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Supplementary Figure legends 

Supplementary Figure 1: Phylogeny and population structure inferred from a total of 

554 S. cerevisiae isolates including 266, 38, 92 and 157 isolates sequenced in this 

study, Liti et al. (2009), Strope et al. (2015) and Gallone et al. (2016), respectively, 

and S288c. Phylogenetic trees were constructed by the maximum likelihood analysis 

based on 736,689 genome wide SNPs and rooted by lineage CHN-IX. Bootstrap 

support values to each lineage and major clade are 100% except for the Mangtou 7 

lineage which is supported by 85% bootstrap resampling. Population structures were 

inferred using the ADMIXTURE program with K values being set to 27 determined 

by the minimum cross-validation error check. Isolates and terminal branches are 

colored according to ecological origins. 

Supplementary Figure 2: Unrooted phylogenetic tree inferred from a total of 628 S. 

cerevisiae isolates including the isolates in Supplementary Fig. 1 and 51 oak isolates, 

21 fermentation isolates (16 wine, two beer, and three sake isolates) and eight fruit 

isolates from the isolates sequenced in Almeida et al. (2015). Phylogenetic trees were 

constructed by the maximum likelihood analysis based on 206,810 SNPs. Terminal 

branches are colored according to ecological origins.  

Supplementary Figure 3: Cross-validation (CV) tests for different K values based on 

(a) the dataset containing 266 Chinese S. cerevisiae isolates used in Figure 1 and (b) 

the dataset containing 554 worldwide isolates used in Supplementary Fig. 1; and 

comparisons of population structures inferred from the 266 isolate dataset (c) and the 

554 isolate dataset (d) with K being set to different values as indicated. The program 

ADMIXTURE v1.23 was used for the CV tests and structure inference. 

Supplementary Figure 4: Geographic distribution of the wild and domesticated S. 

cerevisiae isolates sampled in China and Mongolia. 



Supplementary Figure 5: Principal component analysis (PCA) of genome wide 

SNPs from wild and domesticated isolates of S. cerevisiae.  

Supplementary Figure 6: Sketch map of the best-fit Isolation-with-Migration model 

with exponential growth (IM) and corresponding joint allele frequency spectrum for 

representative wild and domesticated isolates of S. cerevisiae. (a) Sketch map 

depicting the evolution pattern of the IM model with population demographic 

parameters estimated based on this model. NA, NW and ND represent the effective 

population sizes of the ancestral, wild and domesticated populations, respectively; s, 

the fraction of the ancestral population entered into the wild group; m12, migration 

rate from the domesticated to the wild group; m21, migration rate from the wild to the 

domesticated group; T, the split time. (b) Joint allele frequency spectrum for the wild 

and domesticated populations of S. cerevisiae and the optimal fitting of the data to the 

IM model. The upper panel shows the folded joint allele frequency spectrums of the 

actual data (left) and expected under the IM model (fight) using 97,895 non-coding 

SNPs. X and Y axes represent the number of strains in the wild and domesticated 

groups, respectively. Each entry is colored by the logarithm of the number of sites in 

it, according to the scale shown. The lower panel shows the plots (left) and histograms 

(right) of the residuals resulting from fitting the actual data to the IM model. The 

residuals represent the normalized difference between the IM model and actual data 

for each bin in the spectrum (red indicates that the model predicts too many SNPs in 

that bin and blue that the model predicts too few).  

Supplementary Figure 7: Differences in heterozygosity expressed as the ratio of 

heterozygous SNPs to the consensus genome size of each isolate (a), sporulation 

efficiency (b) and spore viability (c) between the wild and domesticated populations 

of S. cerevisiae. The data shown in (a) and (b) were from 106 wild and 160 

domesticated isolates and those in (c) were from 23 wild and 29 domesticated isolates 

with high sporulation efficiency. 



Supplementary Figure 8: Flow cytometry and chromosome copy-number variation 

of representative isolates with different ploidies and chromosome amplification or 

deletion patterns.  

