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Supporting Information Text

A. Electronic Structure Calculations and Nonadiabatic Wavepacket Dynamics. The electronic structure of NaF was calculated
with the program package Molpro (1) at the CAS(8/9)/MRCI/aug-cc-pVTZ level of theory. A Douglas-Kroll-Hess 10th order
correction has been used (2, 3) to account for relativistic effects caused by the core electrons. All densities were evaluated from
the state specific charge density matrices P (ij), expanded in the atomic orbital basis functions φr(r):

σ̂ij(q;R) =
∫

dre−iq·r
∑
rs

P (ij)
rs (R)φ∗r(r;R)φs(r;R). [S1]

Here, P (ij)
rs are the matrix elements of the electronic charge-density matrix connecting states i and j in the basis of the atomic

orbitals (indices r and s).
Both the transition dipole and the integrated transition density

∫
dr|σge| shown in Fig. S3 peak at the avoided crossing

point. The relevant electronic density operators matrix elements σ∗ik(q;R)σkj(q;R) for the S1 signal are displayed in Fig. S4.
For clarity, only the projection along the direction of molecular axis obtained by integrating over the perpendicular directions
is shown. The diagonal density σ2

ee (Fig. S4 (a)) is clearly dominated by contributions from the core electrons and the stripe
pattern reflects the bond length in reciprocal space (see Eq. 15). The transition density σ2

ge (Fig. S4 (b)) mainly contains
contributions from the valence orbitals that are involved in the |e〉 ↔ |g〉 transition. Its magnitude is about 4 orders weaker
than the diagonal matrix element (Fig. S4(a)). However, it peaks at the avoided crossing, making it most suitable for the
detection of inelastic contributions. The mixed matrix element σ†eeσeg (Fig. S4(c)) is a product of the nuclear densities and
the transition densities and its magnitude is about 2 orders weaker than the diagonal matrix element. The transition charge
density may thus be measurable through this term in which it is amplified by the diagonal charge density.

Nuclear wave packet dynamics simulations were carried out on a numerical grid in the nuclear coordinate R. This is an
exact quantum mechanical calculation of the joint nuclear-electronic dynamics. The Hamiltonian, which describes the coupled
electronic and vibrational degrees of freedom, is given by

Ĥ =
(

T̂ + Vg(R) −Epu(t)µeg(R) + K̂ge

−Epu(t)µge(R)− K̂eg T̂ + Ve(R),

)
[S2]

where

T̂ = − 1
2m

∂2

∂R2 [S3]

is the kinetic energy operator of the nuclei, m the reduced mass of the nuclei, and

K̂ge = 1
2m

(
2fge

∂

∂R
+ ∂

∂R
fge

)
[S4]

approximates the non-adiabatic couplings (4, 5). The nuclear wave function χ(R, t) is obtained by propagating the vibrational
ground state of the X1Σ state with a Chebychev scheme (6) using the Hamiltonian Eq. S2.

We assume a Gaussian pump-pulse envelope

Epu(t) = E0 cos(ωt) exp(−2 ln(2)t2/w2) [S5]

where w is the full width at half maximum of the intensity profile E2
pu. The probe pulse is not explicitly included in the

propagation but is treated pertubatively and included in the final signal calculation.

Interpretation of S1

The internuclear distances and thus the shape of the nuclear wave packet can be extracted directly from the diffraction pattern.
Figure 7(c) can be qualitatively explained by the following model where the charge density of a diatomic molecule is taken as:

σ̂(r;R) = δ(r) + δ(r −R) [S6]

with R the internuclear distance and r is the electronic coordinate The density operator is then given by:

σ̂(q;R) =
∫

dr e−iqrσ(r) = eiqR + 1 [S7]

The S1 signal is now proportional to:

σ̂†(q;R)σ̂(q;R) = 2(1 + cos(qR)) [S8]

whose inverse Fourier transform peaks at the internuclear distance.∫
dq eiqrσ̂†(q)σ̂(q) = δ(r) + 1

2 (δ(r −R) + δ(r +R)) [S9]
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Note that for a diatomic molecule the phases of σ(q) are not needed for the approximate reconstruction of the real space
picture, since we are only looking at a single distance between the two centers. This is of course no longer the case for oriented
polyatomic molecules, where the phases are needed to determine the position of the atoms in 3-dimensional space.

