiment of TuMV infection was executed (Supplementary file TuMV 702 

2nd.morphoj). PTA analyses were run and trajectory attributes compared (Table 2). There were obtained 703 

very similar results relative to the first TuMV experiment. 704 

Together, these results indicated that both TuMV and ORMV induced relative developmental arrest as well 705 

as shape change, but symptoms triggered by ORMV are mainly driven by developmental arrest whereas 706 

TuMV also promotes shape change in a relatively higher extent, thus impacting more strongly on overall 707 

shape.  708 

 709 

Discussion 710 

Here, several standard GM tools were applied to the study and comparison of morphological changes 711 

induced in Arabidopsis by viral infections. GM analysis is a powerful approach due both to its statistical 712 

toolbox and its appealing visual analysis of shape change. By conceptually separating size and shape, making 713 

them mathematically orthogonal, both factors that determine form could be separately analyzed. Thus, the 714 

effect of ORMV infection was detected earlier on shape and the derived measures of size (Tables 1-3, Figure 715 

7E,F) than in size itself (Figure 7D). GM analysis greatly outperformed diagnosis when compared against 716 

expert human eye (Supplementary Table 3). The effect of time on shape was more pronounced than that of 717 

treatment, since the former was detected earlier (Tables 2 and 5). This was particularly the case for control 718 

rosettes, reflecting that normal rosette development is not a scaling up of previous shapes but a relative 719 

displacement of newly developed structures, a process that is somewhat impaired by ORMV, which induced 720 

the retention of a more juvenile-like phenotype (Figure 3).   721 

Normal allometric growth comprised a lengthening of petioles and laminae of new leaves (#11 and 12) 722 

relative to older ones (Figure 5H-I). This process was reversed by ORMV, which also distorted the normal 723 
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angle of approximately 137.5° between successive leaves. As a result, leaves #9 and 10 bended towards 724 

leaves #8 and 11, which in turn came close together, bending towards the inoculated leaf (#3) that is situated 725 

middle way between them (Figure 4F,I). TuMV provoked similar outcomes (Figure 8) but the effect seemed 726 

stronger, not only regarding the distorted inter-leaves angle, but for the relative contraction of leaf #11 727 

respect to all remaining leaves, including #12 (Figure 8E, Figure 9C-D). Taking into account the source-to-728 

sink nature of viral movement by phloem [34] and its radial structure [69] it could be hypothesized that virus 729 

or viral-induced hormones are distributed through the rosette in such a way that they inhibit proximal 730 

systemic growth. These kind of data-based hypothesis is one desired outcome of the application of GM tools 731 

[44] in particular and phenotyping in general. Future work should test this hypothesis by means of comparing 732 

cell number or size in distal and proximal parts of systemic leaves, or the effect growth hormones and 733 

mutants have in these parameters. 734 

Both viruses diminished shape change, constraining virus-infected rosettes to smaller regions of multivariate 735 

morphospace (Supplementary Table 1, Table 2 and Figures 6-9). Ontogeny (the development or course of 736 

development of an individual organism) is a genetically-based endogenous process but can be altered by the 737 

environment [65]. Here, the departure of normal ontogenetic development is induced by both viruses. The 738 

consequences of this departure should be analyzed by further work measuring relevant traits.  739 

The availability of a standard measurement unit of shape change (Procrustes distance) allowed to compare 740 

ORMV- and TuMV- induced shape changes relative to the departure from healthy control shapes (Figure 741 

9A-B, Tables 2-4 and 6) and objectively rank symptoms severity. Besides, visualization tools aided to 742 

identify were the shape change differences allocated in the rosette (Figure 4C, F, I, Figure 8D-E and Figure 743 

9C-D). In sum, it was concluded that TuMV impacts more strongly on Arabidopsis rosette shape than 744 

ORMV does. Trajectory and density parameters could be also used to compare developmental phenotypic 745 

plasticity (a term generally used to summarize how a given group responds to a series of different 746 

environmental conditions by producing an array of phenotypes [70]). Multivariate reaction norms could be 747 

then obtained, using shape variables but also controlling for other variables (size, external factors) and 748 

weighting their interaction. This would enrich the description of phenotypes whilst offering a solid basis for 749 

comparisons. 750 

As superior organisms, plants have complex shapes that experience complex changes throughout their life 751 

spans, particularly when exposed to severe stresses that modify the route of ongoing development. Regarding 752 

so, their complex phenotypes are difficult to encompass in all their extent by using only one technique, 753 