Supplementary Figure 9: Copy-number variation (CNV) of genes in the wild and 

domesticated isolates of S. cerevisiae. Genes are numbered at the top of the heat map 

and their names are given in Supplementary Data 6 in the same order. Isolates are 

represented by terminal branches in the phylogenetic tree constructed from the 

maximum likelihood analysis on genome wide SNPs and are colored according to 

their ecological origins. Heat map colors reflect different degrees of gene duplication 

(red shades) or deletion (blue shades) from the basal level (grey) according to the 

scale on the right with strain S288c as the reference. The exact relative values of CNV 

are given in Supplementary Data 6. 

Supplementary Figure 10: Phylogenetic trees constructed from neighbor-joining 

analyses based on amino acid sequences of proteins coded by genes harbored in 

representative introgression or horizontal gene transfer (HGT) fragments in S. 

cerevisiae isolates, showing sources of these alien fragments. Fragment numbers 

correspond to those in Supplementary Data 7.  



Supplementary Notes 

Supplementary Note 1: Detailed sources of fermentation-associated isolates 

The sources of the fermentation-associated isolates include sourdough and 

fermenting dough for the production of Mantou (steamed bread) collected from 

families in countryside areas in different provinces of China; Daqu (fermentation 

starters) and fermenting grains for industrial production of various styles of Baijiu 

(Chinese distilled liquors made from sorghum), Huangjiu (rice wine) and Qingkejiu 

(highland barley wine); and fermented cow, yak, mare and goat milk and milk grains 

from local families in remote regions including Tibet, Xinjiang, Qinhai and Inner 

Mongolia in West and Northwest China. In addition, four isolates from fermented 

dairy products collected from Mongolia were included (Supplementary Data 1). Daqu 

(or Koji called in Japan) is mainly made from wheat and rice husk (with or without 

peas or barley) which are usually molded into bricks with 35-40% water and 

spontaneously fermented for about one month for the enrichment different 

microorganisms for saccharification and fermentation of sorghum, rice and highland 

barley for the production of Baijiu, Huangjiu and Qingkejiu, respectively. The 

temperatures within Daqu bricks change from ambient temperature to 40-50C, 

50-60C or 60-70C during the fermentation process, depending on different types
1
. 

For the production of Baijiu and Qingkejiu, steamed sorghum or highland barley 

grains are mixed with powdered Daqu (and with or without fermented grains from the 

last patch) and fermented in pits or jars in solid-state with about 55% water for about 

one month or more. The temperatures usually change from 10 to 30C during the 

fermentation period and the alcohol content is usually 5-10% at the end of 

fermentation. For the production of Huangjiu, the raw material is steamed rice which 

is mixed with yeasts and Daqu and fermented in semi-liquid state in jars for about one 

month with the temperature changing from 10-33C during the fermentation process. 

The alcohol content is usually 15-20% at the end of fermentation. The fermented 

dairy products sampled are all homemade and are various in raw materials as 



mentioned above and fermentation conditions, but generally similar with Kefir
2
 or 

Koumiss with low alcohol content (usually < 3%)
3
. The fermented food and 

beverages sampled are usually produced continuously in a year. Different batches of 

fermentation usually take place in the same pits or jars with residual fermented 

materials from the last batches.  

Supplementary Note 2: Additional genes showing significant CNV 

In addition to the genes discussed in the main text, a considerable number of 

other genes showing significant CNV are worth noting. Genes associated with stress 

response, including AQY1 (encoding an aquaporin), SGE1 (encoding a multiple 

drug-resistance protein acting as an extrusion permease), SEO1 (associated with 

ethionine sulfoxide resistance), some PAU genes which probably help the yeast to 

cope with anaerobiosis
4,5

, and the ARR gene cluster show a clear trend of expansion in 

the domesticated population. The ARR gene cluster containing three contiguous genes 

(ARR1, ARR2 and ARR3) involves esistance to arsenic compounds
6,7

 and is duplicated 

in the majority of domesticated isolates, except in the Baijiu and Mantou 1 lineages 

(Supplementary Data 6, Fig. 3). This cluster is also duplicated in the wild isolates 

from secondary forest and fruit in lineages CHN-VIII and Wine which are closely 

related the domesticated population.  