Introducing a Gaussian nuclear wavefunction

χ(R) =
(
π

2α

) 1
4
e−α(R−R1)2

, [S10]

leads to ∫
dq eiqr〈χ|σ̂†(q)σ̂(q)|χ〉 = π

2
√
α

(
e−2α(r+R1) + e−2α(r−R1))+ π2

α
√

2
δ(r). [S11]

The spread of the nuclear wave packet translates into a spread in r. If the electronic charge density has a significant width,
then that spread becomes a convolution of the width of the nuclear wave packet and the width of the electronic charge density.
Moreover, the temporal profile of the probe pulse causes a convolution in the time domain (Eq. 12), thus requiring pulses that
are shorter than the nuclear motion in order to observe it.

Light Scattering in the Minimal Coupling Picture

For convenience, we define the interaction current

Ĵint(r) = ĵ(r)− 1
2 σ̂(r)Â(r) [S12]

so called because of its appearance in the minimal coupling Hamiltonian. The elementary field-free current ĵ(r) and charge
density σ̂(r) are defined as

ĵ(r) = 1
2i

(
ψ̂†(r)∇ψ̂(r)− (∇ψ̂†(r))ψ̂(r)

)
, [S13]

σ̂(r) = ψ̂†(r)ψ̂(r) [S14]

where ψ̂†(r) and ψ̂(r) are the electron field creation and annihilation operators, which satisfy the Fermi anti-commutation
relation

{ψ̂(r), ψ̂†(r′)} = δ(r− r′). [S15]

We start with the minimal coupling Hamiltonian Eq. 1 (7, 8). Signals involving the ĵ(r) · Â(r) term are accompanied by a
factor A(ω)(ω − Ĥ)−1 where ω is an optical detuning frequency and so become negligible compared to the σ̂A2 term in the
off-resonant limit while dominating the resonant response. In the off-resonant case, the light scattering signal is then solely
related to the charge-density and the associated elastic scattering is known as diffraction (9, 10). The vector potential is written
as a field mode expansion

Â(r) =
∑
kjλj

√
2π

Ωωj

(
ε(λj)(kj)âjeikj ·r + ε(λj)∗(kj)â†je

−ikj ·r
)

[S16]

with âj (â(†)
j ) the photon field boson annihilation (creation) operator for mode j, Ω the field quantization volume and ε(λj)(kj)

the polarization vector.
The photon scattering signal is defined as the expectation value of the time integrated, rate-of-change of photon number

N̂s = â†sâs in a selected signal mode s

S(ks) =
∫

dt
〈

dN̂s
dt

〉
. [S17]

In a more rigorous account of light scattering signals, the detection process could be explicitly modeled, e.g., as a two-level
detector coupled to the scattered electric field (11–13). One is then required to sum over emission directions and frequencies,
with temporal and spectral selectivity being added only later by detector details. In diffraction experiments, the detected field
mode s is initially in the vacuum state and we must sum over modes. We can thus separate the modes into two disjoint sets:
field modes which are initially in the vacuum state and those corresponding to an external light pulse. We then have

Â(r) = Â(v)(r) + Â(p)(r) [S18]

where the “v" superscript indicates the vacuum modes and the “p" indicates modes occupied by an incoming pulse. Later, we
will make a semiclassical approximation and replace Â(p)(r) by its expectation value. For now, our treatment will remain
general and the pulse modes will be kept quantum-mechanical.
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We start with the Heisenberg equation of motion for the photon number operator N̂s = a†a

dN̂s
dt = −i[N̂s, Ĥint] = i

∫
dr
(

ĵ(r) · [N̂s, Â(v)(r)]− 1
2 σ̂(r)[N̂s, Â(v)2(r)] + 2Â(p)(r) · [N̂s, Â(v)(r)]

