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Supporting Information 
 
Li et al. Genomic and environmental determinants and their interplay underlying phenotypic plasticity 
 
SI Materials and Methods 
Population and phenotyping. The population was evaluated at seven environments: Guayanilla, 
Puerto Rico (winter nursery in 2010-11 and 2011-12: PR11 and PR12, and summer nursery 2014: 
PR14S); Manhattan, KS (summer nursery in 2011 and 2012: KS11 and KS12); and Ames, IA 
(summer nursery in 2013 and 2014: IA13 and IA14) (table S1, dataset S1). 
 
In sorghum, G × E in flowering time can be due to differing responses to temperature and photoperiod 
(1). Puerto Rico is a tropical island with day length ranges from below 12 to higher than 14 hours and 
an average temperature of 82.4 °F (28.0 °C) throughout the year. The conditions in Puerto Rico during 
winter seasons are similar to the climate of northeastern Africa, where sorghum originated. The day 
length is less than 12 hours, an inductive condition for sorghum to flower. Summer seasons in Kansas 
are long day with high temperature around 90 °F (32.2 °C). The day length is more than 14 hours 
which can suppress flowering. The day length in Iowa is the longest of the three geographical 
locations. However, the temperature from June to August is around 70 °F (21.1 °C).  
 
Environment analysis and search for an environmental index. Clustering analysis of seven 
environments was carried out based on 1) photoperiod, 2) daily unit of growing degree days (GDD) 
from 1 day after planting (DAP) to 120 DAP, and 3) observed flowering time of the population. 
Hierarchical clustering with Euclidean distance and the Ward’s method was used in clustering 
analysis. In addition, the RILs were clustered using hierarchical clustering, and principal component 
analysis was carried out with the flowering time data collected in seven environments. 
 
The high correlation between photothermal time (PTT) measurements and population means across 
environments can be interpreted as follows. At each environment, the population mean of flowering 
time expressed as GDD was obtained by averaging across 237 RILs. With such a large sample size, 
the final phenotype (population mean) is an accurate reflection of that environment on the whole 
population. In other words, if we view the whole population as a single entity, the population’s 
performance (reflected by population means) can be explained adequately by the environmental effect 
captured by the PTT measurements. When environmental factors (photoperiod, GDD, and PTT) 
within a window are searched, it is expected to have some levels of correlation given that these 
periods are sections of the growing season environment and if these environmental measurements are 
the major factors underlying the phenotype. However, only when PTT (not GDD or photoperiod) was 
used were we able to obtain a consistently high correlation overall a stretch of overlapping windows. 
 
Genomic prediction. For tested genotypes in untested environments, we conducted leave-one-
environment-out cross-validation. In each run, 6 environments were used for model building to predict 
the performance of all genotypes in the remaining 1 environment. For untested genotypes in tested 
environments, we conducted leave-half-RILs-out cross validation. In each run, 50% of the RILs were 
randomly sampled for model building and the remaining 50% RIL for validation. For untested 
genotypes in untested environments, we conducted the combination of leave-one-environment-out and 
leave-half-RILs-out cross validation. In each run, performance data from the 50% of RILs across 6 
environments were used for model building and performance data from the remaining 50% RILs in 
the remaining 1 environment were used for validation. 
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Preliminary analysis of genomic prediction was carried out with several methods including ridge 
regression BLUP, BayesA BayesB, BayesC, BayesCπ, BayesRR, BayesLASSO, Gaussian kernel, and 
exponential kernel (2, 3). Ridge regression BLUP was chosen for further analyses because similar 
prediction accuracy values were obtained from different methods and because this approach was 
computationally less demanding. 
 
The high overall prediction accuracy observed for all three scenarios is a combination of agreement 
between observed values and predicted values at individual environment and agreement between 
observed population mean value and predicted population mean value across environments. 
 
Empirical validation. After the completion of the initial analysis and model building process, we 
decided to carry our empirical validation experiments. The mapping population was grown again in 
Ames IA summer nursery in 2015 and 2016 (IA15 and IA16) (table S1). Notably, the fluctuating 
temperature in early growing season at this location generated two different photothermal values. 
While IA16 was similar to IA13, IA15 was different from all other environments. Predicted flowering 
time for IA15 and IA16 was obtained through two joint genomic regression analysis (JGRA) 
approaches and through the QTL-based approach. 
 