regardless of its descriptive or statistical power. This note is of importance when evaluating the capabilities 754 

and limitations of the GM tools presented here. For example, whereas we showed that ORMV significantly 755 

impacts rosette shape from 5 DPI and beyond (Supplementary Table 2 and Table 1), and learnt from the 756 

wireframes (Fig. 4C, F, I) that some laminae and (mostly) petioles become relatively shorter under ORMV 757 

infection, no particular statistical statement could be done about these discrete phenotypic outcomes. Rather, 758 

if these questions were to be specifically addressed, other measures (such as direct measures of petioles´ 759 
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length) should have been taken. GM analyses performed here pointed to overall shape (and size) changes, 760 

and visualization tools could serve as guides to further study the putative underlying mechanisms involved if 761 

required. Also, as pointed out above, landmarks analyses come with the limitation of not being capable of 762 

extrapolate results to the regions between them without uncertainty. Because of that, the selection of a 763 

specific set of landmarks (covering the region of interest) must be well stated at the beginning of the 764 

experiment and be sound to study the problem of interest. As with any other technique, caution is needed 765 

when interpreting the results in order to consider its limitations. 766 

 767 

After the genomic revolution, there is a need of objective, reproducible, and accurate assessments of 768 

morphology as a critical missing link to supporting phenomics [71]. The use of GM allows standardizing 769 

deviations from controls in a consistent, objective manner. At the core of these conceptual framework is the 770 

GPA, which permits to compare shapes in Procrustes units of distance. 771 

The examples given in this work are necessarily limited, but other applications could be easily envisioned: as 772 

the choice of landmarks placement is arbitrary on a given structure, other experimental setups could place 773 

them differently to study different stages of growth or other anatomical regions of interest. Importantly, this 774 

technique is not a competitor but a possible complementation of newly developed automated platforms for 775 

rosette segmentation. It is now possible for some platforms to identify the tip of leaves, the center of the 776 

rosette and the intersection between lamina and petiole [6,72], thus giving the landmarks used in this study 777 

and its coordinates, automatically.  778 

Moreover, the same software used in this work permits GM 3D image analysis, therefore allowing the study 779 

of plant species with a more complex architecture.  780 

100 years after the revolutionary vision of D´Arcy Thompson´s transformation grids and more than 40 years 781 

since the beginning of the revolution in morphometrics, GM application for plant phenotyping is starting to 782 

develop [29,30,73] and the plant model species Arabidopsis thaliana should benefit from it. 783 
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Figure 1. (A) Landmark configuration in an Arabidopsis rosette. An 8 DPI Mock-inoculated rosette is 794 

shown. (B) Analysis flowchart showing the different software used in this study, with main features extracted 795 

from each one listed below corresponding icon. See main text and Materials and Methods for details. 796 

Figure 2. Shape variation including all observations and replicas. PCA scatterplots of (A) PC1 vs. PC2 and 797 

(B) PC3 vs. PC4. Equally colored dots represent both digitizations of the same specimen, for all DPIs. The 798 

scale factor for this graph is directly the magnitude of the shape change as a Procrustes distance; the default 799 

is 0.1, which corresponds to a change of the PC score by 0.1 units in the positive direction. 800 

Figure 3. Shape variation between specimens (averaged by measurement replicates). PCA scatterplots of (A) 801 

PC1 vs. PC2 and (B) PC3 vs. PC4, which together explain 87.4 % of variance. Pale dots = juvenile (3-6 DPI) 802 

plants. Dark dots = mature (7-12 DPI) plants. (C-F) Wireframe graphs showing shape changes from the 803 

starting (average) shape (bluish green) to the target shape (orange) for the first four PCs. Negative (PC1) and 804 

positive (PCs2-4) components are shown, respectively. Here and throughout this work, leaf number is 805 

indicated in the wireframe in black. (G) Lollipop graph for the –PC1 component. Lollipops indicate starting 806 

position of landmarks with dots. (H-I) Transformation grids for (H) the starting shape and for (I) the target 807 

shape (-PC1). Shape changes (C-G and I) are magnified 2X for better visualization.  808 

Figure 4. Discriminant analyses of shape variation between treatments at 3 (A- C), 7 (D-F) and 12 (G-I) DPI. 809 

Frequencies of discriminant scores obtained by resubstitution rates of assignments (A, D, G) and a jackknife 810 

cross-validation (B, E, H) are shown using histogram bars with percentages of correct assignments above 811 

each graph. Wireframes comparing mean shapes (C, F, I) are shown magnified 2 times. Mock = bluish green; 812 

