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Introduction and Rationale 

 

We develop mathematical models of the HIV-1 full-length gene regulatory circuit to predict the 

overall architecture of HIV-1 gene-expression.  The models are not intended to describe every 

biochemical step in HIV gene expression, but the goal is instead to find the minimal set of 

equations capable of fitting single-cell time-lapse imaging data.  To achieve this, we compare and 

contrast the conventional HIV-1 co-transcriptional splicing mechanism to an HIV-1 post-

transcriptional splicing cascade and also examine a ‘mixed’ model that includes both co-

transcriptional and post-transcriptional splicing.  Model fitting shows that post-transcriptional 

splicing is sufficient to fit the single-cell data.  Parameter sensitivity analysis of the model is 

performed, and the model is validated by experimentally testing a non-intuitive prediction. 

 

 

 

 

Construction of Mathematical Models of Full-Length HIV-1 Gene Regulation 

 

We developed ordinary differential equation (ODE) models and simulated them using Berkeley 

Madonna™ and MATLAB™.  General trend lines obtained from microscopic experiments were 

fit in Berkeley Madonna. Sensitivity analysis and parameter plots for the ODE model were 

performed in MATLAB or Berkeley Madonna. For stochastic simulations, chemical reaction 

schemes were coded in programming language C using the Gillespie algorithm (Gillespie, 2007; 

Gillespie et al., 2013).  The simulation results were analyzed using MATLAB or Mathematica™. 

 

We note that, in the interest of beginning with the simplest models and to reduce the number of 

fitting parameters during non-linear least-squares fitting, in the initial models (Eqs. 1–9), Tat 

positive feedback is assumed to saturate relatively early after infection, and thus, the Tat positive-

feedback term is ‘lumped’ into the single Tat-independent basal rate parameter (bUS).  This 

saturation assumption is subsequently relaxed in later models (Eqs. 10–13; “Experimental 

Validation of Model”) where an explicit Tat positive-feedback term is added.  Figure S5A shows 

that the single-cell time-lapse imaging data can be fit equally well by post-transcriptional splicing 

models assuming either active or saturated Tat positive feedback (while the fits are 

indistinguishable, certain parameter estimates do change).   

 

 

Co-Transcriptional Splicing Model 

 

We developed a set of five ODEs to describe the minimum full-length regulatory circuit of HIV-

1 gene expression.  To simplify the model, we assume the splicing of unspliced (US) RNA into 

singly spliced (SS) RNA is relatively fast compared to splicing of SS RNA to multiply-spliced 

(MS) RNA.  Based on this simplifying assumption, one can lump unspliced and singly spliced 

RNA species and thereby limit explicit modeling to only two species of viral mRNA: unspliced 

(US) and multiply spliced (MS) RNA.  To facilitate the future expansion and prediction of the 

models, we further classify US RNA into two classes based on the cellular localization. USn stands 

for the nuclear US RNA, and USc stands for the cytoplasmic US RNA.  Because destabilized GFP 

(d2GFP) is used as the reporter throughout the experiments as a reporter in the nef reading frame, 
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we use d2GFP instead Nef in all of our models, and thus, the GFP level is representative of Nef 

levels.  The nonlinear ODE system that describes the co-transcriptional splicing model is: 

 

d

dt
USn = 𝑏𝑈𝑆 −

𝑘𝑟∙USn∙Revℎ

𝐾𝑅𝑒𝑣
ℎ+Revℎ

− 𝑑𝑟𝑛𝑎 ∙ USn (1) 

d

dt
USc =

𝑘𝑟∙USn∙Revℎ

𝐾𝑅𝑒𝑣
ℎ+Revℎ

− 𝑑𝑟𝑛𝑎 ∙ USc  (2) 

d

dt
MS = 𝑏𝑀𝑆 − 𝑑𝑟𝑛𝑎 ∙ MS    (3) 

d

dt
Rev = 𝑝 ∙ 𝑓𝑟 ∙ MS − 𝑑𝑟 ∙ Rev   (4) 

d

dt
GFP = 𝑝 ∙ 𝑓𝑔 ∙ MS − 𝑑𝑔 ∙ GFP   (5) 

 

where bUS is a lumped basal production rate consisting of US RNA transcription from the LTR 

promoter and Tat positive-feedback transactivation. kr is the maximum Rev-dependent RNA 

nuclear export rate, h is the Hill coefficient of the Rev-RRE interaction, KRev is the Michaelis-

Menton saturation term for Rev nuclear export, drna is the RNA degradation rate, bMS is the basal 

production rate of MS RNA directly from transcription and co-transcriptional splicing, p is the 

protein production rate per mRNA, fr is the fraction Rev-encoding RNA out of total MS RNA, dr 

is the degradation rate of Rev protein, fg is the fraction GFP-encoding RNA out of total MS RNA, 

and dg is the degradation rate of GFP protein.  The rate parameters with literature estimates and 

justification are described in Table S2.   