)
[S19]

where we have used the relations [N̂s, Â(p)(r)] = 0 = [Â(v)(r), Â(p)(r)]. It is straightforward to calculate the commutators

[N̂s, Â(v)(r)] = A∗s(r)â†s − c.c. [S20]

[N̂s, Â(v)2(r)] = 2(â†sA∗s · Â(v)(r)− c.c.). [S21]

Here, As(r) =
√

2π
Ωωs ε

(λs)(ks)eiks·r (and complex conjugate). Inserting these commutators into Eq. S19 then gives

˙̂
Ns = 2=

[∫
dr
(

ĵ(r) ·As(r)âs − σ̂(r)(Â(v)(r) ·As(r)âs + Â(p)(r) ·As(r)âs)
)]

[S22]

Defining the total electromagnetic current in the presence of the vector potential

Ĵ(r) = −1
2
[
ψ̂†(r)vψ̂(r) + (vψ̂(r))†ψ̂(r)

]
= ĵ(r)− σ̂(r)Â(r), [S23]

where v = (−i∇+ Â) is the velocity operator, we then have for the signal

S(ks) = −2=
[∫

dtdr〈â†sA∗s(r) · J(r)〉
]

[S24]

where we have used =[z] = −=[z†] to bring the expression to the conventional form in which the last interaction may be
interpreted as an emission from the ket. Equation S24 is exact as we have made no approximations thus far. The time-
dependence in this equation comes through the expectation value, which we evaluate in the interaction picture with respect to
Ĥint (Eq. 1):

〈â†sA∗s(r) · J(r)〉 = Tr
[
â†sA∗s(r) · J(r)T e

−i
∫ t
−∞

dτĤint−(τ)
]

[S25]

Thus far, we have instead worked in the Heisenberg picture. The difference will be to add an explicit time-dependence to all
material operators. The free evolution time-dependence for the fields will be absorbed into their coefficients Aj(r) 7→ Aj(r, t) =
Aj(r)e−iωjt. We note that a zeroth-order expansion of the expectation value in (S24) would vanish due to the 〈0s|â†s factor.
We thus require an additional order in Ĥint which must act on the bra, to yield

S(ks) = 2<
[∫

dtdrdr′
∫ t

−∞
〈Ĵint(r′, t′) · Â(r′, t′)â†sA∗s(r, t) · J(r, t)〉

]
. [S26]

This expression does not vanish even without further expansion of the propagator.We may thus obtain the lowest-order
contribution to the photon scattering into mode s by tracing over that mode at this point. Using the commutators

[â†s, Â(r)] = −As(r) [S27]

[â†s, Ĵint(r)] = 1
2 σ̂(r)As(r), [S28]

and taking the trace over mode s (using the fact that âs|0〉s = 0), we obtain

S(ks) = 2<
[∫

dtdrdr′
∫ t

−∞
dt′〈As(r′, t′) · Ĵ(r′, t′)Ĵ(r, t) ·A∗s(r, t)〉

]
. [S29]

The expectation value in the above expression excludes mode s (since it was already traced over) and it is not technically the
same as those in previous expressions, we keep the notation 〈. . . 〉 rather than making the difference explicit. The dot products
in Eq. S29 serve merely to pick out the projection of the current J along the vector potential As. Equation S29 can also be
recast in the symmetric form

S(ks) =
∫

dtdt′drdr′〈As(r′, t′) · Ĵ(r′, t′)Ĵ(r, t) ·A∗s(r, t)〉 [S30]

which further simplifies to

S(ks) = 2π
Ωωs

∫
dtdt′drdr′e−iks·(r−r′)+iωs(t−t′) ×

[
ε(λs)∗(k̂s) · 〈Ĵ(r′, t′)Ĵ(r, t)〉 · ε(λs)∗(k̂s)

]
. [S31]
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Multiplying by the density Ω/(2π)3 of states in ks space and by the volume element of ks space per solid angle per unit
frequency

dks
dΩsdωs

= ω2
s

c3
[S32]

we obtain

S(ks) = α3ωs
4π2

[
ε(λs)∗(k̂s) · 〈Ĵ(−ks,−ωs)Ĵ(ks, ωs)〉 · ε(λs)∗(k̂s)

