
Supplementary Material:
A novel stochastic multi-scale model of Francisella
tularensis infection to predict risk of infection in a
laboratory

1 ANALYSIS OF THE WITHIN-PHAGOCYTE MODEL

1.1 PH approximation of the log-normally distributed rupture time

Process in (Carruthers et al., 2018, Figure 1b)) contains an inter-event time which is log-normally
distributed (representing the time until phagocyte rupture and bacterial release), which makes the process
non-Markovian. In order to keep the Markovian nature of the process, we propose in Carruthers et al.
(2018) to approximate the log-normal distribution for the rupture time with a PH(η,T) distribution, since
the family of PH-type distributions is dense within the family of non-negative continuous distributions (He
(2014)).

We note here that a PH(η,T) distribution can be defined as the absorption time for an absorbing
continuous-time Markov chain (CTMC) W. Given an absorbing CTMC W over the space of states
SW = {1, 2, . . . ,m} ∪ {B}, with B the absorbing state, one can express its infinitesimal generator as

Q =

(
T t
0 0

)
,

where matrix T contains the transition rates of the Markov chain for states in {1, . . . ,m}, and vector t
contains those transition rates from states in {1, . . . ,m} to the absorbing state B. Thus, if one defines T
as the time until absorption for process W (i.e., the time until process W reaches state B), we say that
T ∼ PH(η,T), where T is the sub-matrix of the infinitesimal generator represented above and η is the
vector representing the initial distribution of the CTMC W over SW.

In order to fully analyse the within-phagocyte model depicted in (Carruthers et al., 2018, Figure 1b)),
the log-normal distribution, that determines when the rupture event occurs, is first approximated using
a PH distribution. To do this, an auxiliary Markov process W = {W (t) : t ≥ 0} with state space
SW = {I, II, ..., Z} ∪ {B} can be constructed such that the time taken for W to reach B is approximately
logN(3.72, 0.385) distributed. Here, B is the same absorbing state as in the process X in (Carruthers et al.,
2018, Figure 1b)-c)), and Z denotes the number of transient states in the state space of W, which is a
parameter that can be chosen during the PH approximation procedure. Thus, process W can be thought
of as a clock for the rupture event to occur, so that as W transitions across states in SW, the rupture event
becomes closer.

Let qi,j denote the transition rate from state i to state j for process W. It is then possible to find Z and
rates {qi,j : i, j ∈ SW} such that the time taken for W to be absorbed approximately follows the desired
distribution logN(3.72, 0.385). In particular, a moment matching algorithm is applied here to do this and
is implemented using the statistical software R (Osogami and Harchol-Balter (2006)). The PH distribution
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Figure S1. Left: A depiction of the one-dimensional Markov process W associated with the
PH(η,T) distribution considered, so that the time to reach state B approximately follows T rupture ·∼·
logN(3.72, 0.385). Right: Plot showing how accurately the PH(η,T) distribution approximates the
desired log-normal distribution

is parametrised by a vector of initial probabilities containing the probability that W starts in each state of
SW, η, and a matrix of transition rates between the transient states of SW, T. We plot in Figure S1 the
structure of the process W obtained, with parameters η and T of the corresponding PH distribution, and
provide a plot to depict how accurately the log-normal distribution is being approximated. In particular, this
approximative PH(η,T) distribution is defined over the space of states SW = {I, II, . . . , V III} ∪ {B},
with vector η = (1, 0, . . . , 0)T representing that the absobring Markov process W (i.e., the rupture time
clock) starts at state I with probability 1, and matrix T given by

T =



−qI,II qI,II 0 0 0 0 0 0
0 −qII,III qII,III 0 0 0 0 0
0 0 −qIII,IV qIII,IV 0 0 0 0
0 0 0 −qIV,V qIV,V 0 0 0
0 0 0 0 −qV,V I qV,V I 0 0
0 0 0 0 0 −qV I,V II qV I,V II 0
0 0 0 0 0 0 −qV II,V III − qV II,B qV II,V III

0 0 0 0 0 0 0 −qV III,B



=



−0.1447 0.1447 0 0 0 0 0 0
0 −0.1447 0.1447 0 0 0 0 0
0 0 −0.1447 0.1447 0 0 0 0
0 0 0 −0.1447 0.1447 0 0 0
0 0 0 0 −0.1447 0.1447 0 0
0 0 0 0 0 −0.1447 0.1447 0
0 0 0 0 0 0 −0.3396 0.0003
0 0 0 0 0 0 0 −0.0127


.
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Figure S2. Diagram representing the within-phagocyte process X in (Carruthers et al., 2018, Figure 1c)),
where the approximative PH distribution can be seen as a clock for the rupture event

