SUPPLEMENTAL MATERIAL

TITLE : Identification of binding sites contributing to volatile anesthetic effects on γ -aminobutyric acid type A receptors

Kellie A. Woll, Xiaojuan Zhou, Natarajan V. Bhanu, Benjamin A. Garcia^c, Manuel Covarrubias, Keith W. Miller, and Roderic G. Eckenhoff*

Table of contents

Page	
2	
3	
4-39	4
	Page 2 3 4-39

αβ GABA _A receptor		
Subunit	FLAG- $\alpha_1\beta_3$ Residue #	$\alpha_1\beta_3$ Residue #
α	N138	N103
	T265	T230
	I274	I239
	L275	L240
	V286	V251
	1306	I271
	S307	S272
β	A70	A45
	V315	V290
	T291	T266
αβγ GABA _A receptor		
Subunit	FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 Residue	$\alpha_1\beta_3\gamma_2$ Residue #
	#	
α	E285	E250
	S311	S276
	P313	P278
β	1247	I222
	Q249	Q224
	Y251	Y226
	1280	I255
	1289	I264
γ	Y280	Y241

Table S1. AziIsoflurane photolabeled residues in FLAG- $\alpha_1\beta_3$ and FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors and corresponding residues within $\alpha_1\beta_3$ and $\alpha_1\beta_3\gamma_2$ GABA_A receptors.

αβ GABA _A receptor		
Subunit	FLAG- $\alpha_1\beta_3$ Residue #	$\alpha_1\beta_3$ Residue #
α	G139	G104
	C269	C234
	P288	P253
	V292	V257
β	E204	E179
	P209	P184
	W266	W241
	A274	T255
	T280	A249
	L442	L417
αβγ GABA _A receptor		
Subunit	FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 Residue	$\alpha_1\beta_3\gamma_2$ Residue #
	#	
α	S276	S241
	R290	R255
	V295	V260
	T296	T261
	T300	T265
β	A273	A248
γ	L307	L268
	G308	G269

Table S2. Azisevoflurane photolabeled residues in FLAG- $\alpha_1\beta_3$ and FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors and corresponding residues within $\alpha_1\beta_3$ and $\alpha_1\beta_3\gamma_2$ GABA_A receptors.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a ²⁺	a ³⁺	a ⁴⁺	b+	b ²⁺	b3+	b4+	Seq.	y⁺	y2+	y ³⁺	y4+	#2
1	120.08	60.54	40.70	30.78	148.08	74.54	50.03	37.77	F					20
2	267.15	134.08	89.72	67.54	295.14	148.08	99.05	74.54	F	2379.09	1190.05	793.70	595.53	19
3	404.21	202.61	135.41	101.81	432.20	216.61	144.74	108.81	н	2232.02	1116.52	744.68	558.76	18
4	714.22	357.61	238.75	179.31	742.22	371.61	248.08	186.31	N-Azilso	2094.97	1047.99	698.99	524.50	17
5	771.24	386.13	257.75	193.57	799.24	400.12	267.08	200.57	G	1784.95	892.98	595.66	446.99	16
6	899.34	450.17	300.45	225.59	927.33	464.17	309.78	232.59	К	1727.93	864.47	576.65	432.74	15
7	1027.43	514.22	343.15	257.61	1055.43	528.22	352.48	264.61	К	1599.83	800.42	533.95	400.71	14
8	1114.47	557.74	372.16	279.37	1142.46	571.73	381.49	286.37	S	1471.74	736.37	491.25	368.69	13
9	1213.53	607.27	405.18	304.14	1241.53	621.27	414.51	311.14	V	1384.71	692.86	462.24	346.93	12
10	1284.57	642.79	428.86	321.90	1312.57	656.79	438.19	328.90	A	1285.64	643.32	429.22	322.17	11
11	1421.63	711.32	474.55	356.16	1449.63	725.32	483.88	363.16	Н	1214.60	607.80	405.54	304.41	10
12	1535.67	768.34	512.56	384.67	1563.67	782.34	521.89	391.67	N	1077.54	539.28	359.85	270.14	9
13	1666.71	833.86	556.24	417.43	1694.71	847.86	565.57	424.43	м	963.50	482.25	321.84	241.63	8
14	1767.76	884.38	589.93	442.70	1795.76	898.38	599.26	449.69	Т	832.46	416.73	278.16	208.87	7
15	1914.80	957.90	638.94	479.45	1942.79	971.90	648.27	486.45	M-Oxidation	731.41	366.21	244.48	183.61	6
16	2011.85	1006.43	671.29	503.72	2039.84	1020.43	680.62	510.72	Р	584.38	292.69	195.46	146.85	5
17	2125.89	1063.45	709.30	532.23	2153.89	1077.45	718.63	539.23	N	487.32	244.17	163.11	122.59	4
18	2253.99	1127.50	752.00	564.25	2281.98	1141.49	761.33	571.25	К	373.28	187.14	125.10	94.08	3
19	2367.07	1184.04	789.70	592.52	2395.07	1198.04	799.03	599.52	L	245.19	123.10	82.40	62.05	2
20									L	132.10	66.55	44.71	33.78	1

Fig S1. Identification of aziisoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptor photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-N138 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃

a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a ⁺	a²+	a ³⁺	a ⁴⁺	b⁺	b2+	b³+	b ⁴⁺	Seq.	y⁺	y2+	y3+	y ⁴⁺	#2
1	86.10	43.55	29.37	22.28	114.09	57.55	38.70	29.28						16
2	214.16	107.58	72.06	54.29	242.15	121.58	81.39	61.29	Q	2157.87	1079.44	719.96	540.22	15
3	511.17	256.09	171.06	128.55	539.17	270.09	180.39	135.55	T-Azilso	2029.81	1015.41	677.27	508.21	14
4	674.24	337.62	225.42	169.31	702.23	351.62	234.75	176.31	Y	1732.79	866.90	578.27	433.95	13
5	787.32	394.16	263.11	197.59	815.32	408.16	272.44	204.58	L	1569.72	785.37	523.91	393.19	12
6	884.37	442.69	295.46	221.85	912.37	456.69	304.79	228.85	Р	1456.64	728.82	486.22	364.92	11
7	1044.40	522.71	348.81	261.86	1072.40	536.70	358.14	268.86	C-Carbamidomethyl	1359.59	680.30	453.87	340.65	10
8	1157.49	579.25	386.50	290.13	1185.48	593.25	395.83	297.13		1199.56	600.28	400.52	300.64	9
9	1288.53	644.77	430.18	322.89	1316.52	658.77	439.51	329.89	M	1086.47	543.74	362.83	272.37	8
10	1389.58	695.29	463.86	348.15	1417.57	709.29	473.20	355.15	Т	955.43	478.22	319.15	239.61	7
11	1488.65	744.83	496.89	372.92	1516.64	758.82	506.22	379.92	V	854.38	427.70	285.47	214.35	6
12	1601.73	801.37	534.58	401.19	1629.72	815.37	543.91	408.19		755.32	378.16	252.44	189.58	5
13	1910.79	955.90	637.60	478.45	1938.78	969.89	646.93	485.45	L-Azilso	642.23	321.62	214.75	161.31	4
14	1997.82	999.41	666.61	500.21	2025.81	1013.41	675.94	507.21	S	333.18	167.09	111.73	84.05	3
15	2125.88	1063.44	709.30	532.22	2153.87	1077.44	718.63	539.22	Q	246.14	123.58	82.72	62.29	2
16									V	118.09	59.55	40.03	30.28	1

Fig S2. Identification of aziisoflurane adduct within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptors photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -T265/ α_1 -L275 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S3.. Identification of aziisoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptors photolabled in the presence of 30 μM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-I306 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