]
. [S33]

where we have employed the Fourier transform for compactness. In the main text, we will retain the form of an integral over
time-dependent currents (see Eq. 2 of the main text) in order to better discuss ultrafast pump-probe scattering experiments in
which the time-dependence is key. It should be noted that, in textbook derivations of scattering in the minimal coupling picture,
the incoming field is frequently treated quantum mechanically as a plane wave. The resulting mode-quantization prefactor,
once accounting for the incoming photon flux gives an additional factor of α/ωp. The Thomson scattering cross section is
then proportional to α4ωs/ωp. In this manuscript and our previous work, we treat the incoming field in the semiclassical limit
(i.e., as a large-amplitude coherent state) to allow a simple treatment of the X-ray temporal envelope. This method is more
appropriate to consideration of ultrafast pump-probe diffraction rather than the more traditional static diffraction.

Inserting the definition of Ĵ into Eq. S33 results in terms that contain only the electronic charge density σ̂, only the electronic
current density ĵ, and cross terms that contain both. The focus of this manuscript is the σ̂-only terms which are responsible
off-resonant scattering and thus diffraction signals. Since off-resonant scattering is often well-approximated as not changing the
material state, time-dependent diffraction can be used to track changes in charge density, directly monitoring the motion of
nuclei in the sample (14? –19) and single-molecule diffraction that would eliminate the necessity of crystallization with this
technique has long been eagerly anticipated (20, 21).

As an aside, we also note that, as discussed briefly in the main text, a similar formalism applies to electron scattering
(22–27). In that case, one can consider the process as populating a vacuum mode of the fermionic electron field rather than the
photon field. Of course, the interaction Hamiltonian is completely different so the scattering will not be the same (e.g., in the
independent atom approximation the form factors will be different).

Eigenstate Expansions of S1 and S2

In terms of the exact electronic+vibrational eigenstates, the time-dependence of of the charge density operators in Eqs. 6 and 7
of the main text becomes trivial and we have

S1(q, T ) = N

∫
dt|Ep(t− T )|2

∑
IJK

ρIJ σ̂JK(−q)σ̂KI(q)e−iωIJ t [S34]

S2(q, T ) = F (q)
∫

dt|Ep(t− T )|2|
∑
IJ

ρIJe
−iωIJ tσ̂(q)|2. [S35]

We note that, due to the impulsive approximation that the ket and bra interactions with the X-ray field are simultaneous,
there is no dependence on the frequency of the transition state K. In the case that particular transitions are to be observed,
this is obviously not a good approximation and relaxing this assumption gives

S1(q, T ) =N
∫

dtdt′Ep(t− T )E∗p(t′ − T ) [S36]

×
∑
IJK

ρIJ σ̂JK(−q)σ̂KI(q)e−i(ωIKt−ωKJ t
′) ,

and

S2(q, T ) = F (q)
∣∣∣ ∫ dtEp(t− T )

∑
IJ

ρIJe
−iωIJ tσ̂IJ(q)

∣∣∣2 [S37]

The Debye-Waller Factor

The effect of structural disorder in a crystal, e.g., due to phonons, is to attenuate the Bragg scattering (which originates from
the average structure) and produce a diffuse scattering that, while still reaching its maximum value at the Bragg peaks, is
present throughout broad regions of reciprocal space (28–30). This can be readily quantified with the Debye-Waller factor,
which results from averaging the exponential in F (q) over Gaussian spatial fluctuations of atomic positions and takes the form
of

FDW(q) = 〈eiq·uα〉2T = e−q
2〈u2

α〉T/3 [S38]
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where uα is the displacement from equilibrium of molecule α and 〈. . . 〉T stands for a thermal average. The Debye-Waller
factor is commonly used to describe the degradation of the Bragg pattern due to unavoidable small-amplitude disorder caused
by phonons in real samples at finite temperature but it applies for any Gaussian disorder that can be treated exactly by
the second-order cumulant expansion. By applying it for large fluctuations, we can interpolate between ordered and highly
disordered samples. Note that the Debye-Waller factor does not represent simple broadening of the Bragg peaks (which conseves
their intensity) as suggested by Kirkwood. It rather attenuates the Bragg peaks and introduces non-Bragg diffuse scattering
(31).