Among the seven AAD genes which are putative aryl-alcohol dehydrogenase 

genes and probably involved in oxidative stress response
8
, five (AAD3, AAD6, AAD10, 

AAD15, and AAD16) showed a clear trend of deletion in domesticated lineages 

(Supplementary Data 5), being in agreement with the prediction of their redundancy 

by Delneri et al., (1999)
8
. However, their maintenance in almost all wild isolates and 

expansion in wild isolates from secondary forests and fruit imply that they are 

functional genes for S. cerevisiae to live in the wild, especially in secondary forests 

and fruit. Similarly, RDS1 which is located in chromosome III neighboring AAD3 and 

encodes a putative zinc cluster transcription factor involved in conferring resistance to 



cycloheximide
9
 is deleted in most domesticated isolates but maintained in most wild 

isolates and even duplicated in wild isolates from secondary forests and fruit in 

lineages CHN-VIII and Wine. The duplication of the AAD genes and RDS1 is 

probably due to the adaptation to environments with cycloheximide or similar 

antifungals or pesticides which are used for the control of plant pathogens. This trait is 

no longer required in fermentation environments and thus the genes related are 

deleted or contracted.  

In addition to the MAL genes which are discussed in the main text, a considerable 

number of genes associated with sugar transportation and metabolisms are expanded 

in the majority of domesticated lineages. Among the genes in the hexose transporter 

(HXT) family, HXT9 and HXT12 showed a clear trend of expansion in domesticated 

isolates, especially in the solid-state fermentation lineages (Supplementary Data 6). 

HXT12 was considered as a pseudogene in strain S288C because of its failure to 

transport hexoses when it was amplified from genomic DNA and overexpressed
10

. It 

is possibly a non-functional gene in the liquid state fermentation group and closely 

related fruit and laboratory isolates including S288c because it is lost or contracted in 

many isolates of this group. However, the remarkable expansion of this gene in the 

solid-state fermentation group suggests that it should be a functional gene in the 

populations of this group. Two genes IMA3 and IMA4 in the IMA isomaltase family 

encoding alpha-glucosidase
49

, are simultaneously expanded in solid state fermentation 

isolates together with HXT9 and HXT12 (Supplementary Data 6).  

A few genes associated with nitrogen source utilization, especially amino acid 

transportation, are deleted or contracted in domesticated lineages. AGP3 (neighboring 

AAD6 and THI5 in chromosome VI) which encodes a low-affinity amino acid 

permease and may act to supply the cell with amino acids as nitrogen source in 

nitrogen-poor conditions, is deleted in most domesticated populations but retained in 

the Huangjiu and Baijiu lineages and all wild lineages. VBA5 (neighboring FLO10 

and NFT1) encoding a vacuolar transporter for basic amino acids (VBA) involved in 



amino acid uptake
11

 is contracted in most domesticated lineages and in a wild lineage 

CHN-VIII from fruit and secondary forests but retained in domesticated lineages 

Baijiu and Mantou 7 and in the other wild lineages. VBA3, as a paralog of VBA5, is 

mainly deleted in the Milk population.  

Some genes involved in maltose metabolism, including MAL11 and MAL13, are 

deleted mainly in the Milk lineage probably due to functional redundancy of these 

genes in the fermentation of milk. Two high-affinity glucose transporter genes HXT6 

and HXT7 which locate adjacent to each other on Chromosome IV are also deleted in 

most isolates in the Milk lineage. The deletion of these two genes in the Milk lineage 

is unexpected because glucose is limited in fermenting milk and a previous study 

showed that HXT6 and HXT7 were duplicated in a laboratory population of S. 

cerevisiae due to selection in a glucose-limited environment
12

. 

