Supporting Information for:

Linear Viscoelasticity of Weakly Hydrogen-Bonded Polymers Near and Below Sol-Gel Transition

Milad Golkaram,[†] Csaba Fodor,[†] Evelyne van Ruymbeke,[‡] Katja Loos*[†]

[†]Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

[‡]Bio-and Soft Matter, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium

*corresponding author: Tel: +31-50 363 6867; E-mail: k.u.loos@rug.nl

Table of Contents:

1. Experimental Section

1.1. Quantities of the compounds used for RAFT polymerization

2. Characterization

- 2.1. ¹H NMR of PTHYi
- 2.2. Comparison of low field chemical shifts for the copolymers

3. Shift factors and the Arrhenius fitting

1. Experimental Section

1.1. Quantities of the compounds used for RAFT polymerization

Sample ID	AIBN (mg)	DBTTC (mg)	DMF (mL)	nBA (g)	THY (g)
PnBA	0.82	14.5	5.0	1.28	0
PTHY10	0.82	14.5	5.0	1.15	0.32
PTHY30	0.82	14.5	5.0	0.64	1.62
PTHY100	0.82	14.5	5.0	0	3.24

Table S1. Amounts of reagents used for the synthesis of the (co)polymers.

2. Characterization

2.1. ¹H NMR of PTHYi

Figure S1. ¹H NMR spectrum of PnBA.

Figure S2. ¹H NMR spectrum of PTHY10.

Figure S3. ¹H NMR spectrum of PTHY30.

Figure S4. ¹H NMR spectrum of PTHY100.

Figure S5. ¹H NMR spectrum of (a) PTHY10, (b) PTHY30, and (c) PTHY100, enlarged at high chemical shifts belonging to the hydrogen bondings of thymine.

3. Shift factors and the Arrhenius fitting

Figure S6. Shift factors a_T and a'_T vs. (a) $T - T_r$ and (b) 1/T for PTHY100 (c) ratio of shift factors obtained from the two methods a'_T/a_T vs. 1/T.