Multi-Point Correlation Functions of the charge density

The two- and three-photon coincidence signals can be written so as to adjust the momentum transfer q to account for the
material transition induced by the scattered X-ray pulse as (32)

SPC−2D(k1, T1,k2, T2) =|ωIωIIA1(ωI)A2(ωII)|2

×
∫

Πidrie−iq1·(r1−r2)e−iq2·(r3−r4)

× 〈σ†(r2, T1 + kI · r2/c)σ†(r4, T1 + T2 + kII · r4/c)
× σ(r3, T1 + T2 + kII · r3/c)σ(r1, T1 + kI · r1/c)〉 [S39]

where Πidri stands for the product over integration variables and

SPC−3D(k1, T1,k2, T2,k3, T3) = |ωIωIIωIIIA1(ωI)A2(ωII)A3(ωIII)|2
∫

Πidrie−iq1·(r1−r2)e−iq2·(r3−r4)e−iq2·(r5−r6)

× 〈σ†(r2, T1 + kI · r2/c)σ†(r4, T1 + T2 + kII · r4/c)σ†(r6, T1 + T2 + T3 + kIII · r6/c)
× σ(r5, T1 + T2 + T3 + kIII · r5/c)σ(r3, T1 + T2 + kII · r3/c)σ(r1, T1 + kI · r1/c)〉. [S40]

Diffraction of resonant pulses

In the paper, we have assumed that the last scattering event took place through the σA2 coupling Hamiltonian. This is
the common case in diffraction experiments whereby the scattered pulse is off-resonant with core transitions. On the other
hand, resonant interactions are usually treated at the multipolar level and the spatial profile of the signal is then lost. In this
appendix, we present diffraction signals obtained using resonant interactions. This forms a bridge between diffraction and
spectroscopy.

Following the procedure of Appendix 2, we can derive the S1 and S2 signals for a resonant interaction with the s mode of
the field.

S1(ks) =
( 1

2ε0ωs
)2∑

α

=
∫

dtdt′e−iωst
′
eiωst〈jL(ks, t) · j†R(−ks, t′)〉 [S41]

S2(ks) =
( 1

2ε0ωs
)2∑

αβ

=
∫

dtdt′e−iωst
′
eiωsteiks(rα−rβ) × 〈jL(ks, t)〉 · 〈j†R(−ks, t′)〉 [S42]

As an example, we consider four-wave mixing by expanding these signals to fourth order in A followed by a resonant
scattering event:

S1(ks) =
( 1

2ε0ωs
)2∑

α

=
∫

(Πidri)(Πdti)e−iωst
′
eiωst〈T jL(ks, t)j−(r3 − rα, t3)j−(r2 − rα, t2)j−(r1 − rα, t1)

× j†R(−ks, t′)j−(r′3 − rα, t′3)j−(r′2 − rα, t′2)j−(r′1 − rα, t′1)〉A(r3, t3)A(r2, t2)A(r1, t1)A(r′3, t′3)A(r′2, t′2)A(r′1, t′1) [S43]

S2(ks) =
( 1

2ε0ωs
)2∑

αβ

=
∫

(Πidri)(Πdti)e−iωst
′
eiωsteiks(rα−rβ)〈jL(ks, t)j−(r3 − rα, t3)j−(r2 − rα, t2)j−(r1 − rα, t1)〉

×A(r3, t3)A(r2, t2)A(r1, t1)〈j†R(−ks, t′)j−(r′3 − rβ , t′3)j−(r′2 − rβ , t′2)j−(r′1 − rβ , t′1)〉A(r′3, t′3)A(r′2, t′2)A(r′1, t′1) [S44]

Where the “-" denotes the commutation superoperator associated with a Hilbert space operator O, O−X ≡ [O,X].
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If the field spatial envelope does not vary appreciably over the current charge density, the field can be written as
A(r3, t3) = A(t3)e±ik3·r3 .