 

Eq. (1) describes three biochemical reactions: the basal production of USn, the Rev-dependent 

RNA nuclear export of USn, and the degradation of USn. In the rest of the system, there are only 

two reactions in each equation: production and degradation. Usc is produced solely from the Rev-

dependent RNA nuclear export.  For expediency, to simplify non-linear least-squares fitting, we 

first assume that Tat positive feedback saturates early in the system, and thus the Tat positive-

feedback term is simplified into a single rate parameter and lumped with the basal transcription 

rate (this assumption is relaxed below in Eqs. 10–13 and Figure S5A shows that assuming either 

saturated or active, non-saturating Tat positive feedback does not change the ability of the 

equations to fit the data). The reactions of MS RNA nuclear export and Rev nuclear-cytoplasmic 

shuttling are much faster than other kinetic rates of the system and are thus not explicitly modeled. 

 

 

Post-Transcriptional Splicing Model 

 

The ODE systems for the post-transcriptional model is similar to the co-transcriptional model, but 

with two modified equations.  First, Eq. (1), which describes USn dynamics in the co-

transcriptional model, is replaced with the following equation:  

d

dt
USn = 𝑏 − 𝑠𝑝 ∙ USn −

𝑘𝑟∙USn∙Revh

𝐾𝑅𝑒𝑣
h+Revh

− 𝑑𝑟𝑛𝑎 ∙ USn  (6) 

where b is the lumped production rate of Tat-transactivated LTR transcription (i.e., basal plus Tat 

positive feedback), and sp is the rate of USn RNA spliced into MS RNA.  Eq. (6) thus represents 
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four biochemical reactions: transcription, post-transcriptional splicing, Rev-dependent nuclear 

export, and degradation.  Second, the Eq. (3) is modified as: 

d

dt
MS = 𝑠𝑝 ∙ USn − 𝑑𝑟𝑛𝑎 ∙ MS    (7) 

where MS RNA production is solely from the post-transcriptional splicing term in Eq (6).  The 

other three housekeeping equations in this post-transcriptional model are the same as the equation 

(2), (4), and (5).  Thus, the ODE system for post-transcriptional splicing is: 

d

dt
USn = 𝑏 − 𝑠𝑝 ∙ USn −

𝑘𝑟∙USn∙Revh

𝐾𝑅𝑒𝑣
h+Revh

− 𝑑𝑟𝑛𝑎 ∙ USn  (6) 

d

dt
USc =

𝑘𝑟∙USn∙Revℎ

𝐾𝑅𝑒𝑣
ℎ+Revℎ

− 𝑑𝑟𝑛𝑎 ∙ USc   (2) 

d

dt
MS = 𝑠𝑝 ∙ USn − 𝑑𝑟𝑛𝑎 ∙ MS    (7) 

d

dt
Rev = 𝑝 ∙ 𝑓𝑟 ∙ MS − 𝑑𝑟 ∙ Rev               (4) 

d

dt
GFP = 𝑝 ∙ 𝑓𝑔 ∙ MS − 𝑑𝑔 ∙ GFP               (5) 

 

 

“Mixed” Model (both co-transcriptional and post-transcriptional splicing) 

 

To accommodate the possibility of both co-transcriptional and post-transcriptional splicing 

coexisting in HIV-1 mRNA processing, we also constructed a “mixed” model that included both 

processes.  The purpose of the mixed model is to investigate if leakage from co-transcriptional 

splicing would disrupt the negative feedback resulting from the post-transcriptional splicing 

cascade. This system has five equations in total, two of which are modified from the other models: 

d

dt
USn = 𝑏𝑈𝑆 − 𝑠𝑝 ∙ USn −

𝑘𝑟∙USn∙Revℎ

𝐾𝑅𝑒𝑣
ℎ+Revℎ

− 𝑑𝑟𝑛𝑎 ∙ USn  (8) 

d

dt
MS = 𝑏𝑀𝑆 + 𝑠𝑝 ∙ USn − drna ∙ MS    (9) 