ORMV = orange. 813 

Figure 5. Allometric analyses. (A) Predicted sum of squares from regressions of shape onto ln(CS) for each 814 

treatment and DPI. P-values were corrected using Holm´s sequential test (α=0.05). * = p < 0.05; ** = p < 815 

0.01. Allometric analyses for (B, D, F, H) 3 DPI and (C, E, G, I) 4 DPI (Mock = bluish green; ORMV = 816 

orange). Cross-validated DAs before (B-C) and after (D-E) size correction with percentages of correct 817 

assignments above each graph. (F-G) Scatterplot of regression scores vs. ln (CS). (H-I) Wireframes showing 818 

starting mean shape (turquoise) and target shape depicting an increase in one unit of ln(CS) (blue), without 819 

magnification.  820 

Figure 6. Phenotypic trajectories for Mock and ORMV (3-12 DPI). Scatterplot shows the first two PCs of 821 

shape variation across the experiment. Mean values for each DPI are colored and connected with lines. PTA 822 

parameters are given (see main text). Mock = bluish green; ORMV = orange. 823 

Figure 7. Growth and Development modeling. Comparisons of (A) growth and (B) developmental rates. 824 

Linear regressions for Mock (black lines) and ORMV (orange) with CI95% bands (blue). (C) Euclidean 825 

distances from own average juvenile shapes for mock and ORMV plants. Student´s t tests were performed 826 
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separately for each DPI, contrasting mock vs. ORMV mean distances from its own average shapes at 3 DPI. 827 

Bars indicate mean average shape distances from average juvenile shape +/- SE. ** = p < 0.01; *** = p < 828 

0.0001. (D-G) Rosette growth parameters. Measures of (D) size, (E-F) growth rate and (G) growth 829 

acceleration. Error bars indicate +/- SE. * = p < 0.05; ** = p < 0.01; *** = p < 0.0001, Mann-Whitney tests. 830 

(H-I) Rosette developmental parameters. (H) rate and (I) acceleration. (C-I) Mock = bluish green; ORMV = 831 

orange. 832 

Figure 8. Summary of GM analyses for TuMV-infected plants. (A-C) Shape variation between specimens. 833 

(A) PCA scatterplot (PC1 vs. PC2). Pale dots = juvenile (4-5 DPI) plants. Dark dots = mature (7-10 DPI) 834 

plants. Wireframe graphs from starting (average) shape (bluish green) to target shape (reddish purple) 835 

corresponding to –PC1 (to the left) and +PC2 (top) are included. (B-C) Wireframes for–PC3 and –PC4, 836 

respectively. (D-E) Frequencies of jackknifed discriminant scores for 7 and 10 DPI respectively, with 837 

wireframes depicting shape changes included. Wireframes show starting shape (mock = bluish green) to the 838 

target shape (TuMV = reddish purple). Shape change is magnified 2X. 839 

Figure 9. Comparison of virus severity. PC plots of PTA for (A) ORMV- and (B) TuMV-infected plants, 840 

compared with Mock-inoculated plants (4-10 DPI). PTA parameters are shown (see main text). 841 

Transformation grids with lollipops and Jacobian expansion factors were executed in PAST for (C) ORMV- 842 

and (D) TuMV-infected plants depicting shape change from controls at 10 DPI. Jacobian expansion factors 843 

indicate expansions of the grid (yellow to orange red for factors > 1) or contractions (blue for factors 844 

between 0 and 1). Lollipops indicate target position of landmarks with dots. Leaf #11 (landmarks 4 and 9) is 845 

positioned at the bottom.  846 

Table 1. Statistical tests for differences between means of treatments at each DPI from DA. Permutation 847 

tests with 1000 random runs. 848 

Table 2. Comparative trajectory analyses for the full dataset of the ORMV experiment (3-12 DPI), the 849 

reduced dataset (4-10 DPI) and the comparisons with TuMV experiments (4-10 DPI). 850 

 851 

Appendix S1. Description of the Durbin-Watson panel test. 852 

Supplementary Figure 1. Graphical assessment of the Tangent shape space approximation. Scatterplots of 853 

distances in the tangent space against Procrustes distances (geodesic distances in radians) for (A) Mock-854 

inoculated plants, (B) ORMV-infected plants and (C) all plants, over all DPIs. A blue line is plotted to show 855 

a slope of 1 through the origin. Then a least-squares regression line through the origin is shown in red (for 856 

data in which the variation in shape is small this will hide the blue line). 857 

Supplementary Figure 2. Wireframes depicting shape change associated with –PC1 values from 3 to 12 DPI 858 