Once this log-normal distribution is replaced by the PH approximative distribution, the within-phagocyte
process in (Carruthers et al., 2018, Figure 1b)) becomes the process in (Carruthers et al., 2018, Figure 1c)).
By using the PH diagram representation in Figure S1, the within-phagocyte process in (Carruthers et al.,
2018, Figure 1c)) can be represented as in Figure S2. Each state (i, j) of the process in Figure S2 represents
i intracellular bacteria at a particular time instant, where the rupture clock is at state j ∈ {I, . . . , V III}.
Thus, arrows going downwards in Figure S2 represent the rupture clock moving towards the rupture event,
while right-left arrows represent the logistic growth process which is occurring at the same time for the
replication of bacteria. Once this second component j reaches the absorbing state B (which occurs after a
PH distributed time which approximates the logN(3.72, 0.385) distributed rupture time), the number of
bacteria released is given by the state i when this occurs.

Since η = (1, 0, . . . , 0)T , one would set the rupture event clock into state I at time t = 0. However,
when F. tularensis bacteria first enters a host phagocyte, there is a period of approximately one hour where
the bacteria is contained within a phagosome and does not replicate (Golovliov et al. (2003)). This is not
currently accounted for in the within-phagocyte model since replication of bacteria is allowed to begin
from t = 0. To account for this phagosomal stage, the assumption is made that during the first hour, since
the clock on the time to rupture has already begun, the process X in Figure S2 would only be allowed to
transition between states in this clock phase. That is, if the process in Figure S2 starts at state (i, j) = (1, I)
at time t = 0, only component j is allowed to progress during the first hour, since there is no bacterial
replication during this time. This can be easily incorporated into our model by considering the initial
time t = 0 as the time instant at 1 − hour post infection. Thus, instead of considering that the rupture
clock starts at I at time t = 0 (i.e., instead of considering η = (1, 0, . . . , 0)T ), one would consider that
this rupture clock has already been working for one hour. To implement this, the transition probability
matrix is first constructed for the auxiliary process W. From this, the probability that W is in each of states
{I, II, . . . , V III, B} after one hour can be computed. Once these probabilities have been computed, they
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are stored in an updated vector η, which is the initial vector to be considered at time t = 0 for process in
Figure S2.

1.2 Truncation of the space of states

We carry out here a stochastic analysis of the within-phagocyte model in (Carruthers et al., 2018,
Figure 1c)), depicted in Figure S2. In particular, the main aim in this within-phagocyte model is to
compute the rupture size distribution (i.e., the number of bacteria released by any infected phagocyte),
which is given by the number of bacteria i once arrival to state B (i.e., phagocyte rupture) occurs. In
order to do this, although an infinite possible number of intracellular bacteria N = {1, 2, 3, . . . } is
allowed in the model, it is clear that a physical carrying capacity exists for the number of bacteria
that a single infected phagocyte can contain, which would lead us to consider a truncated set of states
{(i, j) : i ∈ {1, 2, 3, . . . , N}, j ∈ {I, . . . , V III}} ∪ {B} in Figure S2. In order to choose this truncating
valueN , we propose to set it so that discarded states {(i, j) : i ∈ {N+1, N+2, . . . }, j ∈ {I, . . . , V III}}
are only visited with probability smaller than some small value ε, so that removing these states does not
significantly affect the dynamics of the underlying stochastic process (Gómez-Corral and López-Garcı́a
(2015)).

Let αN
(i,j) denote the probability that given the initial state (i, j) ∈ {(i, j) : i ∈ {1, 2, 3, . . . , N}, j ∈

{I, . . . , V III}}, component i in process X reaches value N + 1 before being absorbed into state B. If

we store these probabilities in vectors αN
i =

(
αN

(i,I), ..., α
N
(i,VIII)

)T
, for 1 ≤ i ≤ N , and if states in

{(i, j) : i ∈ {1, 2, 3, . . . , N}, j ∈ {I, . . . , V III}} are organised by levels as

L(i) = {(i, j) : j ∈ {I, . . . , V III}}, 1 ≤ i ≤ N,

and levels are organised as L(1) ≺ L(2) ≺ · · · ≺ L(N), one can obtain by means of first-step analysis the
following matrix equation:

αN
1

αN
2
...

αN
N−1

αN
N

 =


A11 A12

A21 A22 A23
. . . . . . . . .

AN−1,N−2 AN−1,N−1 AN−1,N

AN,N−1 AN,N




αN

1

αN
2
...