882.44

1007.16

662.08

755.62

23

24

25

26

27

28

2617.31

2688.35

2789.40

2860.44

2991.48

1395.20

1430.72

1496.24

873.11

930.47

954.15

997.83

655 (

2645.31

2716.35

2817.39

2888.43

3019.47

1323.16

1358.68

1409.20

1444.72

1510.24

v

A

A

М

D

671.27

437.17

336.12

265.09

134.04

336.14

254.61

219.09

168.56

133.05

67.53

224.43

170.07

146.39

112.71

89.03

45.35

#2

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

Q

8

6

4

168.57

127.81

110.05

84.79

67.03

34.27

Pre+H, Precursor, Precursor-H2O, Precursor-H2O-NH3, Precursor-NH3, Pre-H

y, y-H₂O, y-NH₃

a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	a ³⁺	a ⁴⁺	b⁺	b2+	b3+	b4+	Seq.	y+	y2+	y3+	y4+	#2
1	70.07	35.54	24.03	18.27	98.06	49.53	33.36	25.27047	P					24
2	230.10	115.55	77.37	58.28	258.09	129.55	86.70	65.27813	C-Carbamidomethyl	2921.34	1461.17	974.45	731.09	23
3	343.18	172.09	115.06	86.55	371.17	186.09	124.40	93.54915	I	2761.31	1381.16	921.11	691.08	22
4	490.22	245.61	164.08	123.31	518.21	259.61	173.41	130.308	M-Oxidation	2648.23	1324.62	883.41	662.81	21
5	591.26	296.14	197.76	148.57	619.26	310.13	207.09	155.56992	Т	2501.19	1251.10	834.40	626.05	20
6	690.33	345.67	230.78	173.34	718.33	359.67	240.11	180.33703	V	2400.14	1200.57	800.72	600.79	19
7	999.39	500.20	333.80	250.60	1027.38	514.19	343.13	257.6009	I-Azilso	2301.07	1151.04	767.70	576.02	18
8	1112.47	556.74	371.50	278.87	1140.47	570.74	380.83	285.87192	L	1992.02	996.51	664.68	498.76	17
9	1199.50	600.26	400.51	300.63	1227.50	614.25	409.84	307.62993	S	1878.93	939.97	626.98	470.49	16
10	1328.55	664.78	443.52	332.89	1356.54	678.77	452.85	339.89058	Q-Deamidated	1791.90	896.45	597.97	448.73	15
11	1427.61	714.31	476.54	357.66	1455.61	728.31	485.87	364.65768	V	1662.86	831.93	554.96	416.47	14
12	1514.65	757.83	505.55	379.42	1542.64	771.82	514.89	386.41569	S	1563.79	782.40	521.94	391.70	13
13	1661.71	831.36	554.58	416.18	1689.71	845.36	563.91	423.1828	F	1476.76	738.88	492.92	369.95	12
14	1847.79	924.40	616.60	462.70	1875.79	938.40	625.93	469.70263	W	1329.69	665.35	443.90	333.18	11
15	1960.88	980.94	654.30	490.97	1988.87	994.94	663.63	497.97364	L	1143.61	572.31	381.88	286.66	10
16	2075.90	1038.46	692.64	519.73	2103.90	1052.45	701.97	526.73038	N-Deamidated	1030.53	515.77	344.18	258.39	9
17	2232.01	1116.51	744.67	558.76	2260.00	1130.50	754.01	565.75566	R	915.50	458.25	305.84	229.63	8
18	2361.05	1181.03	787.69	591.02	2389.04	1195.03	797.02	598.01631	E	759.40	380.20	253.80	190.61	7
19	2448.08	1224.54	816.70	612.78	2476.08	1238.54	826.03	619.77432	S	630.36	315.68	210.79	158.34	6
20	2547.15	1274.08	849.72	637.54	2575.14	1288.08	859.05	644.54142	V	543.32	272.17	181.78	136.59	5
21	2644.20	1322.60	882.07	661.81	2672.20	1336.60	891.40	668.80462	Р	444.26	222.63	148.76	111.82	4
22	2715.24	1358.12	905.75	679.57	2743.23	1372.12	915.08	686.5639	A	347.20	174.11	116.41	87.56	3
23	2871.34	1436.17	957.78	718.59	2899.33	1450.17	967.12	725.58918	R	276.17	138.59	92.73	69.80	2
24									Т	120.07	60.54	40.69	30.77	1

Fig S4. Identification of aziisoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptors photolabled in the presence of 30 μM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-I274 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

 Pre+H, Precursor, Precursor-H2O, Precursor-H2O-NH3, Precursor-NH3, Pre-H
 y, y-H ₂ O, y-NH ₃

	a, a-H ₂ O, a-NH ₃ , b, b-H ₂ O, b-NH ₃													
#1	a⁺	a ²⁺	a ³⁺	a ⁴⁺	b+	b2+	b3+	b ⁴⁺	Seq.	y⁺	y2+	y3+	y ⁴⁺	#2
1	268.05	134.53	90.02	67.77	296.05	148.53	99.35	74.77	V-Azilso					27
2	365.10	183.06	122.37	92.03	393.10	197.05	131.70	99.03	Р	2929.47	1465.24	977.16	733.12	26
3	436.14	218.57	146.05	109.79	464.14	232.57	155.38	116.79	A	2832.42	1416.71	944.81	708.86	25
4	592.24	296.63	198.09	148.82	620.24	310.62	207.42	155.81	R	2761.38	1381.19	921.13	691.10	24
5	693.29	347.15	231.77	174.08	721.29	361.15	241.10	181.08	T	2605.28	1303.14	869.10	652.07	23
6	792.36	396.68	264.79	198.85	820.35	410.68	274.12	205.84	V	2504.23	1252.62	835.41	626.81	22
7	939.43	470.22	313.81	235.61	967.42	484.21	323.15	242.61	F	2405.16	1203.08	802.39	602.05	21
8	996.45	498.73	332.82	249.87	1024.44	512.73	342.15	256.87	G	2258.09	1129.55	753.37	565.28	20
9	1095.52	548.26	365.84	274.63	1123.51	562.26	375.18	281.63	V	2201.07	1101.04	734.36	551.02	19
10	1196.57	598.79	399.53	299.90	1224.56	612.78	408.86	306.90	T	2102.00	1051.51	701.34	526.26	18
11	1297.61	649.31	433.21	325.16	1325.61	663.31	442.54	332.16	Т	2000.96	1000.98	667.66	500.99	17
12	1396.68	698.84	466.23	349.93	1424.68	712.84	475.56	356.92	V	1899.91	950.46	633.97	475.73	16
13	1509.77	755.39	503.93	378.20	1537.76	769.38	513.26	385.20	L	1800.84	900.92	600.95	450.97	15
14	1610.81	805.91	537.61	403.46	1638.81	819.91	546.94	410.46	T	1687.76	844.38	563.26	422.69	14
15	1741.85	871.43	581.29	436.22	1769.85	885.43	590.62	443.22	М	1586.71	793.86	529.57	397.43	13
16	1842.90	921.95	614.97	461.48	1870.90	935.95	624.30	468.48	T	1455.67	728.34	485.89	364.67	12
17	1943.95	972.48	648.65	486.74	1971.94	986.48	657.99	493.74	Т	1354.62	677.81	452.21	339.41	11
18	2057.03	1029.02	686.35	515.01	2085.03	1043.02	695.68	522.01	L	1253.57	627.29	418.53	314.15	10
19	2144.07	1072.54	715.36	536.77	2172.06	1086.53	724.69	543.77	S	1140.49	570.75	380.83	285.88	9
20	2257.15	1129.08	753.05	565.04	2285.14	1143.08	762.39	572.04	I	1053.46	527.23	351.82	264.12	8
21	2540.15	1270.58	847.39	635.79	2568.15	1284.58	856.72	642.79	S-Azilso	940.37	470.69	314.13	235.85	7
22	2611.19	1306.10	871.07	653.55	2639.18	1320.10	880.40	660.55	A	657.37	329.19	219.79	165.10	6
23	2767.29	1384.15	923.10	692.58	2795.29	1398.15	932.43	699.58	R	586.33	293.67	196.12	147.34	5
24	2881.33	1441.17	961.12	721.09	2909.33	1455.17	970.45	728.09	N	430.23	215.62	144.08	108.31	4
25	2968.37	1484.69	990.13	742.85	2996.36	1498.68	999.46	749.85	S	316.19	158.60	106.07	79.80	3
26	3081.45	1541.23	1027.82	771.12	3109.44	1555.23	1037.15	778.12	L	229.15	115.08	77.06	58.04	2
27									Р	116.07	58.54	39.36	29.77	1