Eq. (8) is a mixture of Eq. (1) and (6), which consists of four biochemical events: the lumped co-

transcriptional production of USn RNA, decay of USn due to post-transcriptional splicing, Rev-

dependent nuclear export, and the RNA degradation.  Eq. (9) is a chimeric version of Eq. (3) and 

(7), where MS RNA can be produced either from the co-transcriptional production or splicing from 

US RNA. 

 

 

Model Selection by Nonlinear Least-Squares Regression of the ODE Models to Single-Cell Data 

 

Single-cell time-lapse imaging data was fit to the above ODE systems using Berkeley Madonna™ 

(Figure 5B and S5A).  Specifically, the general trend (i.e., mean trajectory) was fit by nonlinear 

least-squares fitting to the above three models using the parameter values summarized in Table 

S2.  All initial conditions were set to zero to mimic viral infection or latent reactivation.  To fit the 

single-cell data, the parameter estimates for b, kr, KRev, h, fr, and fg were allowed to vary, with the 

optimization parameter being the smallest possible Hill Coefficient, h. The parameter values used 
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for the post-transcriptional model after fitting are listed in the Table S2, and fit trajectories shown 

in Figure 5B and S5A. The fits indicate that only systems containing post-transcriptional splicing 

(the post-transcriptional model and the mixed model) produce the overshoot features shown in the 

data trajectory, with the post-transcriptional splicing model providing the best fit. 

 

 

Parameter Sensitivity Analysis (Hill coefficient) 

 

In many nonlinear ODE systems, the most sensitive parameters (i.e., those parameters that generate 

the most change in steady state values and pre-steady-state kinetics) are exponential multipliers, 

such as the Hill coefficients, that describe nth-order self-cooperative reactions(Edelstein-Keshet, 

1988).  Here, we examine the model sensitivity to one such parameter: the cooperativity of 

Rev/RRE-dependent RNA nuclear export.  HIV-1 Rev multimerizes and interacts with the RRE 

region in the intron-containing RNA.  However, the exact number of bound Rev oligomers per 

RRE is unclear.  Previous reports suggest that Rev binds to the RRE in ratios of either 2:1 (Daly 

et al., 1993), or 3:1 (Cook et al., 1991), or 4:1 (Daly et al., 1993; Mann et al., 1994; Pond et al., 

2009), or 6:1 (Daugherty et al., 2010), or 8:1 (Cook et al., 1991; Daly et al., 1993), and even up to 

12:1 (Mann et al., 1994).  Here, we characterize the sensitivity of the post-transcriptional splicing 

model by fitting the model to the single-cell imaging data using different fixed (integer) values of 

the Hill coefficient h of Rev RNA nuclear export.  Numerical simulations and least-squares fitting 

of the post-transcriptional splicing model indicate that the minimum value of h (the Hill coefficient 

of Rev/RRE-dependent RNA nuclear export) should be h ≥ 3 to obtain a good fit (R2 ≥ 0.9) of the 

model to the single-cell imaging data (Figure S5B). 

 

 

Experimental Validation of Model (Predictions) 

 

To test if the resulting model made accurate predictions about viral expression, we set out to test 

a counter-intuitive prediction of the model: that over-expression of Rev (which is required for 

export of late viral transcripts (e.g., gag)) would reduce the level of late transcripts and their gene 

products.  This counter-intuitive prediction arises because increased Rev exports late products too 

quickly, not allowing accumulation of sufficient Tat for positive feedback. Rev overexpression is 

simulated by modifying Eq. (4) to: 

d

dt
Rev = 𝑏𝑅𝑒𝑣 + 𝑝 ∙ 𝑓𝑟 ∙ MS − 𝑑𝑟 ∙ Rev (10) 

The extra parameter, bRev, is the production rate of Rev from an exogenous source other than HIV 

LTR.  Experimentally, this can be performed by transfecting cells with Rev-encoding expression 

vectors.  We overexpress Rev 24 hours before the onset of HIV-1 reactivation.  Thus, the minimal 