αN
N−1

αN
N

+


0
0
...
0

AN,N+118



where 18 is a column vector with eight ones, and matrices Ai,i−1, Ai,i and Ai,i+1 each have dimension
(8× 8) and contain the respective probabilities that X transitions from states in level L(i) to states in levels
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L(i− 1), L(i) or L(i+ 1), respectively. Expressions for these matrices are

(Ai,i−1)j,j = γi

λi + γi +
V III∑
j′=I
j′ 6=j

qj,j′ + qj,B


−1

, i = 2, ..., N, j = I, ..., V III ,

(Ai,i)j,l = qj,l

λi + γi +
V III∑
j′=I
j′ 6=j

qj,j′ + qj,B


−1

, i = 1, ..., N, j, l = I, ..., V III ,

(Ai,i+1)j,j = λi

λi + γi +
V III∑
j′=I
j′ 6=j

qj,j′ + qj,B


−1

, i = 1, ..., N, j = I, ..., V III .

The solution to the above matrix equation is calculated recursively using Algorithm 1. Once these
probabilities are in hand, we set in our numerical results in Carruthers et al. (2018) the value of N
so that αN

(1,∼η) < 10−5; that is, if the rupture clock starts according to distribution η, and the phagocyte
has 1 single bacteria at this initial time t = 0, we set N so that the probability of process X exceeding value
N is less than 10−5.

Algorithm 1: Computation of the probability of process X reaching N + 1 bacteria before rupture

Step 1: H1 = I8 −A1,1;
For n = 2, ..., N :

Hn = I8 −An,n−1H
−1
n−1An−1,n −An,n;

Step 2: αN
N = H−1

N AN,N+118;
For n = N − 1, ..., 1:

αN
n = H−1

n An,n+1α
N
n+1.

1.3 Rupture size distribution

Let R(k)
(i,j)

(denoted as Rk in Carruthers et al. (2018), where the initial state (i, j) is omitted for the ease
of notation) denote the probability that X enters state B from one of states in {(k, I), (k, II),..., (k,VIII)},
provided that it starts in state (i, j); that is, the probability that the phagocyte releases k bacteria upon
rupture. We note that for results in Carruthers et al. (2018), we consider initial state (1, j ∼ η) where i = 1
represents that each macrophage is infected by a single bacterium, and j is chosen according to the initial
distribution η described above. By conditioning on the subsequent state of X, first-step arguments can be
used to obtain the following expression for R(k)

(i,j)
:
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R
(k)
(i,j)

=
1

λi + γi +
V III∑
j′=I
j′ 6=j

qj,j′ + qj,B

λiR
(k)
(i+1,j)

+ γiR
(k)
(i−1,j)

+
V III∑
j′=I
j′ 6=j

qj,j′R
(k)
(i,j′) + qj,B1i=k

 ,

for i ∈ {1, ..., N}, j ∈ {I, ...,VIII}. This scalar expression may be written in matrix form as follows:

R
(k)
1

R
(k)
2
...

R
(k)
N−1

R
(k)
N


=


A11 A12

A21 A22 A23
. . . . . . . . .

AN−1,N−2 AN−1,N−1 AN−1,N

AN,N−1 AN,N





R
(k)
1

R
(k)
2
...

R
(k)
N−1

R
(k)
N


+



0
0
...

bk
...
0


, (S1)

where R
(k)
i =

(
R

(k)
(i,I)

, ..., R
(k)
(i,V III)

)T
, and where the (8× 1) column vector bk is given by:

(bk)j = qj,B

λk + γk +
V III∑
j′=I
j′ 6=j

qj,j′ + qj,B


−1

, j ∈ {I, ..., V III} .

Finally, an adapted version of Algorithm 1, not reported here, allows to efficiently compute probabilities
R

(k)
(i,j)

from Eq. (S1).

1.4 Rupture size distribution with additional phagocyte infection events

In our work, we have assumed in Section 2.1, that each phagocyte is infected by a single bacterium,
so that the process in Figure 1 leads to the rupture size distribution represented in Figure 9. This is not
only for our results to be comparable to those by Wood et al. (2014), where the same assumption was
made, but also is based on experimental evidence by Golovliov et al. (2003), which suggests that during
the initial phase of the infection, on average only one or two intracellular bacteria per phagocyte were
observed. In order to explore the impact of this assumption, we compute here the analogous rupture
size distribution to that in Figure 9, but when several extracellular bacteria are allowed to enter into the
phagocyte until phagocyte rupture occurs. In particular, we consider that, after initial phagocyte infection
by a single bacterium (X(0) = 1 in Section 2.1), up to n bacteria are allowed to enter into the phagocyte
during the replication process and until phagocyte rupture, and that these additional infecting bacteria
carry out the same intracellular stochastic logistic growth process described in Section 2.1. These n
additional bacterial intake events occur at time instants uniformly distributed in [0,Median[T rupture]],
with Median[T rupture] = 41.5 hours. Intake events occurring after T rupture are discarded, since they
would take place after the phagocyte rupture actually occurs.
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Figure S3. The distribution of the predicted number of bacteria released by a single phagocyte on rupture,
when n additional bacterial intake events are allowed to occur in [0,Median[T rupture]]. n = 0 corresponds
to the distribution in Figure 9, where the only bacterium entering into the phagocyte is the one starting the
within-phagocyte infection.