The CNVs of the P-type ATPase Li
+
/Na

+
 pump-encoding ENA genes were 

observed in different S. cerevisiae isolates with different tolerant ability to Li
+
 and 

Na
+
 in previous studies

13,14
. We show here that ENA6 is present in 236 (92.9%) of the 

254 S. cerevisiae isolates analyzed (Supplementary Data 6). All the wild lineages 

from primeval forests and five domesticated lineages in the solid fermentation group 

contain only ENA6. ENA1 began to rarely appear in lineage CHN-VI/VII from 

secondary forests and fruit and frequently occurred together with ENA2 and ENA5 in 

domesticated lineages ADY, Milk and Mantou 1 to Mantou 5 (Supplementary Data 6). 

This result clearly shows that ENA6 is an ancestral gene in S. cerevisiae and ENA1, 

ENA2, ENA5 were recently introgressed from S. paradoxus, validating the proposal of 

Strope et al. (2015)
14

.  



Supplementary Note 3: Detailed description of Introgression and HGT events 

For the introgressed fragments from other species within the genus 

Saccharomyces, S. paradoxus, which is the closet relative of S. cerevisiae, is the 

dominant donor. The introgressed fragments are also usually lineage specific, 

distributing only in single or limited lineages. For examples, among the fragments 

with top matches from S. paradoxus, fragments 10-12 exist exclusively in lineage 

CH-IX; fragment 14 in CHN-I and CHN-IX; fragment 18 in CHN-I; and parts of 

fragments 27, 33 and 37 in CHN-II, CHN-III and CHN-V, respectively. A few 

fragments (no. 72, 73, 75, 76, 77, and 79) putatively from S. paradoxus are found 

widely in multiple lineages in the wild and domesticated populations. Phylogenetic 

analyses showed that fragments with more than 95% sequence identities with the 

homologs of S. paradoxus (e.g., nos. 10, 14, 45, 58 and 77) can be judged with 

confidence to have been introgressed from this species as shown in Supplementary 

Fig. 10e. However, the origins of the other fragments with top matches to S. 

paradoxus but with generally less than 95% sequence identities are uncertain. For 

examples, the DRE2 gene in Fragment 11 (16,500 bp in length) detected in the 

CHN-IX lineage formed a branch closely related to but clearly separated from S. 

paradoxus (Supplementary Fig. 10f). The YKR078W gene harbored in Fragment 12 

(3 kb in length) which also exclusively is found in the CHN-IX isolates is located on a 

branch between S. cerevisiae and S. paradoxus (Supplementary Fig. 10g), implying 

that this gene may represent an undescribed close relative species to the two species. 

The top matches of the 1-kb windows of fragment 18 which occurs exclusively in 

CHN-I, were mainly from S. paradoxus with less than 90% identities. Phylogenetic 

analyses based on the amino acid sequences of the gene PUG1 contained in this 

fragment showed that the CHN-I isolates formed a branch basal to S. cerevisiae and S. 

paradoxus (Supplementary Fig. 10h). Similarly, the phylogeny of gene PRM17 

harbored in fragment 11 showed that this gene from the CHN-IX isolates also formed 

a branch basal to S. cerevisiae and S. paradoxus (Supplementary Fig. 10i). These 



fragments differed from S. paradoxus and S. cerevisiae by 12.0%- 6.3% and 

13.9%-11.5% nucleotide sequence divergence, respectively, beyond the maximum 

genome sequence divergence (4.5%) within S. paradoxus, suggesting the possible 

existence of an unknown or missing species or lineage basal to S. cerevisiae and S. 

paradoxus within the genus Saccharomyces. 