S1(ks) = 1
ε0ωs

∫
Πdti 〈T jL(ks, t)j−(∓k3, t3)j−(∓k2, t2)j−(∓k1, t1) [S45]

× j†R(−ks, t′)j−(±k3, t
′
3)j−(±k2, t

′
2)j−(±k1, t

′
1)〉

×A(t3)A(t2)A(t1)A(t′3)A(t′2)A(t′1)

S2(ks) =2=F (ks ± k3 ± k2 ± k1) [S46]

×
∣∣∣∣ 1
2ε0ωs

∫
Πdti〈〈1|jL(ks, t)j−(∓k3, t3)j−(∓k2, t2)j−(∓k1, t1)|ρ〉〉A(t3)A(t2)A(t1)

∣∣∣∣2
The F function, Eq. 6, is strongly peaked near ks ± k3 ± k2 ± k1 = 0 and we then recover the direction of emission of

resonant signals in the dipole approximation. If the field does vary over the current density, we have to stick with Eqs. D3
and D4. These signals contain all the information of standard resonant spectroscopy with additional structural information
through the ks variation. In the main text, we started from q resolved signals and added a time resolution to it. Diffraction
schemes thus give access to the (q, r) couple and the (ω, t) variables are accessible through careful preparation of the matter.
In this appendix, we started with resonant spectroscopic signals that naturally contain (ω, t) information and added structural
information (q, r) by considering a regime in which the multipolar approximation does not apply. It is worth noting that this
approach is experimentally challenging in small objects since the spatial field envelope has to vary appreciably over the current
density distribution. Nanofields are good candidates to achieve an interesting spatial resolution (33). As mentioned briefly
in the main text, such current-dependent expressions can, under certain conditions (such as when the material acts twice
with each of a well-separated pair of pump and probe pulses), be recast in terms of effective polarizabilities. This approach is
analogous to that of resonant Raman (34).
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a) b)

Fig. S1. Preparation of the non-stationary state with a UV pump-pulse. Shown are two types of the initial state preparation which are schematically represented by the
grey boxes in the lower parts of the loop diagrams in Figs. 1-2. (a) A Raman process creates a nuclear oscillating wave packet in the electronic ground state. (b) An optical
absorption prepares a nuclear wave packet in an electronic excited state.
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Fig. S2. Relevant adiabatic potential energy surfaces of NaF (ionic X1Σ black, covalent A1Σ, blue, 1Π, red).
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Fig. S3. Transition dipole moment µge between the X and A states of NaF (a) and magnitude of the transition density σge (b).
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Fig. S4. Selected charge density operator matrix elements in the nuclear subspace of NaF (obtained using Eq. S1: (a) σ̂2
ee(q, R), (b) σ̂2

ge(q, R), (c) |σ̂†ee(q, R)σ̂ge(q, R)|.
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Fig. S5. Time-dependent gas-phase diffraction signal of NaF (S1(q, T ), Fig. 6) broken down into its contributions. The labeling of the sub figures is identical with the labeling
of terms in Eq. 11: (a) elastic contribution from the ground state; (b) and (d) inelastic contribution from the ground and excited state respectively; (c) elastic contribution from the
excited state; (e-h) Sum over inelastic contributions scattering off the electronic coherence. All intensities are normalized with respect to the total signal.
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Fig. S6. Contributions to the real space signal S1(z, T ) (inverse Fourier transform of S1(qz, T )) from the transition charge densities (terms (b) and (d)). The labeling of the
sub figures is identical with the labeling of terms in Eq. 11.
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Fig. S7. Two-molecule contribution for NaF according to Eq. 18, considering only the ground state. The diffraction pattern is domintated by the electronic ground state. Signal
intensities are given relative to the total S2 signal.
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Fig. S8. Two-molecule contribution for NaF according to Eq. 18, considering only the excited-state wave packet. Signal intensities are given relative to total S2 signal.
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