Fig S5. Identification of aziisoflurane adduct within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptor photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -V286/ α_1 -S307 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	a ³⁺	b+	b²+	b ₃₊	Seq.	у ⁺	y2+	y3+	#2
1	120.05	60.53	40.69	148.04	74.52	50.02	M-Oxidation				16
2	234.09	117.55	78.70	262.09	131.55	88.03	N	1862.74	931.87	621.58	15
3	347.17	174.09	116.40	375.17	188.09	125.73		1748.69	874.85	583.57	14
4	462.20	231.60	154.74	490.20	245.60	164.07	D	1635.61	818.31	545.88	13
5	575.29	288.15	192.43	603.28	302.14	201.77		1520.58	760.80	507.53	12
6	842.29	421.65	281.44	870.29	435.65	290.77	A-Azilso	1407.50	704.25	469.84	11
7	929.33	465.17	310.45	957.32	479.16	319.78	S	1140.49	570.75	380.84	10
8	1042.41	521.71	348.14	1070.41	535.71	357.47		1053.46	527.23	351.82	9
9	1157.44	579.22	386.48	1185.43	593.22	395.82	D	940.38	470.69	314.13	8
10	1288.48	644.74	430.16	1316.47	658.74	439.50	M	825.35	413.18	275.79	7
11	1387.55	694.28	463.19	1415.54	708.27	472.52		694.31	347.66	232.11	6
12	1474.58	737.79	492.20	1502.57	751.79	501.53	S	595.24	298.12	199.08	5
13	1603.62	802.31	535.21	1631.62	816.31	544.54	E	508.21	254.61	170.07	4
14	1702.69	851.85	568.23	1730.68	865.85	577.57	V	379.16	190.09	127.06	3
15	1816.73	908.87	606.25	1844.73	922.87	615.58	N	280.10	140.55	94.04	2
16							M-Oxidation	166.05	83.53	56.02	1

Fig S6. Identification of aziisoflurane adduct within the β_3 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptors photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -A70 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

#1	a ⁺	a²+	a ³⁺	a ⁴⁺	b+	b2+	b3+	b4+	Seq.	y⁺	y2+	y3+	y ⁴⁺	#2
1	268.05	134.53	90.02	67.77	296.05	148.53	99.35	74.77	V-Azilso					15
2	415.12	208.06	139.05	104.54	443.12	222.06	148.38	111.53	F	1709.88	855.44	570.63	428.23	14
3	514.19	257.60	172.07	129.30	542.18	271.60	181.40	136.30	V	1562.81	781.91	521.61	391.46	13
4	661.26	331.13	221.09	166.07	689.25	345.13	230.42	173.07	F	1463.75	732.38	488.59	366.69	12
5	774.34	387.67	258.79	194.34	802.34	401.67	268.12	201.34	L	1316.68	658.84	439.56	329.92	11
6	845.38	423.19	282.46	212.10	873.37	437.19	291.80	219.10	A	1203.59	602.30	401.87	301.65	10
7	958.46	479.74	320.16	240.37	986.46	493.73	329.49	247.37	L	1132.56	566.78	378.19	283.89	9
8	1071.55	536.28	357.85	268.64	1099.54	550.27	367.19	275.64	L	1019.47	510.24	340.50	255.62	8
9	1200.59	600.80	400.87	300.90	1228.58	614.80	410.20	307.90	E	906.39	453.70	302.80	227.35	7
10	1363.65	682.33	455.22	341.67	1391.65	696.33	464.55	348.67	Ý	777.35	389.18	259.79	195.09	6
11	1434.69	717.85	478.90	359.43	1462.68	731.85	488.23	366.43	A	614.28	307.64	205.43	154.33	5
12	1581.76	791.38	527.92	396.20	1609.75	805.38	537.26	403.19	F	543.24	272.13	181.75	136.57	4
13	1680.83	840.92	560.95	420.96	1708.82	854.91	570.28	427.96	V	396.18	198.59	132.73	99.80	3
14	1795.85	898.43	599.29	449.72	1823.85	912.43	608.62	456.72	N-Deamidated	297.11	149.06	99.71	75.03	2
15									Y	182.08	91.54	61.37	46.28	1

Fig S8. Identification of aziisoflurane adduct within the β_3 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptors photolabled in the presence of 30 μ M aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -V315 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃

a, a-H2O, a-NH3, b, b-H2O, b-NH3

y3+ a³⁺ #1 b* b²+ b3+ Seq. y* #2 a* a²* y2* 12 1 86.10 43.55 29.37 114.09 57.55 38.70 ī 215.14 т 2 187.14 94.08 63.05 108.07 72.38 1391.60 696.30 464.54 11 1290.55 3 288.19 144.60 96.74 316.19 158.60 106.07 645.78 430.85 10 387.26 194.13 129.76 415.26 208.13 139.09 V 1189.50 595.25 397.17 9 4 500.34 250.68 167.45 528.34 264.67 176.78 1090.43 545.72 364.15 8 5 τ 601.39 301.20 629.39 210.47 т 489.18 326.45 7 6 201.14 315.20 977.35 292.77 732.43 366.72 254.15 Μ 438.65 244.82 760.43 876.30 6 7 380.72 833.48 417.24 287.83 8 278.50 861.48 431.24 Т 745.26 373.13 249.09 5 9 934.53 467.77 312.18 962.52 481.77 321.51 T 644.21 322.61 215.41 4 1047.61 1075.61 524.31 349.88 538.31 359.21 T 543.16 272.09 181.73 3 10 1161.65 581.33 387.89 1189.65 N 2 11 595.33 397.22 430.08 215.54 144.03 12 T-Azilso 316.04 158.52 106.02 1

Fig S8. Identification of aziisoflurane adduct within the β_3 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptors photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -291 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S9. Identification of aziisoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃γ_{2L}-L3-1D4 GABA_A receptors photolabled in the presence of 30 μM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-E285 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S10. Identification of aziisoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃γ_{2L}-L3-1D4 GABA_A receptors photolabled in the presence of 30 μM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-P313 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H2O, Precursor-H2O-NH3, Precursor-NH3, Pre-H

y, y-H₂O, y-NH₃
a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	a ³⁺	b⁺ (b²+	b3+	Seq.	y.	у ²⁺	у ³⁺	#2
1	74.06	37.53	25.36	102.05	51.53	34.69	Т				21
2	175.11	88.06	59.04	203.10	102.05	68.37	Т	2322.05	1161.53	774.69	20
3	288.19	144.60	96.74	316.19	158.60	106.07	L	2221.00	1111.01	741.01	19
4	375.22	188.12	125.75	403.22	202.11	135.08	S	2107.92	1054.46	703.31	18
5	488.31	244.66	163.44	516.30	258.66	172.77		2020.89	1010.95	674.30	17
6	575.34	288.17	192.45	603.33	302.17	201.78	S	1907.80	954.41	636.61	16
7	646.38	323.69	216.13	674.37	337.69	225.46	A	1820.77	910.89	607.60	15
8	802.48	401.74	268.16	830.47	415.74	277.50	R	1749.73	875.37	583.92	14
9	917.51	459.26	306.51	945.50	473.25	315.84	N-Deamidated	1593.63	797.32	531.88	13
10	1200.51	600.76	400.84	1228.50	614.76	410.17	S-Azilso	1478.61	739.81	493.54	12
11	1313.59	657.30	438.54	1341.59	671.30	447.87	L	1195.60	598.31	399.21	11
12	1410.65	705.83	470.89	1438.64	719.82	480.22	Р	1082.52	541.76	361.51	10
13	1538.74	769.87	513.58	1566.74	783.87	522.92	К	985.47	493.24	329.16	9
14	1637.81	819.41	546.61	1665.80	833.41	555.94	V	857.37	429.19	286.46	8
15	1708.85	854.93	570.29	1736.84	868.92	579.62	A	758.30	379.65	253.44	7
16	1871.91	936.46	624.64	1899.90	950.46	633.97	Y	687.27	344.14	229.76	6
17	1942.95	971.98	648.32	1970.94	985.97	657.65	A	524.20	262.60	175.41	5
18	2043.99	1022.50	682.00	2071.99	1036.50	691.33	Т	453.17	227.09	151.73	4
19	2115.03	1058.02	705.68	2143.03	1072.02	715.01	A	352.12	176.56	118.04	3
20	2262.07	1131.54	754.69	2290.06	1145.53	764.03	M-Oxidation	281.08	141.04	94.36	2
21							D	134.04	67.53	45.35	1