Fragment 17 (2.5 kb in length) distributing in a few wild and domesticated 

lineages was probably introgressed from S. mikatae. The top matches of this fragment 

were mainly from S. mikatae with 98.1% to 99.0% sequence identities in the 1-kb 

mapping windows (Supplementary Data 7, Supplementary Fig. 10j). In addition to S. 

paradoxus and S. mikatae, S. bayanus, S. kudriavzevii, and S. uvarum were included 

in the top matches of some of the possibly introgressed fragments (Supplementary 

Data 7), but the sequence identities were quite low (usually less than 90%). The 

sources of these fragments are therefore uncertain. Phylogenetic analyses showed that 

some of them might be introgressed from unknown species or lineages within 

Saccharomyces. For examples, the REP1 gene contained in fragment 5 distributing 

specifically in lineage CHN-IX and the GDT1 gene harbored in fragment 48 

distributing specifically in lineage Milk might from unknown species or lineages 

closely related with S. kudriavzevii and S. mikatae, respectively, as shown in the 

phylogenetic trees (Supplementary Fig. 10k-l).  

It is worth noting that the top matches of a considerable number of the putative 

introgressed fragments were from various S. cerevisiae strains (Supplementary Data 

7). They are regarded as representing possible introgression events based on the 

following considerations: 1) they usually occur in limited lineages or isolates; 2) they 

differ from the matched fragments in the reference S. cerevisiae strains by over 10% 

nucleotides; and 3) they differ from the matched fragments in the other majority of S. 

cerevisiae isolates sequenced in this study by over 7% nucleotides, significantly 

beyond the maximum inter-lineage genome sequence divergence of 1.6% as shown in 

Supplementary Data 3; and 4) phylogenetic analyses showed that some of them may 



be introgressed from unknown sources or present transitional states. We also found 

that some S. cerevisiae strains sequenced in other studies share HGT or introgression 

fragments with our isolates sequenced in this study. For example, BLAST search 

through GenBank showed that Fragment 1 also exist in three S. cerevisiae isolates 

YJM1388, YJM1389 and YJM1592 sequenced in Strope et al. (2015)
14

 with 100% 

identity. YJM1388 was from fermented tapioca in Malaya and YJM1389 and 

YJM1592 were from sewage in Thailand. They were all clustered in the Sake lineage. 

It will be interesting to perform a further systematic survey of HGT or introgression 

events in all the sequenced S. cerevisiae strains with different ecological and 

geographic origins in the future. 

Supplementary Note 4: Additional phenotypes associated with ecology and 

genomic variations 

A total of 54 (20.3%) of the isolates tested could utilize melibiose and these 

isolates mainly concentrated in wild lineages CHN-III (5/5, 100%), CHN-V (10/13, 

76.9%) and CHN-X (3/7, 42.9%) and domesticated lineages Mantou 1 (6/6, 100%), 

Mantou 7 (7/29, 24.1%), Baijiu (6/15, 40%) and Huangjiu (11/16, 73.3%). With the 

exception of six isolates in the Milk lineage, all the wild and domesticated isolates 

tested grew well in raffinose and the melibiose positive isolates showed 

approximately doubled raffinose utilization efficiency as compared with the other 

raffinose positive isolates (Fig. 5, Supplementary Data 8). This can be explained 

because raffinose is firstly hydrolyzed into fructose and melibiose by ß-fructosidase 

and the isolates that could not utilize melibiose stop growing when the released 

fructose is used up. As expected, all the isolates unable to grow in melibiose have lost 

the MEL gene which is responsible for melibiose utilization, except for ten isolates 

(FJ6, GT39.1, GT99.1, HLJ4, HN18, HQ3.1, JQ9.3, SX9, SXJM6.6 and XZ4.1), 

which contain an intact MEL gene each but are unable to utilize melibiose. The cause 

of their failure to utilize melibiose remains to be revealed.  