All relevant genotype, phenotype, and environment data are included (dataset S1)  
 
Partitioning G × E into heterogeneity of genotypic variance and lack of genetic correlation. 
Following the steps laid out in previous publications (4-6), we first conducted variance component 
analysis across all environments using a linear mixed model (table S2). Second, we did variance 
analysis in each environment using linear mixed model to obtain genetic variance in each environment 
(table S3). Third, we partitioned the G × E interaction into component due to heterogeneity of 
genotypic variance among environment V and component due to lack of genetic correlation among 
environments L using equations:  
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Of total G × E observed, 56% is due to heterogeneity of genotypic variance and 44% due to lack of 
genotypic correlation (table S4). 
 
Photothermal time identified as an environmental index for a set of sorghum accessions. We 
retrieved the data from an earlier study where monthly planting of a set of 8 sorghum maturity testers 
(Ma1 – Ma4) were planted in 12 consecutive months in Mayaguez, Puerto Rico (Table 4 of the original 
publication) (7). The same analysis procedure was applied in pattern detection and window search to 
identify the environmental index by photothermal time. 
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Photothermal time correlation with mean flowering time for different experiment settings. The 
flowering time and environmental settings (photoperiod and temperature) in experiments in 40 species 
were retrieved from the literature where the study of photoperiod and temperature effects was 
explicitly stated in the title and abstract.  

Species Common name References 
Arabidopsis thaliana  (8) 
Arachis hypogaea Peanut  (9) 
Avena sativa Oat  (10) 
Bouteloua gracilis Blue grama  (11) 
Brassica pekinesis Chinese cabbage  (12) 
Bromus tectorum Downy brome  (13) 
Cajanus cajan Pigeonpea  (14) 
Cicer arietinum Chickpea  (15) 
Crupina vulgaris Common crupina  (16) 
Dianthus carthusianorum  (17) 
Fagopyrum esculentum Buckwheat  (18) 
Fragaria x ananassa Strawberry  (19) 
Glycine javanica  (20) 
Helianthus annus Sunflower  (21) 
Heliotropium arborescens Heliotrope  (22) 
Hibiscus esculentus Okra  (23) 
Kochia scoparia Kochia  (24) 
Lens culinaris Lentil  (25) 
Liquidambar styraciflua Sweetgum tree  (26) 
Mucuna spp. Velvet bean  (27) 
Nicotiana tabacum Tobacco  (28) 
Parthenium hysterophorus  (29) 
Pennisetum typhoides Pearl millet  (30) 
Persea americana Avocado  (31) 
Pisum sativum Pea  (32) 
Sesamum indicum Sesame  (33) 
Sorghum bicolor Sorghum  (34) 
Trifolium baccarinii  (35) 
Trifolium masaiense  (35) 
Trifolium pseudostriatum  (35) 
Trifolium rueppellianum  (35) 
Trifolium semipilosum  (35) 
Trifolium steudneri  (35) 
Trifolium tembense  (35) 
Trifolium usambarense  (35) 
Triticum aestivum Wheat  (36) 
Vigna radiata Mungbean  (37) 
Vigna subterranea Bambara groundnut  (38) 
Vigna unguiculata Cowpea  (39) 
Zea mays Maize  (40) 
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Figure S1. Flowering time expressed as days after planting is not a desirable choice to conduct 
the combined analysis and modeling. (A) Seven natural field environments; (B) Reaction norm based 
on a categorical order of photoperiod of testing sites; (C) Reaction norm based on a categorical order of 
population means for individual environments; (D) Reaction norm based on a numerical order of 
population means for individual environments. 
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Figure S2. G × E in flowering time expressed as growing degree days (GDD) shows different 
trait correlations between environments.  (A) Pair-wise trait correlations. (B) Prediction accuracy 
within individual environments (diagonal) and between environments (off diagonal and row to 
column). (C) Heritability within individual environments (diagonal) and between environments (when 
the analysis is done for the pair of environments together).  
  

A B C 
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Figure S3. Day length and temperature profiles of seven environments. (A) Day length. The bold 
segments of the lines represent the time between planting and when most plants flowered. (B) 
Temperature profile spanning the time between planting and 90 days after planting. 
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Figure S4. Clustering of seven environments. (A) Clustering based on temperature profile during 
grown seasons. (B) Clustering based on flowering time of the RIL population. 
  

A B 
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Figure S5. Clustering of the RILs based on their flowering time value observed across seven 
environments. (A) Hierarchical clustering of the RILs indicated one group with relatively stable 
flowering time (green bar) and the second group with varied flowering time (blue bar). (B) Principal 
component analysis indicated that RILs with high plasticity flower late in Kansas environments. 
  