Rev-only model will not be sufficient to describe the scenario, because the exogenous Rev will 

exist in the system before Tat positive feedback initiates HIV gene expression, in contrast to the 

previous minimal Rev negative-feedback model. As a result, the Tat positive feedback term in the 

ODE models cannot be simplified and lumped with the basal transcription in this case.  Therefore, 

we replace Eq. (6) with the following: 

d

dt
USn = 𝑏𝐿𝑇𝑅 +

kt∙Tat

KTat
1+𝑞∙Tat1

− 𝑠𝑝 ∙ USn −
kr∙USn∙Revh

KRev
h+Revh

− 𝑑𝑟𝑛𝑎 ∙ USn  (11) 
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where bLTR is basal expression rate from LTR promoter, kt is the maximum Tat transactivation 

rate, and KTat is the Michaelis-Menten saturation concentration of Tat transactivation (for non-

saturating positive feedback (Razooky et al., 2017), KTat is set to 0 and q set to 1).  This new 

equation consists of the following elements: LTR basal transcription, Tat transactivation, post-

transcriptional splicing, Rev-dependent nuclear export, and RNA degradation. We also add 

another equation to describe the Tat production and degradation: 

d

dt
Tat = 𝑝 ∙ 𝑓𝑡 ∙ MS − 𝑑𝑡𝑎𝑡 ∙ Tat (12) 

where ft is the fraction of Tat encoding MS RNA among all MS RNA, and dtat is the degradation 

rate of Tat protein.  We begin by fitting the new Tat/Rev coupled feedback model to the single-

cell imaging data (Figure 4 and 5, main text).  The final parameters are listed in Table S2.  

 

We simulated changes in expression dynamics upon Rev is overexpression.  Initially, we assumed 

that the production of exogenous Rev reaches a steady state and calculate the initial Rev 

concentration from the following formula: 

RevInitial = 
𝑏𝑅𝑒𝑣

𝑑𝑟
 (13) 

We used the model to predict the outcomes of exogenous Rev over expression. If viral gene 

expression is under Rev negative-feedback control, MS RNA production will be repressed, leading 

to lower Tat levels. Tat activates HIV-1 transcription by 20–60 fold (Bohan et al., 1992).  

Therefore, the effect of reduced viral expression due to Rev negative feedback would be amplified 

because of Tat transactivation.  Accordingly, increased Rev negative feedback would lead to 

decreased levels of p24 and Nef.  

 

We numerically probe the system by tuning bRev. Notably, when the bRev is not zero (i.e., Rev is 

overexpressed) GFP levels decrease (Figure S5C). Additionally, the model predicts that HIV-1 US 

RNA expression dynamics decrease (Figure S5D).  Thus, the models suggested that Rev 

overexpression would lead to a decrease in the levels of both the MS and US gene products. We 

experimentally verified this prediction by transfecting Jurkat HIV-d2G cells with an exogenous 

Rev expressing vector (Figure S5E and S5F). 

 

 

 

Experimental Validation of Model (Wet-lab Testing) 

 

Cell Line Nucleofector® Kit R (Lonza) was used to transfect pcRev plasmid DNA(Malim et al., 

1988) into HIV-d2G Jurkat cells. For each transfection, 1.6 × 106 Jurkat cells and pre-set program 

O-028 were used. 10 ng/mL TNF-α was added into the culture 24 hours after transfection, and 

incubated for another 24 hours. Intracellular p24 was stained using anti-p24 antibody KC57-RD1 

(Coulter Clone). Intracellular GFP and p24 levels were measured using flow cytometery 

(IntelliCyt™). Flow data were analyzed with FlowJo™ software.  To verify the model’s 

predictions, we transfected latently infected HIV-d2G Jurkat cells with pcRev DNA (Malim et al., 

1988), and activated the HIV-1 replication with TNF-α 24 hours post transfection.  As predicted, 

increased Rev over-expression led to decreased levels of both GFP and p24, at 24 hours after 

activation (Figure S5E and S5F).  Thus, the model successfully predicts and provides validation 
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for the overall model that serial post-transcriptional splicing and Rev nuclear export allow for 

negative-feedback regulation in HIV-1 gene expression.  