All the isolates tested grew well in sucrose, except six isolates in the Milk 

lineage. These isolates formed a subclade in the Milk lineage and contained only 

SUC2 of the SUC gene family responsible for sucrose consumption
15

. We found that a 

deletion of a base ‘T’ at site 36 of the gene resulted in codon shift and disfunction of 

SUC2 in these isolates. The mutation is probably due to relaxed selection pressure 

because of the absence of sucrose in the growth environment of these isolates. These 

six isolates are unable to utilize raffinose either (Supplementary Data 8).  

For the tolerance to high temperatures (40C and 41C), lineage specific 

variations were observed. Among the wild lineages, the isolates in lineages CHN-I, 

CHN-II, CHN-III and CHN-IX from primeval forests were unable to grow at 40C; 

while the majority of the isolates in lineages CHN-IV, CHN-V, CHN-VI/VII and 

CHN-VIII from fruit and secondary forests grew well at 40C (Supplementary Data 8, 

Fig. 5). Among the domesticated lineages, the isolates in the Milk, ADY and Mantou 

3 showed negative to weak growth at 40C while the other domesticated lineages in 

the solid-state fermentation group usually grow well at this temperature. The isolates 

that grew relatively well at 41C were concentrated in wild lineage CHN-VI/VII from 

secondary forests and fruit and in the domesticated solid-state fermentation group. 

The ethanol tolerance test showed that, in general, the domesticated isolates, 

especially those in the solid fermentation group, showed a trend of increased tolerance 

to 9% ethanol (Fig. 5, Supplementary Data 8). 

Supplementary Note 5: Neutrality and selection tests 

The McDonald-Kreitman (MK) test
16,17

 was performed to detect genes subjected 

to different pressures of selection in different populations of S. cerevisiae recognized 

in this study. A gene dataset for the MK test was constructed following the 

requirements below: i) each gene was identified exactly as a single copy gene from 

assembled genomes; ii) only a gene with  90% amino acid identity and 80% amino 

acid coverage thresholds among different lineages was included, the genes showing 

exceptionally diverged sequences among different lineages or populations were 



excluded; iii) only strains with genes that meet the requirements above were included, 

however, each gene set should cover at least 80% of the strains in a given group 

identified from the phylogenetic analysis to ensure the sampling sizes of each group. 

By setting six isolates (Y17217, UWOPS919171, UFRJ50816, YPS138, N44 and 

CBS432) from four lineages of S. paradoxus as the outgroup, we obtained a total of 

4210 genes from the 266 isolates sequenced in this study which were eligible for 

calculating the numbers of synonymous (Ds) and non-synonymous (Dn) substitutions 

and the numbers of synonymous (Ps) and non-synonymous (Pn) polymorphisms using 

the EggLib tools
18

. Then we corrected for multiple hypothesis testing using the 

Benjamini-Hochberg method
19

. The genes subjected to positive and purifying 

selection and being neutral to selection detected and related parameters including the 

proportion of base substitutions fixed by natural selection (Alpha)
20

, neutrality index 

(NI), and fixation index (FST)
21

 calculated using EggLib are listed in Supplementary 

Data 9a. The genes with Alpha values greater or smaller than zero significantly (P < 

0.05) were regarded as under positive or purifying selection. Otherwise they were 

regarded as being selectively neutral.  

We found that a much higher fraction of genes were subjected to purifying 

selection in the domesticated population than in the wild population of S. cerevisiae 

by the MK test
17

 (Supplementary Data 9). We detected a very limited number of 

genes evolving under positive selection in S. cerevisiae (Supplementary Data 9). 

However, we found that more than half (51.5%) of the genes subjected to the MK test 

demonstrated purifying selection in the domesticated population. In contrast, only 8.9% 

of the genes tested demonstrated purifying selection in the wild population and the 

remaining (91.0%) were consistent with a neutral model (Supplementary Data 9). 

Interestingly, Gene Ontology (GO) enrichment analysis detected significant 

enrichment of the class meiotic chromosome separation (GO:0051307) in the genes 

under purifying selection in the wild but not in the domesticated isolates 



(Supplementary Data 9b), probably due to the reduced sexuality in the domesticated 

isolates. 
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