A B 
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Figure S6. Subsampling analysis to search for the windows within which the photothermal time 
is highly correlated with the population means observed in different environments. Leave-one-
environment-out analysis was conducted. In Figure 2B, the (18, 43) window is well supported by 
other surrounding windows, which agrees with the results of subsampling analysis. On the other hand, 
other windows, for example (26, 27), are not supported by the subsampling analysis. 
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Figure S7. Correlation between population mean and each of the three environmental parameters 
across different windows. (A) Photoperiod. (B) Temperature (GDD). (C) Photothermal time. Because of 
the temporal patterns of environmental factors, it is expected that window search can identify a cluster of 
windows with similar correlation strength. The choice of the best window should be from a region of the 
matrix where high correlation values are found, rather than a small window with less support from the 
nearby region. In addition, subsampling analysis (Figure S6) and biological interpretation (Figure S8) 
should also be considered to avoid choosing windows that happen to show high correlation but with 
reduced predictive power and that is difficult to have reasonable biological interpretations.  
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Figure S8. Projected growth stage where photoperiod and temperature sensing and vegetative-
to-reproductive transition at individual environments. (A) Cumulative GDD, a general growth 
stage indicator, was plotted against days after planting. Two dashed lines define the critical 18~43 
day-after-planting window. Bold segment corresponds to the inter quantile range within which 50% 
of the RILs flowered. (B) Cumulative photothermal time was plotted against days after planting. Two 
dashed lines define the critical 18~43 day-after-planting window. The projected critical stage, 3-
leaf to floral initiation, was indicted with bold segments. 
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Figure S9. Pattern finding in flowering time G × E of a set of diverse sorghum accessions 
planted monthly. Progression from data visualization to pattern discovery: (A) Reaction norm based 
on chronological order of the planting month. (B) Reaction norm based on a categorical order of 
population means for individual environments. (C) Reaction norm based on a numerical order of 
population means for individual environments. (D) Exhaustive search of the photothermal time 
window. (E) Correlation between population mean and photothermal time of the selected window. (F) 
Reaction norms based on the photothermal-time gradient. Actual observations shown with circles and 
regression fitted values shown with the lines. Ma1 – Ma4 are four maturity loci defined in classical 
sorghum genetics literature. Two genotypes homozygous dominant for both Ma1 and Ma2 (i.e., 100M 
and 90M) have higher phenotypic plasticity than other genotypes. 
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Figure S10. Correlation between photothermal time and flowering time among 40 experiments 
(|r| > 0.75 for 29 experiments) where flowering time was studied under different combinations of 
photoperiod and temperature settings. (A) Correlation for studies in different species. (B) 
Frequency distribution for correlation coefficient. Please see SI Materials and Methods for the original 
publications of these 40 experiments. In each experiment, photothermal time is calculated from the 
stated photoperiod and temperature setting values, and average flowering time (expressed as growing 
degree days) of all genetic material under each combination of photoperiod and temperature setting is 
obtained. Correlation between these photothermal time values and the average flowering time is 
calculated across all settings for each experiment. 
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Figure S11. Prediction accuracy of joint genomic regression analysis (JGRA) through reaction-
norm parameters compared with predictions relying on averages across tested environments 
(BLUE, best linear unbiased estimation). Performance prediction for tested genotype under untested 
environment (1 to 2), for untested genotype under tested environment (1 to 3), and for untested 
genotype under untested environment (1 to 4). Prediction accuracy for: 1 to 2 (A); 1 to 3 (B); and 1 to 
4 (C). Average ratio of predicted versus observed values for: 1 to 2 (D); 1 to 3 (E); and 1 to 4 (F). 

A B C 

D E F 
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Figure S12. Joint genomic regression analysis for performance prediction with genome-wide 
marker effect continua. (A) Fitted genome-wide marker effects along the environmental index. (B) 
Predicting tested genotypes in untested environments. (C) Predicting untested genotypes in tested 
environments. (D) Predicting untested genotypes in untested environments. Both prediction accuracy 
at each individual environment (in parentheses) and across all environments (r) are shown. Diagonal 
line in B-D indicates the ratio of observed over predicted value being one. Average prediction 
accuracy for individual environments is 0.69, 0.52, and 0.50 for B, C, and D, respectively. 
  

A B 

C D 
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Figure S13. Empirical validation of performance prediction of JGRA with genome-wide marker 
effect continua. (A) Predicted flowering time of genotypes across environments. (B) Prediction 
accuracy for Iowa 2015 (IA15). (C) Prediction accuracy for Iowa 2016 (IA16). Diagonal line in B-C 
indicates the exact match between observed and predicted values. 
  