Fig S11. Identification of aziisoflurane adduct within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30 µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -S311 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S12. Identification of aziisoflurane adduct within the β_3 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -Q249 modification within the β_3 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₅, Pre-H y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a*	a²+	a ³⁺	a4+	p.	b²+	b3+	b4+	Seq.	у.	у ²⁺	y3+	y4+	#2
1	44.05	22.53	15.35	11.77	72.04	36.53	24.69	18.77	A					18
2	200.15	100.58	67.39	50.79	228.15	114.58	76.72	57.79	R	2213.94	1107.47	738.65	554.24	17
3	299.22	150.11	100.41	75.56	327.21	164.11	109.74	82.56	V	2057.84	1029.42	686.62	515.22	16
4	370.26	185.63	124.09	93.32	398.25	199.63	133.42	100.32	A	1958.77	979.89	653.60	490.45	15
5	483.34	242.17	161.78	121.59	511.34	256.17	171.12	128.59	L	1887.74	944.37	629.92	472.69	14
6	540.36	270.68	180.79	135.85	568.36	284.68	190.12	142.84	G	1774.65	887.83	592.22	444.42	13
7	849.42	425.21	283.81	213.11	877.41	439.21	293.14	220.11	I-Azilso	1717.63	859.32	573.21	430.16	12
8	950.46	475.74	317.49	238.37	978.46	489.73	326.82	245.37	Т	1408.57	704.79	470.20	352.90	11
9	1051.51	526.26	351.18	263.63	1079.51	540.26	360.51	270.63	Т	1307.53	654.27	436.51	327.64	10
10	1150.58	575.79	384.20	288.40	1178.58	589.79	393.53	295.40	V	1206.48	603.74	402.83	302.38	9
11	1263.67	632.34	421.89	316.67	1291.66	646.33	431.22	323.67	L	1107.41	554.21	369.81	277.61	8
12	1364.71	682.86	455.58	341.93	1392.71	696.86	464.91	348.93	Т	994.33	497.67	332.11	249.34	7
13	1511.75	756.38	504.59	378.69	1539.74	770.38	513.92	385.69	M-Oxidation	893.28	447.14	298.43	224.08	6
14	1612.80	806.90	538.27	403.95	1640.79	820.90	547.60	410.95	Т	746.24	373.63	249.42	187.32	5
15	1713.84	857.43	571.95	429.22	1741.84	871.42	581.28	436.22	Т	645.20	323.10	215.74	162.05	4
16	2022.90	1011.95	674.97	506.48	2050.89	1025.95	684.30	513.48	I-Azilso	544.15	272.58	182.05	136.79	3
17	2137.93	1069.47	713.31	535.24	2165.92	1083.46	722.65	542.24	N-Deamidated	235.09	118.05	79.04	59.53	2
18									Т	120.07	60.54	40.69	30.77	1

Fig S13. Identification of aziisoflurane adducts within the β_3 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -I280/ β_3 -I289(B), modification within the β_3 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S14. Identification of aziisoflurane adducts within the β_3 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane β_3 -I247/ β_3 -Y251 modification within the β_3 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H2O, Precursor-H2O-NH3, Precursor-NH3, Pre-H y, y-H2O, y-NH3

	a,	a-H2O, a-NH	I3, b, b-H2C), b-NH3							
#1	a⁺	a²+	a ³⁺	p.	b2+	b3+	Seq.	_у⁺	y2+	У ³⁺	#2
1	129.11	65.06	43.71	157.11	79.06	53.04	R				20
2	276.15	138.58	92.72	304.14	152.58	102.05	M-Oxidation	2431.12	1216.06	811.04	19
3	333.17	167.09	111.73	361.17	181.09	121.06	G	2284.08	1142.54	762.03	18
4	496.23	248.62	166.08	524.23	262.62	175.41	Y	2227.06	1114.03	743.02	17
5	643.30	322.15	215.11	671.30	336.15	224.44	F	2064.00	1032.50	688.67	16
6	744.35	372.68	248.79	772.34	386.68	258.12	Т	1916.93	958.97	639.65	15
7	857.43	429.22	286.48	885.43	443.22	295.81	I	1815.88	908.44	605.96	14
8	985.49	493.25	329.17	1013.49	507.25	338.50	Q	1702.80	851.90	568.27	13
9	1086.54	543.77	362.85	1114.54	557.77	372.18	T	1574.74	787.87	525.58	12
10	1445.57	723.29	482.53	1473.57	737.29	491.86	Y-Azilso	1473.69	737.35	491.90	11
11	1558.66	779.83	520.22	1586.65	793.83	529.56	1	1114.65	557.83	372.22	10
12	1655.71	828.36	552.58	1683.71	842.36	561.91	Р	1001.57	501.29	334.53	9
13	1815.74	908.37	605.92	1843.74	922.37	615.25	C-Carbamidomethyl	904.52	452.76	302.18	8
14	1916.79	958.90	639.60	1944.78	972.90	648.93	Т	744.49	372.75	248.83	7
15	2029.87	1015.44	677.30	2057.87	1029.44	686.63	L	643.44	322.22	215.15	6
16	2142.96	1071.98	714.99	2170.95	1085.98	724.32	I	530.35	265.68	177.46	5
17	2242.03	1121.52	748.01	2270.02	1135.51	757.35	V	417.27	209.14	139.76	4
18	2341.10	1171.05	781.04	2369.09	1185.05	790.37	V	318.20	159.60	106.74	3
19	2454.18	1227.59	818.73	2482.17	1241.59	828.06	L	219.13	110.07	73.72	2
20							S	106.05	53.53	36.02	1

Fig S15. Identification of aziisoflurane adducts within the γ_{2L} -L3-1D4 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane γ 2L-Y280 modification within the γ_{2L} -L3-1D4 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

18

#1	a⁺	a²+	a³+	p.	b²+	b3+	Seq.	у⁺	y2+	у ³⁺	#2
1	60.04	30.53	20.69	88.04	44.52	30.02	S				21
2	188.14	94.57	63.38	216.13	108.57	72.72	к	2604.17	1302.59	868.73	20
3	301.22	151.12	101.08	329.22	165.11	110.41	I	2476.08	1238.54	826.03	19
4	487.30	244.16	163.11	515.30	258.15	172.44	W	2362.99	1182.00	788.34	18
5	588.35	294.68	196.79	616.35	308.68	206.12	T	2176.92	1088.96	726.31	17
6	685.40	343.21	229.14	713.40	357.20	238.47	Р	2075.87	1038.44	692.63	16
7	800.43	400.72	267.48	828.43	414.72	276.81	D	1978.82	989.91	660.28	15
8	901.48	451.24	301.16	929.47	465.24	310.50	Т	1863.79	932.40	621.93	14
9	1048.55	524.78	350.19	1076.54	538.77	359.52	F	1762.74	881.87	588.25	13
10	1195.61	598.31	399.21	1223.61	612.31	408.54	F	1615.67	808.34	539.23	12
11	1332.67	666.84	444.90	1360.67	680.84	454.23	н	1468.60	734.81	490.21	11
12	1446.72	723.86	482.91	1474.71	737.86	492.24	N	1331.54	666.28	444.52	10
13	1733.74	867.37	578.58	1761.73	881.37	587.92	G-AziSev	1217.50	609.25	406.51	9
14	1861.83	931.42	621.28	1889.83	945.42	630.61	К	930.48	465.74	310.83	8
15	1989.93	995.47	663.98	2017.92	1009.46	673.31	К	802.39	401.70	268.13	$\overline{7}$
16	2076.96	1038.98	692.99	2104.95	1052.98	702.32	S	674.29	337.65	225.44	6
17	2176.03	1088.52	726.01	2204.02	1102.51	735.35	V	587.26	294.13	196.43	5
18	2247.06	1124.04	749.69	2275.06	1138.03	759.02	A	488.19	244.60	163.40	4
19	2384.12	1192.56	795.38	2412.12	1206.56	804.71	н	417.16	209.08	139.72	3
20	2498.17	1249.59	833.39	2526.16	1263.58	842.72	N	280.10	140.55	94.04	2
21							M-Oxidation	166.05	83.53	56.02	