 

 

Simplified Post-Transcriptional Splicing Model (Figure S3A) 

To test if the observed MS mRNA maximum at ~60 minutes coincides with a maximum GFP 

expression at about 5–8 hours, we used a simplified version of the ODE post-transcriptional 

splicing model from above.  

 

First, we simplified the Rev dependent export term in Eq. (6), to one lumped rate term kex:  

d

dt
USn = 𝑏 − 𝑠𝑝 ∙ USn − 𝑘𝑒𝑥 ∙ Rev ∙ USn − 𝑑𝑟𝑛𝑎 ∙ USn  (14) 

d

dt
USc = 𝑘𝑒𝑥 ∙ Rev ∙ USn − 𝑑𝑟𝑛𝑎 ∙ USc   (15) 

 

Eq. (7) remained the same:  

d

dt
MS = 𝑠𝑝 ∙ USn − 𝑑𝑟𝑛𝑎 ∙ MS     (7) 

Rev and GFP production from Eqs. 4-5 were modified to include simplified lumped protein 

production rates p.  

d

dt
Rev = 𝑝 ∙ MSc − 𝑑𝑟 ∙ Rev      (16) 

d

dt
GFP = 𝑝 ∙ MSc − 𝑑𝑔 ∙ GFP      (17) 

where, as above, dr is the degradation rate of Rev protein and dg is the degradation rate of GFP 

protein.  Finally, we added a maturation step of GFP to fluorescent GFP (GFPmat):  

d

dt
GFPmat = GFP ∙  𝑚 − 𝑑𝑔 ∙ GFPmat    (18) 

where m is the maturation rate of GFP and dg is the degradation rate of GFP protein. See Table S2 

for parameters used. Thus, the simplified ODE system for post-transcriptional splicing, including 

GFP maturation, is: 

 

d

dt
USn = 𝑏 − 𝑠𝑝 ∙ USn − 𝑘𝑒𝑥 ∙ Rev ∙ USn − 𝑑𝑟𝑛𝑎 ∙ USn  (14) 

d

dt
USc = 𝑘𝑒𝑥 ∙ Rev ∙ USn − 𝑑𝑟𝑛𝑎 ∙ USc   (15) 

d

dt
MS = 𝑠𝑝 ∙ USn − 𝑑𝑟𝑛𝑎 ∙ MS    (7) 

d

dt
Rev = 𝑝 ∙ MSc − 𝑑𝑟 ∙ Rev      (16) 

d

dt
GFP = 𝑝 ∙ MSc − 𝑑𝑔 ∙ GFP      (17) 

d

dt
GFPmat = GFP ∙  m − 𝑑𝑔 ∙ GFPmat    (18) 



9 
 

 
 

Stochastic Simulations of Two-State Random Telegraph Model with Feedback  

 

Stochastic simulations for Figure 2 were carried out on the Oak Ridge CNMS Beowulf cluster.  

Here, three models were compared.   

 

The two-state (a.k.a. random telegraph) model consists of the following reaction scheme:  

 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + R 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

 

Where kon = 0.1, koff = 1.0,  = 20,  = 100,  = 1, and  = 0.01.  As a benchmark, we examined 

reducing steady state twofold by setting  = 10. 
 

Negative feedback is introduced to reduce the steady state twofold using the following 

Transcriptional Auto-Repression model: 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + R 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

P + OFF
𝜖
→ Repressed 

Repressed
k𝑢𝑛𝑏𝑖𝑛𝑑
→     OFF + P 

 

with all parameters as above and  = .001 and kunbind = 8 so that the steady state was reduced by 

half. 

 

The Precursor Auto-Depletion feedback model uses the following reaction scheme: 

OFF
k𝑜𝑛
→ ON 
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ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + 𝑝𝑟𝑒 

𝑝𝑟𝑒
𝜃
→R 

P + 𝑝𝑟𝑒
𝜖
→P + 0 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

with parameters as above and  = .0001 and  = 1 so that the steady state was reduced by half.   

 

As these parameter sets generate rather large numbers of simulated molecules, to mimic the 

physiological regimes (i.e., ~105 P molecules), desktop PCs were too slow and the simulations 

needed to be run on a cluster (ORNL CNMS cluster). 

 

 

Transcriptional Auto-Repression Perversely Increases Noise, whereas Auto-Depletion Does Not  

 

The following simulations were run in Mathematica™ using the xSSAlite™ on a PC. 