A 

B C 
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Figure S14. Genetic mapping results for 
flowering time in seven environments. For 
each environment, the upper two panels are 
the LOD scores and additive effect estimates 
from composite interval mapping (CIM) with 
1,462 SNPs, and the lower two panels are the 
results from single marker analysis (SMA) 
with 8,960 SNPs. 



21 
 

 

 
Figure S15. Detailed information about functional polymorphisms in four known or potential 
flowering time genes. (A) PRR37 (Ma1) on chromosome 6. Tx430 (T) allele has a single adenine insertion in 
the third exon. (B) Ghd7 (Ma6) on chromosome 6. The P898012 (P) allele had a large intron insertion, leading 
to a potentially modified CCT domain and a weak allele (ghd7-2); Tx430 allele had a 5 bp (GTCGA) insertion 
in the first exon, leading to a premature stop codon and nonfunctional protein (ghd7-1). (C) Flowering Locus T 
(FT) on chromosome 10. Tx430 allele has multiple adenine insertions in the third intron. P898012 allele of the 
FT gene contained a PIF/Harbinger transposon in the promoter region, potentially altering the binding site of 
another regulator. (D) ELF3 is the potential gene underlying the QTL on chromosome 9. A 7.4-kb insertion of 
two copies of Gypsy LTR was detected in the promoter region of Tx430 allele, but not in P898012. Shaded 
curves on-top of gene models indicate the relative short read coverage of Tx430 and P898012. 
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Figure S16. Joint genomic regression analysis for performance prediction with QTL effect 
continua. (A) Five fitted QTL effects along the photothermal-time environmental index. (B) 
Predicting tested genotypes in untested environments. 
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Figure S17. Empirical validation of performance prediction of JGRA with QTL effect continua. 
(A) Predicted flowering time of genotypes across environments. (B) Prediction accuracy for Iowa 
2015 (IA15). (C) Prediction accuracy for Iowa 2016 (IA16). Diagonal line in B-C indicates the exact 
match between observed and predicted values.  

A 

B C 
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Figure S18. Genetic mapping results for reaction-norm parameters (intercept and slope). (A-B) 
LOD scores and additive effect estimates from composite interval mapping (CIM) with 1,462 SNPs. 
(C-D) Results from single marker analysis (SMA) with 8,960 SNPs. (E-F) Combined results from 
CIM and inclusive composite interval mapping (ICIM). (G-H) Epistasis search results for intercept 
and slope.  
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Table S1. Planting date and heritability of flowering time in each of the seven environments. 
 
Environment PR11* PR12 PR14S KS11 KS12 IA13 IA14 IA15 IA16 
Nursery Winter Winter Summer Summer Summer Summer Summer Summer Summer 
Planting date 12/4/2010 12/12/2011 6/5/2014 6/8/2011 6/7/2012 6/3/2013 6/10/2014 6/10/2015 5/23/2016 
Heritability 0.88 0.77 0.97 0.95 0.97 0.90 0.96 0.92 0.94 
* Naming for the majority period of the nursery. 
 
 
 
 
Table S2. Estimates of variance components from the combined analysis of seven environments. 
 

Variance 
Component 

Estimate Standard 
Error 

Z Value Pr > Z Percent of 
Total 

Environment 141287.00 82895.00 1.70 0.04 62.99 
Replication 4136.17 2217.86 1.86 0.03 1.84 
Genotype 25788.00 3040.67 8.48 <1E-16 11.50 
G × E 45951.00 1872.55 24.54 <1E-16 20.49 
Residual 7150.59 252.59 28.31 <1E-16 3.19 

 
 
 
 
Table S3. Estimates of genetic variances in each environment.  
 

Environment Genetic variance 
(σg2) 

PR11 10684.00 
PR12 3386.46 
IA14 8541.98 
IA13 21107.00 
PR14S 96668.00 
KS11 188469.00 
KS12 172502.00 
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Table S4. Estimates of variance components and parameters for the combined analysis of flowering 
time tested in seven environments. 
 

Variance components and parameters Estimate Ratio to G × E 
Genotype (σg

2) 25788.00 0.56 
G × E interaction (σge

2) 45951.00 - 
    Heterogeneity of genotypic variance   25643.58 (56%) - 
    Lack of genetic correlation   20307.42 (44%) - 
Error (σε

2) 7150.59 0.16 
Line mean heritability (h2) 0.78 - 
Pooled genetic correlation (rg) 0.56 - 

 
 
 
 
Table S5. Environmental mean, average G × E, photothermal time, temperature, and photoperiod in 
each environment. 
 

