Supporting Information

Effects of surfactant and urea on dynamics and viscoelastic properties of hydrophobically assembled supramolecular hydrogel

Marko Mihajlovic^{1,2}, Hans M. Wyss^{2,3} and Rint P. Sijbesma^{1,2,*}

¹Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

²Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

³Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

*e-mail: <u>r.p.sijbesma@tue.nl</u>

Characteristics of the synthesized segmented copolymer PE PEG2000

Table S1. Characteristics of the segmented copolymer (obtained by Gel Permeation Chromatography)

sample	M _w (kg/mol)	M _n (kg/mol)	M _w /M _n
PE PEG2000	87	42	2.07

Strain-dependent measurements

Figure S1. Viscoelastic properties of hydrogels in the presence of SDS and urea. Strain sweep at ω =1 rad/s, at 25°C of the PE PEG2000 at (a) varying SDS concentrations and (b) varying urea concentrations, as indicated in the panels (closed symbols G', open symbols G'').

Analysis stress relaxation data

The frequency-dependent viscoelastic moduli $G'(\omega)$ and $G''(\omega)$ can be derived directly from the Fourier transform of a stress relaxation test, as

$$G^*(\omega) = i\omega \int_0^\infty G(t) e^{-i\omega t} dt,$$
(1)

where $G(t) = \sigma(t)/\gamma_0$ is the time-dependent modulus, with $\sigma(t)$ the time dependent stress after a step in the strain of magnitude γ_0 . $G'(\omega)$ and $G''(\omega)$ are the real and imaginary parts of $G^*(\omega)$, respectively.

Brief description of the Matlab function 'Gstar_from_G_t'

The MATLAB function Gstar_from_G_t.m calculates $G^*(\omega)$ from G(t), using Eq.1. As the experimental data for G(t) is always limited to a finite range of time scales, the code extrapolates G(t) at short and long times, beyond the range that was measured experimentally. To do so, the code uses a power-law fit to both the upper and the lower end of the measured $G(t)^1$. The data in between are integrated exactly from the experimental data, assuming power-law behavior between consecutive data points. In each section, including the initial and final power-law regimes, the relevant contribution to the integral in Eq.1 is calculated, using the incomplete gamma function², which allows us to calculate the definite integral for each section.

Function description:

DESCRIPTION: Function that calculates the frequency-dependent storage and loss moduli from the time-dependent modulus.

The data (on a time interval [t_min .. t_max] is divided into sections, which are each approximated as a power-law function. The relevant Fourier integral for each of these sections can be calculated using the incomplete gamma function gammainc(x,a)

INPUT PARAMETERS:

t: Time array [s]

G_t: Time-dependent modulus G(t) [Pa]

OUTPUT PARAMETERS:

omega: Array of angular frequency [rad/s]

G_stor: Array of Storage modulus [Pa]

G_loss: Array of Loss modulus [Pa]

¹The width of this upper and lower end of time scales is controlled by the parameter *sectionspan*, which is currently set to a value of 5 (which means that the width of the sections used for the power law fit spans over a factor of 5.

² in Matlab, this is implemented by the built-in igamma function.

Figure S2. Fourier transform of the stress-relaxation responses in urea-containing samples. Storage and loss modulus $G'(\omega)$ and $G''(\omega)$ as a function of frequency. Comparison of experimental data obtained from a frequency sweep (symbols), and data obtained from Fourier transforming the stress-relaxation data shown in Figure 5b in the main text (red lines). Varying urea concentrations are indicated in the panels (closed symbols G', open symbols G'').