 

As above, the two-state model is 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + R 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

 

with kon = 1.0, koff = 0.001,  = 20,  = 10,  = 1, and  = 0.25 it gives a steady-state value of P  

800.  In this parameter regime (kon >> koff ), the model is essentially constitutive expression. 

 

Negative feedback can be introduced to reduce the steady state twofold (i.e., P  400), using the 

following Transcriptional Auto-Repression model: 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + R 
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R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

P + ON
𝜖
→P + OFF 

with parameters as above and  = .003.  This results in the steady state being reduced by half (i.e., 

P  400), compared to the unregulated two-state model. 

 

As above, the Precursor Auto-Depletion feedback model uses the following reaction scheme: 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + 𝑝𝑟𝑒 

𝑝𝑟𝑒
𝜃
→R 

P + 𝑝𝑟𝑒
𝜖
→P + 0 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

with parameters as above and  = .03 and  = 10, so that the steady state was reduced by half (i.e., 

P  400). 

 

500 simulation runs were performed (in Mathematica™ using the xSSAlite™) for each model to 

calculate the mean and CV2.  The results of simulations of these models are shown in Figure S1B–

C (mean  standard deviation). 

 

Here, the two-state model’s mean-expression level 〈P〉 is reduced twofold (e.g., from 800 

proteins/cell to 400), the Fano increases from 8.5 to 9.5 (i.e., Poisson scaling).  Under these 

parameters, increasing transcriptional auto-repression to reduce the mean by one-half actually 

increased noise (Fano = 30), an established result (Austin et al., 2006; Lestas et al., 2010; Swain, 

2004).  However, in this parameter regime, precursor auto-depletion reduced the mean by one-half 

and also reduced the noise (Fano = 5.6), despite the added noise source relative to transcriptional 

auto-repression (i.e., the extra species, pre).  We also tested a simplified RNA-Depletion model 

(not shown in main text) that lacks an explicit precursor: 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 
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ON
α
→ON + R 

P + R
𝜖
→P + 0 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

with all parameters as above. For all models, initial conditions were always were set to zero for all 

state variables, except ON = 1.  This model decreased the noise further to Fano = 3.2 (see Figure 

S1C).   

 

For the precursor depletion and simple RNA depletion models, we explicitly included formation 

of a reversible [preP] complex or [PR] complex, respectively: 

 

P + pre 

𝑘𝑓
⇄
𝑘𝑟

 [pre ∙ P]
𝜖
→P + 0 

 

P + R 

𝑘𝑓
⇄
𝑘𝑟

 [P ∙ R]
𝜖
→P + 0 

 

These changes appeared to have little effect on the simulation results for either model. 

 

 

 

 

Modeling Circuit-Relaxation Dynamics after a TNF Pulse-Chase Experiment (Figure 7) 

 

In modeling for Figure 7 (main text), we first determined if a deterministic ODE model of post-

transcriptional splicing (essentially, the model used for model validation above) could account for 

the relaxation dynamics of wild-type HIV and A7 mutants after a TNF exposure and removal 

experiment (i.e., pulse-chase experiment).  The model used was a slight variation of the model 

used above for validation, specifically:  

 

d

dt
USn = 𝑏𝐿𝑇𝑅 + kt ∙ Tat − 𝑠𝑝 ∙ USn −

kr∙USn∙Revh

KRev
h+Revh

− 𝑑𝑟𝑛𝑎 ∙ USn  (11) 

d

dt
MS = 𝑠𝑝 ∙ USn − 𝑑𝑟𝑛𝑎 ∙ MS (7) 
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d

dt
Tat = 𝑝 ∙ 𝑓𝑡 ∙ MS − 𝑑𝑡𝑎𝑡 ∙ Tat (12) 

d

dt
Rev = 𝑝 ∙ 𝑓𝑟 ∙ MS − 𝑑𝑟 ∙ Rev  (4) 

d

dt
GFP = 𝑝 ∙ 𝑓𝑔 ∙ MS − 𝑑𝑔 ∙ GFP  (5) 

 

with parameters as described in Table S2, except for the following modifications to account for 

the experiment performed: the splicing rate (sp) was increased by 10-fold (1.5  15) to model the 

A7 mutant (specifically, a 10-fold increase in sp corresponds to a ~2–3-fold increase in GFP steady 

state as seen in the A7 mutants; compare Figure 6, main text, to Figure S7).  Changing sp was 

based on analysis (Figure 5C), showing that increasing the splicing rate, sp, is sufficient to 

abrogate the negative-feedback overshoot. 