Fig S16. Identification of azisevoflurane adduct within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3$ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -G139. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H2O, Precursor-H2O-NH3, Precursor-NH3, Pre-H

y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	a ³⁺	b•	b²+	b3+	Seq.	у⁺	у ²⁺	<u>у</u> з+	#2
$\begin{bmatrix} 1 \end{bmatrix}$	60.04	30.53	20.69	88.04	44.52	30.02	S				20
2	159.11	80.06	53.71	187.11	94.06	63.04	V	2224.10	1112.55	742.04	19
3	486.16	243.59	162.73	514.16	257.58	172.06	P-AziSev	2125.03	1063.02	709.01	18
4	557.20	279.10	186.41	585.20	293.10	195.74	A	1797.98	899.49	600.00	17
5	713.30	357.15	238.44	741.30	371.15	247.77	R	1726.94	863.97	576.32	16
6	814.35	407.68	272.12	842.34	421.68	281.45	Т	1570.84	785.92	524.28	15
7	913.42	457.21	305.14	941.41	471.21	314.48	V	1469.79	735.40	490.60	14
8	1060.49	530.75	354.17	1088.48	544.74	363.50	F	1370.72	685.87	457.58	13
9	1117.51	559.26	373.17	1145.50	573.25	382.51	G	1223.66	612.33	408.56	12
10	1216.58	608.79	406.20	1244.57	622.79	415.53	V	1166.63	583.82	389.55	11
11	1317.62	659.32	439.88	1345.62	673.31	449.21	T	1067.57	534.29	356.53	10
12	1418.67	709.84	473.56	1446.67	723.84	482.89	Т	966.52	483.76	322.84	9
13	1517.74	759.37	506.58	1545.73	773.37	515.92	V	865.47	433.24	289.16	8
14	1630.82	815.92	544.28	1658.82	829.91	553.61	L	766.40	383.70	256.14	7
15	1731.87	866.44	577.96	1759.87	880.44	587.29	T	653.32	327.16	218.44	6
16	1862.91	931.96	621.64	1890.91	945.96	630.97	М	552.27	276.64	184.76	5
17	1963.96	982.48	655.32	1991.95	996.48	664.66	T	421.23	211.12	141.08	4
18	2065.01	1033.01	689.01	2093.00	1047.00	698.34	Т	320.18	160.59	107.40	3
19	2178.09	1089.55	726.70	2206.09	1103.55	736.03	L	219.13	110.07	73.72	2
20							S	106.05	53.53	36.02	1

Fig S17. Identification of azisevoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-P288 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃

a, a-H2O, a-NH3, b, b-H2O, b-NH3

#1	a⁺	a²+	p₊	b²+	Seq.	у.	y2+	#2
1	70.07	35.54	98.06	49.53	Р			12
2	403.07	202.04	431.07	216.04	C-AziSev	1423.62	712.32	11
3	516.16	258.58	544.15	272.58		1090.62	545.81	10
4	647.20	324.10	675.19	338.10	М	977.53	489.27	9
5	748.24	374.63	776.24	388.62	Т	846.49	423.75	8
6	847.31	424.16	875.31	438.16	V	745.45	373.23	7
7	960.40	480.70	988.39	494.70		646.38	323.69	6
8	1073.48	537.24	1101.48	551.24	L	533.29	267.15	5
9	1160.51	580.76	1188.51	594.76	S	420.21	210.61	4
10	1288.57	644.79	1316.57	658.79	Q	333.18	167.09	3
11	1387.64	694.32	1415.63	708.32	V	205.12	103.06	2
12					S	106.05	53.53	1

Fig S18. Identification of azisevoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-C269 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O

	a, a-H ₂ O, b, b-H ₂ O										
#1	a•	a²+	p.	b²+	Seq.	y.	y2+	#2			
1	74.06	37.53	102.05	51.53	Т			14			
2	403.13	202.07	431.12	216.06	V-AziSev	1628.75	814.88	13			
3	550.19	275.60	578.19	289.60	F	1299.69	650.35	12			
4	607.22	304.11	635.21	318.11	G	1152.62	576.81	11			
5	706.28	353.65	734.28	367.64		1095.60	548.30	10			
6	807.33	404.17	835.33	418.17	Т	996.53	498.77	9			
7	908.38	454.69	936.37	468.69	Т	895.48	448.24	8			
8	1007.45	504.23	1035.44	518.23	V	794.43	397.72	7			
9	1120.53	560.77	1148.53	574.77	L	695.36	348.19	6			
10	1221.58	611.29	1249.58	625.29	Т	582.28	291.64	5			
11	1368.62	684.81	1396.61	698.81	M-Oxidation	481.23	241.12	4			
12	1469.66	735.34	1497.66	749.33	Т	334.20	167.60	3			
13	1570.71	785.86	1598.71	799.86	Т	233.15	117.08	2			
14					L	132.10	66.55	1			

Fig S19. Identification of azisevoflurane adduct within the FLAG-α₁ subunit of FLAG-α₁β₃
GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α1-V292 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Pre-H

	y, y-H ₂ O	, y-inri ₃			
_	a, a-H2O,	a-NH3,	b,	b-H ₂ O,	b-NH ₃

#1	a*	a ²⁺	b*	b2+	Seq.	y⁺	y2+	#2
1	88.04	44.52	116.03	58.52	D			15
2	216.13	108.57	244.13	122.57	К	2046.89	1023.95	14
3	287.17	144.09	315.17	158.09	A	1918.79	959.90	13
4	386.24	193.62	414.23	207.62	V	1847.75	924.38	12
5	487.29	244.15	515.28	258.14	Т	1748.69	874.85	11
6	544.31	272.66	572.30	286.66	G	1647.64	824.32	10
7	643.38	322.19	671.37	336.19	V	1590.62	795.81	9
8	1002.42	501.71	1030.41	515.71	E-AziSev	1491.55	746.28	8
9	1158.52	579.76	1186.51	593.76	R	1132.51	566.76	7
10	1271.60	636.31	1299.60	650.30		976.41	488.71	6
11	1400.65	700.83	1428.64	714.82	E	863.32	432.16	5
12	1513.73	757.37	1541.72	771.37	L	734.28	367.64	4
13	1840.78	920.89	1868.78	934.89	P-AziSev	621.20	311.10	3
14	1968.84	984.92	1996.83	998.92	Q	294.14	147.58	2
15					F	166.09	83.55	1

Fig S20. Identification of azisevoflurane adduct within the β₃ subunit of FLAG-α₁β₃ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of aziisoflurane peptide containing β3-E204/ β3-P209 adducts. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O