Environment Environmental 
mean 

Average 
G × E 

Photothermal 
time 

Temperature Photoperiod 

PR11 1556.63 -0.43 320.71 27.0 11.9 
PR12 1507.46 -0.50 324.76 27.2 11.9 
IA14 1550.80 -0.44 325.3 20.1 16.2 
IA13 1859.12 -0.06 412.04 25.3 16.3 
PR14S 1937.39 0.08 439.95 31.5 14.0 
KS11 2289.25 0.56 528.72 33.4 15.8 
KS12 2459.63 0.79 556.16 35.1 15.8 

Note: To investigate the relationship between G × E and environmental parameters, we first obtained 
the G × E effect estimates for each RIL in individual environments. We considered average G × E 
effect of 237 RILs as a response variable (y), and considered photothermal time, temperature, and 
photoperiod as independent variables (x), to build the linear functions. With this approach, we found 
that photothermal time, temperature, and photoperiod, explained 99.1%, 70.4%, and 29.3% of the total 
variation in average G × E effect, respectively. With environmental mean (i.e., population mean at an 
individual environment) as a response variable (y), we found that photothermal time, temperature, and 
photoperiod, explained 99.3%, 69.4%, and 30.5% of the total variation in environmental mean, 
respectively. 
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Table S6. The R2 for the regression of phenotype on the predicted values at seven environments. 
 

Environment R2 
PR11 0.63 
PR12 0.49 
IA14 0.60 
IA13 0.78 
PR14S 0.81 
KS11 0.94 
KS12 0.95 

 
 
Table S7. QTL detected for flowering time in seven environments using composite interval mapping. 
For each QTL, the first number is additive effect in GDD unit, the second number is support interval 
of additive effect, and the third number is phenotypic variance explained. Support interval of additive 
effect is estimated by using the average of two effects from 1 LOD drop from the peak. 
 

Environment Chr1:  Chr4:  Chr6:  Chr6:  Chr7:  Chr8:  Chr9:  Chr10:  
175.39 cM 153.73 cM 4.27 cM 40.92 cM 77.69 cM 111.38 cM 163.91 cM 22.69 cM 

(~58 Mb) (~ 61 Mb) (~0.7 Mb) (~42 Mb) (~15 Mb) (~53Mb) (~59 Mb) (~3 Mb) 

 - - Ma6 Ma1 - qFL8.1 ELF3 FT 
PR11  -23.19  -37.14  -31.21 -18.94 -18.59 

 1.33  0.43  0.94 1.73 1.99 
  5.44%   11.47%   10.10% 3.73% 3.24% 

PR12   -11.09   -20.47   -20.05   -11.13 
 0.78  0.74  0.79  1.04 
  4.39%   12.07%   14.37%   4.19% 

IA14   -22.14 -43.78     -24.88     
 1.34 0.34   0.98   
  5.54% 22.51%     7.32%     

IA13     -43.88 82.46 25.8 -30.94 37.96 29.78 
  1.70 1.40  2.81 2.35 1.56 1.33  
    9.03% 25.85% 3.47% 5.11% 7.45% 4.23% 

PR14S    249.52     
   10.18     
      50.83%         

KS11 85.92     359.88     69.6 80.21 
9.56   2.46   5.39 3.47 
4.04%     54.00%     2.65% 3.16% 

KS12       326.07     102.64 117.05 
   1.24   2.13 4.12 
      46.60%     6.15% 7.15% 
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Table S8. Patterns of QTL additive effects for flowering time show G × E interaction can fall into 
four main categories: antagonistic pleiotropy (AP), conditional neutrality (CN), differential sensitivity 
(DS), and no G × E. The number is the percentage of each category out of all pair-wise environment 
combinations. 

 
Environment Chr1:  Chr4:  Chr6:  Chr6:  Chr7:  Chr8:  Chr9:  Chr10:  

175.39 cM 153.73 cM 4.27 cM 40.92 cM 77.69 cM 111.38 cM 163.91 cM 22.69 cM 

(~58 Mb) (~ 61 Mb) (~0.7 Mb) (~42 Mb) (~15 Mb) (~53Mb) (~59 Mb) (~3 Mb) 

 - - Ma6 Ma1 - qFL8.1 ELF3 FT 
AP 0 0 0 38.10% 0 0 14.29% 28.57% 
CN 28.57% 57.14% 47.62% 28.57% 28.57% 57.14% 57.14% 47.62% 
DS 0 9.52% 0 33.33% 0 23.81% 14.29% 19.05% 
No G × E 71.43% 33.33% 52.38% 0 71.43% 19.05% 14.29% 4.76% 

 
 