 

To simulate removal of TNF and cells relaxing to an OFF state, at time=48 h, bLTR was 

instantaneously reduced by threefold [based on measurements from (Dar et al., 2012) and 

simultaneously kt was set to 0 to mimic the stochastic switching off of Tat, which formally requires 

stochastic models (Razooky et al., 2015; Weinberger et al., 2005).  As shown Figure S7, this 

deterministic ODE model cannot fit the experimental relaxation dynamics after TNF removal.  

Specifically, the ODE model predicts that the A7 mutants will relax slower than wild-type HIV.  

The experimental data is the opposite (A7 mutants relax faster than wild-type HIV). 

 

Given the inability of a deterministic model to fit the data, we then considered a stochastic version 

of the model. For simplicity and computational tractability, we first examined an RNA depletion 

model: 

OFF
k𝑜𝑛
→ ON 

ON
k𝑜𝑓𝑓
→  OFF 

ON
α
→ON + R 

P + R 

𝑘𝑓
⇄
𝑘𝑟

 [P ∙ R]
𝜖
→P + 0 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

 

using a ‘pilot’ set of parameters: with kon = koff = 0.015,  = 5,  = 10,  = 1,  = 0.25, kf = kr = 0.5, 

 = 0.015.  These parameter values were designated as “wild type”.  Initial conditions for all state 

variables OFF, R, P, PR were set to zero except ON = 1.  These parameter values were empirically 

chosen so that setting kf   0, results in the steady-state P increasing by threefold as in the A7 

mutant (main text Figure 6B).  Simulations of the “mutant” were run with kf  = 0 and compared to 



14 
 

“wild-type” with parameters as above.  For these pilot simulations, histograms were generated 

from 500 runs of each model at time = 100.  The following plot shows representative simulation 

runs from this simulation (blue = wild-type HIV, orange = A7 mutant): 

 

 

Given these promising simulation results, we then ran a more extensive simulation analysis using 

more physiological parameter estimates that generate molecular numbers of protein in the tens of 

thousands of molecules (Figure 7A and 7B, main text).  The parameter values used for the 

simulations presented in Figure 7A and 7B (main text) are:  kon = koff = 0.015,  = 500,  = 100,  

= 1,  = 0.25, kf  = 0.0002 kr = 0.05,  = 0.015 (for the mutant, we set kf  = kr =  = 0).  Initial 

conditions for all state variables OFF, R, P, PR were set to zero except ON = 1.  One thousand 

simulation runs of each wild-type and mutant parameter set were run, with each simulation run to 

time = 300.  Given the computational intensity of these simulations (steady state P values were 

~200,000 and ~50,000 molecules for each mutant and wild-type trajectory, respectively), the 

CNMS computing cluster at Oak Ridge National Laboratory was used for these simulations.  

Histograms of values of P at t = 300 were plotted in Mathematica™. 

 

 

 

Analytic Arguments Supporting Precursor Auto-Depletion Minimization of Transcriptional 

Noise  
 

Negative auto-regulation is accomplished by the repression of the average protein synthesis rate 

(kp) by the protein. The strength of the feedback is described by a term known as the loop 

transmission (Simpson et al., 2003) where 

 

𝑇 =
𝜕𝜇

𝜕𝑘𝑝

𝜕𝑘𝑝

𝜕𝜇
 

 
𝑘𝑝 = 𝑏𝑝𝛼𝑂 

𝑂 =
𝑘𝑂𝑁

(𝑘𝑂𝑁 + 𝑘𝑂𝐹𝐹)
 

𝑏𝑝 =
𝛽

𝛿
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𝛽  and 𝛿 are as described above. The term 𝑏𝑝 is often known as the translational burst size and is 

the average number of proteins synthesized using an individual mRNA template. 