Fig S21. Identification of azisevoflurane adduct within the β₃ subunit of FLAG-α₁β₃ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of aziisoflurane peptide containing β3-T280(B), β3-L442 adducts. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S22. Identification of azisevoflurane adduct within the β₃ subunit of FLAG-α₁β₃ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of aziisoflurane peptide containing β3-L442 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃

a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a ⁺	a²+	a ³⁺	a ⁴⁺	b+	b ²⁺	b3+	b ⁴⁺	Seq.	y+	y ²⁺	y ³⁺	y ⁴⁺	#2
1	389.09	195.05	130.37	98.03	417.08	209.05	139.70	105.03	W-AziSev				\square	24
2	502.17	251.59	168.06	126.30	530.17	265.59	177.39	133.30		2411	1206	804	604	23
3	616.22	308.61	206.08	154.81	644.21	322.61	215.41	161.81	N	2298	1150	767	575	22
4	779.28	390.14	260.43	195.58	807.27	404.14	269.76	202.57	Y	2184	1093	729	547	21
5	894.31	447.66	298.77	224.33	922.30	461.65	308.11	231.33	D	2021	1011	674	506	20
6	965.34	483.18	322.45	242.09	993.34	497.17	331.78	249.09	A	1906	954	636	477	19
7	1052.38	526.69	351.46	263.85	1080.37	540.69	360.80	270.85	S	1835	918	612	460	18
8	1123.41	562.21	375.14	281.61	1151.41	576.21	384.47	288.61	A	1748	875	583	438	17
9	1194.45	597.73	398.82	299.37	1222.45	611.73	408.15	306.37	A	1677	839	560	420	16
10	1350.55	675.78	450.86	338.39	1378.55	689.78	460.19	345.39	R	1606	803	536	402	15
11	1449.62	725.31	483.88	363.16	1477.61	739.31	493.21	370.16	V	1450	725	484	363	14
12	1520.66	760.83	507.56	380.92	1548.65	774.83	516.89	387.92	A	1351	676	451	338	13
13	1633.74	817.37	545.25	409.19	1661.74	831.37	554.58	416.19	L	1280	640	427	321	12
14	1690.76	845.88	564.26	423.45	1718.76	859.88	573.59	430.44	G	1167	584	390	292	11
15	1803.85	902.43	601.95	451.72	1831.84	916.42	611.29	458.72	I	1110	555	371	278	10
16	1904.89	952.95	635.64	476.98	1932.89	966.95	644.97	483.98	Т	997	499	333	250	9
17	2005.94	1003.47	669.32	502.24	2033.94	1017.47	678.65	509.24	Т	895	448	299	225	8
18	2105.01	1053.01	702.34	527.01	2133.01	1067.01	711.67	534.01	V	794	398	265	199	7
19	2218.09	1109.55	740.04	555.28	2246.09	1123.55	749.37	562.28	L	695	348	232	175	6
20	2319.14	1160.07	773.72	580.54	2347.14	1174.07	783.05	587.54	Т	582	292	195	146	5
21	2466.18	1233.59	822.73	617.30	2494.17	1247.59	832.06	624.30	M-Oxidation	481	241	161	121	4
22	2567.23	1284.12	856.41	642.56	2595.22	1298.11	865.74	649.56	Т	334	168	112	84	3
23	2668.27	1334.64	890.10	667.82	2696.27	1348.64	899.43	674.82	Т	233	117	78	59	2
24									1	132	67	45	34	

Fig S23. Identification of azisevoflurane adduct within the β₃ subunit of FLAG-α₁β₃ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of aziisoflurane peptide containing β3-W226 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a ⁺	a²+	a ³⁺	a ⁴⁺	b+	b2+	b3+	b ⁴⁺	Seq.	y+	y2+	y3+	y ⁴⁺	#2
1	274.05	137.53	92.02	69.27	302.04	151.52	101.35	76.27	A-AziSev					22
2	430.15	215.58	144.05	108.29	458.14	229.58	153.39	115.29	R	2357.29	1179.15	786.43	590.08	21
3	529.22	265.11	177.08	133.06	557.21	279.11	186.41	140.06	V	2201.18	1101.10	734.40	551.05	20
4	600.25	300.63	200.76	150.82	628.25	314.63	210.09	157.82	A	2102.12	1051.56	701.38	526.28	19
5	713.34	357.17	238.45	179.09	741.33	371.17	247.78	186.09	L	2031.08	1016.04	677.70	508.53	18
6	770.36	385.68	257.46	193.35	798.35	399.68	266.79	200.34	G	1918.00	959.50	640.00	480.25	17
7	883.44	442.23	295.15	221.62	911.44	456.22	304.48	228.62	I	1860.97	930.99	621.00	466.00	16
8	984.49	492.75	328.84	246.88	1012.49	506.75	338.17	253.88	Т	1747.89	874.45	583.30	437.73	15
9	1085.54	543.27	362.52	272.14	1113.53	557.27	371.85	279.14	Т	1646.84	823.92	549.62	412.47	14
10	1184.61	592.81	395.54	296.91	1212.60	606.80	404.87	303.91	V	1545.79	773.40	515.94	387.20	13
11	1297.69	649.35	433.24	325.18	1325.69	663.35	442.57	332.18	L	1446.73	723.87	482.91	362.44	12
12	1398.74	699.87	466.92	350.44	1426.73	713.87	476.25	357.44	Т	1333.64	667.32	445.22	334.17	11
13	1545.77	773.39	515.93	387.20	1573.77	787.39	525.26	394.20	M-Oxidation	1232.59	616.80	411.54	308.90	10
14	1646.82	823.91	549.61	412.46	1674.82	837.91	558.94	419.46	Т	1085.56	543.28	362.52	272.15	9
15	1747.87	874.44	583.29	437.72	1775.86	888.44	592.63	444.72	Т	984.51	492.76	328.84	246.88	8
16	1860.95	930.98	620.99	465.99	1888.95	944.98	630.32	472.99	1	883.46	442.24	295.16	221.62	7
17	1975.98	988.49	659.33	494.75	2003.98	1002.49	668.66	501.75	N-Deamidated	770.38	385.69	257.46	193.35	6
18	2077.03	1039.02	693.01	520.01	2105.02	1053.02	702.35	527.01	Т	655.35	328.18	219.12	164.59	5
19	2214.09	1107.55	738.70	554.28	2242.08	1121.54	748.03	561.28	н	554.30	277.66	185.44	139.33	4
20	2327.17	1164.09	776.40	582.55	2355.17	1178.09	785.73	589.55	L	417.25	209.13	139.75	105.07	3
21	2483.27	1242.14	828.43	621.57	2511.27	1256.14	837.76	628.57	R	304.16	152.58	102.06	76.80	2
22									E	148.06	74.53	50.03	37.77	1

Fig S24. Identification of azisevoflurane adduct within the β₃ subunit of FLAG-α₁β₃ GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of aziisoflurane peptide containing β3-A274 adduct.
Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H