Results in Figure S3 suggest that, if a large number of bacteria are allowed to enter into the phagocyte,
the rupture size distribution becomes uni-modal, where almost all the infected phagocytes have some
intracellular bacterial replication before rupture. This is in contradiction with recent experimental results by
Brock and Parmely (2017), where a significant amount of phagocytes are observed to rupture releasing very
few bacteria, so that our model seems to support the use of n = 0 or very small values of n, representing
that each phagocyte is infected by a single bacterium or a very small number of bacteria.

2 ANALYSIS OF THE WITHIN-HOST MODEL

The objective in the within-host model is to compute dose response probabilities π(i,j) =

limt→∞ P (Y(t) = M |Y(0) = (i, j)), and restricted mean times r(i,j) = E
[
T(i,j)1T(i,j)<+∞

]
in

Carruthers et al. (2018). Dose response probabilities can be obtained by solving the system of equations
resulting from Eq. (1) in Carruthers et al. (2018). The space of states of the within-host model (see
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(Carruthers et al., 2018, Figure 3))

SY = {0} ∪ {(i, j) : 1 ≤ i ≤M − 1, 0 ≤ j ≤ i} ∪ {M}

can be organised by levels as SY = {0} ∪
M−1⋃
j=0

L(j) ∪ {M} where

L(0) = {(i, 0) : 1 ≤ i ≤M − 1},
L(j) = {(i, j) : j ≤ i ≤M − 1}, 1 ≤ j ≤M − 1.

Thus, by storing probabilities π(i,j) in column vectors π0 =
(
π(1,0), π(2,0), ..., π(M−1,0)

)T , and πj =(
π(j,j), π(j+1,j), ..., π(M−1,j)

)T , 1 ≤ j ≤ M − 1, Eq. (1) in Carruthers et al. (2018) can be rewritten in
matrix form as


π0

π1
...

πM−2

πM−1

 =


G00 G01

G10 G11 G12
. . . . . . . . .

GM−2,M−1 GM−2,M−2 GM−2,M−1

GM−1,M−2 GM−1,M−1




π0

π1
...

πM−2

πM−1

+


c0

c1
...

cM−2

cM−1

 .

Non-null entries of matrices Gj,j−1 are given by:

(G1,0)i,i+k−1 =
δRk

(µ+ α)(i− 1) + δ
, i = 1, ...,M − 1 , k = 1, ...,M − i,

(Gj,j−1)i−j+1,i−j+1+k =
δjRk

(µ+ α)(i− j) + δj
, i = j, ...,M − 1, j = 2, ...,M − 1 , k = 1, ...,M − i.

The non-null entries of Gj,j satisfy

(G0,0)i,i−1 =
µi

(µ+ α)i
, i = 2, ...,M − 1,

(Gj,j)i−j+1,i−j =
µ(i− j)

(µ+ α)(i− j) + δj
, i = j + 1, ...,M − 1, j = 1, ...,M − 2,

and if j = M − 1 we note that the level only consists of a single state and hence GM−1,M−1 = 0. Non-null
entries of matrices Gj,j+1 are given by

(G0,1)i,i =
αi

(µ+ α)i
, i = 1, ...,M − 1,

(
Gj,j+1

)
i−j+1,i−j

=
α(i− j)

(µ+ α)(i− j) + δj
, i = j + 1, ...,M − 1, j = 1, ...,M − 2.
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Finally, for vectors cj , we have that c0 = 0 and non-null entries for 1 ≤ j ≤M − 1 are

(cj)i−j+1 =
δj

(µ+ α)(i− j) + δj

 ∑
k≥M−i+1

Rk

 , i = j, ...,M − 1.

It is clear that an adapted version of Algorithm 1, not reported here, can be used to solve this matrix
equation. Finally, we note that the computation of the restricted mean times r(i,j) = E

[
T(i,j)1T(i,j)<+∞

]
,

not reported here for the sake of brevity, can be carried out by following similar first-step arguments, and
by making use of a similar matrix-oriented approach.
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