(A-H). Green = starting (average) shape; red = target shape. No magnification was applied. 859 
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Supplementary Table 1. Summary statistics for the comparisons between Tangent (Euclidean) and Procrustes 860 

shape distances from average shapes and for regression slopes and correlations between the two distances. 861 

Supplementary Table 2. Summary of centroid size and shape variation. Hierarchical sum of squares 862 

ANOVA. Main effect: Treatments; random factors: Individuals (ID), Digitization. SS, MS and df refer 863 

respectively to sum of squares, mean sum of squares (i.e., SS divided by df) and degrees of freedom. Error1 864 

= Measurement error. 865 

Supplementary Table 3. Classification/misclassification tables from DA for each DPI and human observers 866 

for 7 DPI. 867 

Supplementary Table 4. Statistical comparisons of intra-treatment shape changes across the ORMV 868 

experiment. Holm´s-Bonferroni sequential correction at α=0.05. 869 

Supplementary Table 5. Discriminant Analysis for TuMV. Statistical tests for differences between means of 870 

treatments at each DPI from DA (with permutation tests with 1000 random runs) and 871 

classification/misclassification tables for each DPI. 872 
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Table 1  1080 

Discriminant Function Analysis 3 DPI 4 DPI 5 DPI 6 DPI 7 DPI 8 DPI 10 DPI 12 DPI 

Difference between means: 

        

Procrustes distance: 0.037 0.047 0.063 0.087 0.097 0.105 0.149 0.189 

Mahalanobis distance: 1.799 1.924 3.815 5.117 6.651 7.035 9.078 10.863 

T-square: 31.637 36.170 142.264 255.916 432.438 483.790 805.573 1153.389 

P-value (parametric): 0.521 0.405 0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

P-values for permutation tests (1000 permutation runs): 

        

Procrustes distance: 0.549 0.182 0.005 0.002 <0.0001 <0.0001 <0.0001 <0.0001 

T-square (Mahalanobis distance): 0.523 0.417 0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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Table 2 1083 

ORMV3-12 DPI   

  p-value 

MDMock,ORMV 0.100 0.003 

θMock,ORMV 18,34° 0.001 

DShapeMock, ORMV 0.367 0.001 

MPLMock 0.696 2.50E-04 

MPLORMV 0.596  

∑Var Mock 0.035 2.52E-06 

∑VarORMV 0.023  

D1(Mock) 20.21 2.89E-06 

D1(ORMV) 26.93  

Hyperellipse(IC95%)Mock 0.022 0,005 * 

Hyperellipse(IC95%)ORMV 0.014  

D2(Mock) 32.97 0,040 * 

D2(ORMV) 41.87  

ORMV4-10 DPI   

MDMock,ORMV 0.085 0.005 

θMock,ORMV 16,46° 0.001 

DShapeMock, ORMV 0.343 0.037 

MPLMock 0.472 8,03E-04 * 

MPLORMV 0.401  

∑Var Mock 0.022 2,21E-05 * 

∑VarORMV 0.015  

D1(Mock) 21.77 3,61E-05 * 

D1(ORMV) 28.37  

Hyperellipse(IC95%)Mock 0.012 0,075 * 

Hyperellipse(IC95%)ORMV 0.009  

D2(Mock) 48.94 0,203 * 

D2(ORMV) 56.41  

TuMV4-10 DPI 1st   

MDMock,TuMV 0.093 0.015 

θMock,TuMV 34,41° 0.001 

DShapeMock, TuMV 0.613 0.001 

MPLMock 0.504 0,049 * 

MPLTuMV 0.461  

∑VarMock 0.030 0,007 * 

∑VarTuMV 0.023  

D1(Mock) 16.94 0,017 * 

D1(TuMV) 21.83  

Hyperellipse(IC95%)Mock 0.019 0,156 * 

Hyperellipse(IC95%)TuMV 0.017  

D2(Mock) 32.51 0,277 * 

D2(TuMV) 46.05  

TuMV4-10 DPI 2nd   

MDMock,TuMV 0.082 0.202 

θMock,TuMV 35,05° 0.001 

DShapeMock, TuMV 0.642 0.002 

*= First 3 PCs considered (>95% total variance) 1084 

Units: MD = DShape = MPL = D1 = D2 = Euclidean distance. 1085 

θ = degrees. ∑Var = Hyperellipse(CI=95%) = dimensionless. 1086 

Statistically significant results in bold 1087 
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