y, y-H ₂ O,	y-NH ₃			
 a, a-H ₂ O,	a-NH ₃ ,	b,	b-H ₂ O,	b-NH3

#1	a ⁺	a ²⁺	a ³⁺	b+	b2+	b3+	Seq.	y+	y2+	y3+	#2
1	290.04	145.52	97.35	318.04	159.52	106.68	S-AziSe				24
2	419.08	210.05	140.37	447.08	224.04	149.70	Q-Deamidated	2608.38	1304.69	870.13	23
3	518.15	259.58	173.39	546.15	273.58	182.72	V	2479.33	1240.17	827.12	22
4	605.19	303.10	202.40	633.18	317.09	211.73	S	2380.27	1190.64	794.09	21
5	752.25	376.63	251.42	780.25	390.63	260.75	F	2293.23	1147.12	765.08	20
6	938.33	469.67	313.45	966.33	483.67	322.78	W	2146.17	1073.59	716.06	19
7	1051.42	526.21	351.14	1079.41	540.21	360.48	L	1960.09	980.55	654.03	18
8	1166.44	583.73	389.49	1194.44	597.72	398.82	N-Deamidated	1847.00	924.00	616.34	17
9	1322.55	661.78	441.52	1350.54	675.77	450.85	R	1731.98	866.49	578.00	16
10	1451.59	726.30	484.53	1479.58	740.29	493.87	E	1575.87	788.44	525.96	15
11	1538.62	769.81	513.54	1566.61	783.81	522.88	S	1446.83	723.92	482.95	14
12	1637.69	819.35	546.57	1665.68	833.35	555.90	V	1359.80	680.40	453.94	13
13	1734.74	867.87	578.92	1762.74	881.87	588.25	Р	1260.73	630.87	420.92	12
14	1805.78	903.39	602.60	1833.77	917.39	611.93	A	1163.68	582.34	388.56	11
15	1961.88	981.44	654.63	1989.87	995.44	663.96	R	1092.64	546.82	364.89	10
16	2062.93	1031.97	688.31	2090.92	1045.96	697.65	Т	936.54	468.77	312.85	9
17	2162.00	1081.50	721.34	2189.99	1095.50	730.67	V	835.49	418.25	279.17	8
18	2309.06	1155.04	770.36	2337.06	1169.03	779.69	F	736.42	368.72	246.15	7
19	2366.09	1183.55	789.37	2394.08	1197.54	798.70	G	589.36	295.18	197.12	6
20	2465.15	1233.08	822.39	2493.15	1247.08	831.72	V	532.33	266.67	178.12	5
21	2566.20	1283.60	856.07	2594.20	1297.60	865.40	Т	433.27	217.14	145.09	4
22	2667.25	1334.13	889.75	2695.24	1348.13	899.09	Т	332.22	166.61	111.41	3
23	2766.32	1383.66	922.78	2794.31	1397.66	932.11	V	231.17	116.09	77.73	2
24							L	132.10	66.55	44.71	

Appendix Fig S25. Identification of azisevoflurane adducts within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30 μ M azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane α_1 -S276 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

#1	a⁺	a²+	a³+	b•	b²+	b³+	Seq.	y⁺	y²+	y3+	#2
1	359.11	180.06	120.38	387.11	194.06	129.71	R-AziSev				26
2	460.16	230.58	154.06	488.15	244.58	163.39	Т	2867.45	1434.23	956.49	25
3	559.23	280.12	187.08	587.22	294.11	196.41	V	2766.40	1383.71	922.81	24
4	706.30	353.65	236.10	734.29	367.65	245.44	F	2667.33	1334.17	889.78	23
5	763.32	382.16	255.11	791.31	396.16	264.44	G	2520.27	1260.64	840.76	22
6	1092.38	546.70	364.80	1120.38	560.69	374.13	V-AziSev	2463.25	1232.13	821.75	21
7	1193.43	597.22	398.48	1221.43	611.22	407.81	Т	2134.18	1067.59	712.06	20
8	1294.48	647.74	432.16	1322.47	661.74	441.50	Т	2033.13	1017.07	678.38	19
9	1393.55	697.28	465.19	1421.54	711.27	474.52	V	1932.08	966.55	644.70	18
10	1506.63	753.82	502.88	1534.63	767.82	512.21	L	1833.02	917.01	611.68	17
11	1607.68	804.34	536.56	1635.67	818.34	545.90	Т	1719.93	860.47	573.98	16
12	1738.72	869.86	580.24	1766.71	883.86	589.58	M	1618.88	809.95	540.30	15
13	1839.77	920.39	613.93	1867.76	934.38	623.26	Т	1487.84	744.43	496.62	14
14	1940.81	970.91	647.61	1968.81	984.91	656.94	Т	1386.80	693.90	462.94	13
15	2053.90	1027.45	685.30	2081.89	1041.45	694.64	L	1285.75	643.38	429.25	12
16	2140.93	1070.97	714.32	2168.93	1084.97	723.65	S	1172.66	586.84	391.56	11
17	2254.02	1127.51	752.01	2282.01	1141.51	761.34	I	1085.63	543.32	362.55	10
18	2341.05	1171.03	781.02	2369.04	1185.02	790.35	S	972.55	486.78	324.85	9
19	2412.08	1206.55	804.70	2440.08	1220.54	814.03	A	885.52	443.26	295.84	8
20	2568.19	1284.60	856.73	2596.18	1298.59	866.06	R	814.48	407.74	272.16	7
21	2683.21	1342.11	895.08	2711.21	1356.11	904.41	N-Deamidated	658.38	329.69	220.13	6
22	2770.24	1385.63	924.09	2798.24	1399.62	933.42	S	543.35	272.18	181.79	5
23	2883.33	1442.17	961.78	2911.32	1456.17	971.11	L	456.32	228.66	152.78	4
24	2980.38	1490.69	994.13	3008.38	1504.69	1003.46	P	343.23	172.12	115.08	3
25	3108.48	1554.74	1036.83	3136.47	1568.74	1046.16	К	246.18	123.59	82.73	2
26							V	118.09	59.55	40.03	1

Appendix Fig S26. Identification of azisevoflurane adducts within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30 μ M azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane α 1-R290/ α 1-V295 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃

	a, a-H ₂ O, a-NH ₃ , b, b-H ₂ O, b-NH ₃											
#1	a⁺	a²+	a³+	b.	b²+	b3+	Seq.	у.	y2+	У ³⁺	#2	
1	72.08	36.54	24.70	100.08	50.54	34.03	V				19	
2	219.15	110.08	73.72	247.14	124.08	83.05	F	2159.00	1080.00	720.34	18	
3	276.17	138.59	92.73	304.17	152.59	102.06	G	2011.93	1006.47	671.31	17	
4	375.24	188.12	125.75	403.23	202.12	135.08	V	1954.91	977.96	652.31	16	
5	706.28	353.65	236.10	734.28	367.64	245.43	T-AziSev	1855.84	928.42	619.28	15	
6	807.33	404.17	269.78	835.33	418.17	279.11	Т	1524.79	762.90	508.94	14	
7	906.40	453.70	302.81	934.40	467.70	312.14	V	1423.75	712.38	475.25	13	
8	1019.48	510.25	340.50	1047.48	524.24	349.83	L	1324.68	662.84	442.23	12	
9	1120.53	560.77	374.18	1148.53	574.77	383.51	Т	1211.59	606.30	404.54	11	
10	1267.57	634.29	423.19	1295.56	648.29	432.53	M-Oxidation	1110.55	555.78	370.85	10	
11	1368.62	684.81	456.88	1396.61	698.81	466.21	Т	963.51	482.26	321.84	9	
12	1469.66	735.34	490.56	1497.66	749.33	499.89	Т	862.46	431.74	288.16	8	
13	1582.75	791.88	528.25	1610.74	805.87	537.59	L	761.42	381.21	254.48	7	
14	1669.78	835.39	557.26	1697.77	849.39	566.60	S	648.33	324.67	216.78	6	
15	1782.86	891.94	594.96	1810.86	905.93	604.29	I	561.30	281.15	187.77	5	
16	1869.90	935.45	623.97	1897.89	949.45	633.30	S	448.22	224.61	150.08	4	
17	1940.93	970.97	647.65	1968.93	984.97	656.98	A	361.18	181.10	121.07	3	
18	2097.03	1049.02	699.68	2125.03	1063.02	709.01	R	290.15	145.58	97.39	2	
19							N-Deamidated	134.04	67.53	45.35	1	

Appendix Fig S27. Identification of azisevoflurane adducts within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30 µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane – T296 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precurs	or-H ₂ O, Precurs	or-H ₂ O-NH ₃ , Pi	recursor-NH ₃ ,	Pre-H
 y, y-H ₂ O, y-NH ₃				
a, a-H2O, a-NH3, b, b-H2O), b-NH3			

#1	a⁺	a²+	a³+	a4+	p.	b²*	b3+	b4+	Seq.	Уt	y2+	y3+	y4+	#2
1	30.03	15.52	10.68	8.26	58.03	29.52	20.01	15.26	G					17
2	129.10	65.05	43.71	33.03	157.10	79.05	53.04	40.03	V	1938.91	969.96	646.98	485.48	16
3	230.15	115.58	77.39	58.29	258.14	129.58	86.72	65.29	T	1839.84	920.43	613.95	460.72	15
4	331.20	166.10	111.07	83.55	359.19	180.10	120.40	90.55	Т	1738.80	869.90	580.27	435.45	14
5	430.27	215.64	144.09	108.32	458.26	229.63	153.43	115.32	V	1637.75	819.38	546.59	410.19	13
6	543.35	272.18	181.79	136.59	571.35	286.18	191.12	143.59	L	1538.68	769.84	513.57	385.43	12
7	874.40	437.70	292.14	219.35	902.39	451.70	301.47	226.35	T-AziSev	1425.60	713.30	475.87	357.15	11
8	1005.44	503.22	335.82	252.11	1033.43	517.22	345.15	259.11	м	1094.55	547.78	365.52	274.39	10
9	1106.48	553.75	369.50	277.38	1134.48	567.74	378.83	284.38	Т	963.51	482.26	321.84	241.63	9
10	1207.53	604.27	403.18	302.64	1235.53	618.27	412.51	309.64	Т	862.46	431.74	288.16	216.37	8
11	1320.62	660.81	440.88	330.91	1348.61	674.81	450.21	337.91	L	761.42	381.21	254.48	191.11	7
12	1407.65	704.33	469.89	352.67	1435.64	718.32	479.22	359.67	S	648.33	324.67	216.78	162.84	6
13	1520.73	760.87	507.58	380.94	1548.73	774.87	516.91	387.94		561.30	281.15	187.77	141.08	5
14	1607.76	804.39	536.59	402.70	1635.76	818.38	545.92	409.70	S	448.22	224.61	150.08	112.81	4
15	1678.80	839.90	560.27	420.46	1706.80	853.90	569.60	427.45	A	361.18	181.10	121.07	91.05	3
16	1834.90	917.95	612.31	459.48	1862.90	931.95	621.64	466.48	R	290.15	145.58	97.39	73.29	2
17									N-Deamidated	134.04	67.53	45.35	34.27	1

Appendix Fig S28. Identification of azisevoflurane adducts within the FLAG- α_1 subunit of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30 μ M azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane α_1 -T300 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H
y, y-H₂O, y-NH₃
a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	a³•	p.	b2+	b3+	Seq.	у.	y2+	y 3+	#2
$\begin{bmatrix} 1 \end{bmatrix}$	274.05	137.53	92.02	302.04	151.52	101.35	A-AziSev				12
2	345.08	173.05	115.70	373.08	187.04	125.03	A	1113.70	557.35	371.90	11
3	501.19	251.10	167.73	529.18	265.09	177.06	R	1042.66	521.83	348.23	10
4	600.25	300.63	200.76	628.25	314.63	210.09	V	886.56	443.78	296.19	9
5	671.29	336.15	224.44	699.29	350.15	233.77	A	787.49	394.25	263.17	8
6	784.38	392.69	262.13	812.37	406.69	271.46	L	716.46	358.73	239.49	7
7	841.40	421.20	281.14	869.39	435.20	290.47	G	603.37	302.19	201.80	6
8	954.48	477.74	318.83	982.48	491.74	328.16	I	546.35	273.68	182.79	5
9	1055.53	528.27	352.51	1083.52	542.27	361.85	T	433.27	217.14	145.09	4
10	1156.58	578.79	386.20	1184.57	592.79	395.53	Т	332.22	166.61	111.41	3
11	1255.64	628.33	419.22	1283.64	642.32	428.55	V	231.17	116.09	77.73	2
12							L	132.10	66.55	44.71	1

Fig S29. Identification of azisevoflurane adduct within the β_3 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane α_1 -A273 adduct within the β_3 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O

	a, a-H ₂ O, a-NH ₃ , b, b-H ₂ O, b-NH ₃									
#1	a⁺	a²+	b⁺	b²+	Seq.	y ⁺	y ²⁺	#2		
1	129.11	65.06	157.11	79.06	R			11		
2	230.16	115.58	258.16	129.58	Т	1235.58	618.29	10		
3	317.19	159.10	345.19	173.10	S	1134.53	567.77	9		
4	660.28	330.64	688.27	344.64	L-AziSev	1047.50	524.25	8		
5	717.30	359.15	745.29	373.15	G	704.42	352.71	7		
6	830.38	415.69	858.38	429.69	I	647.40	324.20	6		
7	931.43	466.22	959.42	480.22	Т	534.31	267.66	5		
8	1032.48	516.74	1060.47	530.74	Т	433.27	217.14	4		
9	1131.54	566.28	1159.54	580.27	V	332.22	166.61	3		
10	1244.63	622.82	1272.62	636.82	L	233.15	117.08	2		
11					Т	120.07	60.54	1		

Fig S30. Identification of azisevoflurane adducts within the γ_{2L} -L3-1D4 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane γ_{2L} -L307 adduct. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Pre+H, Precursor, Precursor-H₂O, Precursor-H₂O-NH₃, Precursor-NH₃, Pre-H y, y-H₂O, y-NH₃ a, a-H₂O, a-NH₃, b, b-H₂O, b-NH₃

#1	a⁺	a²+	p.	b²+	Seq.	у.	y2+	#2
1	159.09	80.05	187.09	94.05	W			18
2	272.18	136.59	300.17	150.59	I	1986.98	993.99	17
3	387.20	194.10	415.20	208.10	N-Deamidated	1873.89	937.45	16
4	515.30	258.15	543.29	272.15	К	1758.87	879.94	15
5	630.32	315.67	658.32	329.66	D	1630.77	815.89	14
6	701.36	351.18	729.36	365.18	A	1515.75	758.38	13
7	800.43	400.72	828.43	414.72	V	1444.71	722.86	12
8	897.48	449.25	925.48	463.24	Р	1345.64	673.32	11
9	968.52	484.76	996.51	498.76	A	1248.59	624.80	10
10	1124.62	562.81	1152.62	576.81	R	1177.55	589.28	9
11	1225.67	613.34	1253.66	627.34	Т	1021.45	511.23	8
12	1312.70	656.85	1340.70	670.85	S	920.40	460.70	7
13	1425.78	713.40	1453.78	727.39	L	833.37	417.19	6
14	1712.80	856.91	1740.80	870.90	G-AziSev	720.28	360.65	5
15	1825.89	913.45	1853.88	927.45		433.27	217.14	4
16	1926.94	963.97	1954.93	977.97	Т	320.18	160.59	3
17	2027.98	1014.50	2055.98	1028.49	Т	219.13	110.07	2
18					V	118.09	59.55	1

Fig S31. Identification of azisevoflurane adducts within the γ_{2L} -L3-1D4 subunits of FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM azisevoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane γ_{2L} -G308 adduct within γ_{2L} -L3-1D4 subunit. Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S32. Identification of aziisoflurane adducts within the FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane and 3mM isoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -T303 adduct within the FLAG- α_1 subunit (corresponding with α_1 -T268). Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S33. Identification of aziisoflurane adducts within the FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM aziisoflurane and 3mM isoflurane. Mass spectrum and corresponding peptide fragment table of peptides containing aziisoflurane α_1 -P210 adducts within the FLAG- α_1 subunit (corresponding with α_1 -P170). Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S34. Identification of azisevoflurane adducts within the FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM azisevoflurane and 3mM sevoflurane respectively. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane α_1 -R429 adduct within the FLAG- α_1 subunit (corresponding with α_1 -R429 in the α_1 subunit). Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S35. Identification of azisevoflurane adducts within the FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30μ M azisevoflurane and 3mM sevoflurane respectively. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane β 3-N222 adduct within the β_3 subunit (corresponding with β 3-N197). Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.

Fig S36. Identification of azisevoflurane adducts within the FLAG- $\alpha_1\beta_3\gamma_{2L}$ -L3-1D4 GABA_A receptors photolabled in the presence of 30µM azisevoflurane and 3mM sevoflurane respectively. Mass spectrum and corresponding peptide fragment table of peptides containing azisevoflurane γ_{2L} -I321(D) adduct within the γ_{2L} -L3-1D4 subunit (corresponding with γ_{2L} -I282 in γ_{2L} subunit). Residue modified by photolabel derivative is in bold and underlined. Detected identified ions are colored and labeled accordingly. Residues detected with a modification are noted.