 

Negative feedback may operate by modulating any of the three terms that define kp, and it has three 

main effects on gene circuit function: (1) reduction of the steady-state protein population (𝜇); (2) 

change of protein population noise and noise spectrum; (3) change in speed of responsiveness (i.e. 

bandwidth). Here we focus on only the first two effects, and find that the gene circuit noise with 

feedback is described by the relationships (Simpson et al., 2003) 

 

𝐹𝑎𝑛𝑜 =
𝐹𝑎𝑛𝑜𝑁𝐹𝐵
(1 + |𝑇|)

 

 

𝐶𝑉2 =
𝐶𝑉𝑁𝐹𝐵

2

(1 + |𝑇|)
 

 

where the subscript NFB denotes a gene circuit where T=0 but is otherwise identical to the circuit 

with feedback (i.e., same steady-state populations and rates).  

 

The noise in the protein population is often dominated by the noise introduced in the transcription 

process. Neglecting the feedback effect (i.e., assuming T=0), the power spectral density (PSD) of 

the noise in the protein population due to transcriptional noise (𝑆𝑝−𝛼(𝑓)) is (Cox et al., 2006) 

 

𝑆𝑝−𝛼(𝑓) = 𝑆𝛼(𝑓)𝐻𝛼−𝑝
2 (𝑓)      

 

where 𝑆𝛼(𝑓) is the PSD of noise in the rate of transcription and 𝐻𝛼−𝑝
2 (𝑓) is the noise power gain 

between transcription and the protein population. Assuming that the protein decay time is the 

dominant time constant in the circuit (Simpson et al., 2003), the variance in the protein population 

(𝜎2) is 

 

𝜎2 =
𝛾

4
𝑆𝛼(0)𝐻𝛼−𝑝

2 (0) 

 

𝐹𝑎𝑛𝑜 =
𝜎2

𝜇
=

𝛾

4
𝑆𝛼(0)𝐻𝛼−𝑝

2 (0)

𝜇
=

𝛾

4
𝑆𝛼(0)𝐻𝛼−𝑝

2 (0)

𝐻𝛼−𝑝(0)𝛼𝑂
=
𝛾𝑆𝛼(0)𝐻𝛼−𝑝(0)

4𝛼𝑂
,    

 

or 

 

𝐹𝑎𝑛𝑜 = 𝑏𝑟_𝑒𝑓𝑓𝑏𝑝_𝑒𝑓𝑓 

 

where 

 

𝑏𝑟_𝑒𝑓𝑓 =
𝑆𝛼(0)

4𝛼𝑂
 

 

𝑏𝑝_𝑒𝑓𝑓 = 𝛾𝐻𝛼−𝑝(0). 
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𝑏𝑟_𝑒𝑓𝑓 may be thought of as the effective burst size of transcription, and 𝑏𝑝_𝑒𝑓𝑓 as the effective 

burst size of translation. Critically, transcriptional negative autoregulation modulates only 𝑏𝑟_𝑒𝑓𝑓, 

while precursor auto-depletion modulates only 𝑏𝑝_𝑒𝑓𝑓, and it is this difference that enables 

precursor auto-depletion to achieve superior noise performance as shown below.  

 

From standard circuit analysis for the circuits described above, we find that for all transcriptional 

auto-repression circuits 

𝑏𝑝_𝑒𝑓𝑓 = 𝑏𝑝, 
 

while for precursor auto-depletion, 

𝑏𝑝_𝑒𝑓𝑓 = 𝑏𝑝 (
𝜃

𝜃 + 𝜖
). 

 

So precursor auto-depletion always has a smaller effective translational burst size than all 

transcriptional auto-repression circuits.  To compare the transcriptional auto-repression and 

precursor auto-depletion, consider two-state transcriptional bursting where (Simpson et al., 2004)  

 

 

𝑆𝛼(0) = 4𝛼𝑂 (1 +
𝛼𝑘𝑂𝐹𝐹

(𝑘𝑂𝑁 + 𝑘𝑂𝐹𝐹)2
) 

 

𝑏𝑟_𝑒𝑓𝑓 = 1 +
𝛼𝑘𝑂𝐹𝐹

(𝑘𝑂𝑁 + 𝑘𝑂𝐹𝐹)2
. 

 

Considering a few cases provides some intuitive understanding of 𝑏𝑟_𝑒𝑓𝑓 . For constitutive 

expression, 𝑘𝑂𝐹𝐹 → 0, and 𝑏𝑟_𝑒𝑓𝑓 = 1, and the simple interpretation is that each mRNA synthesis 

event is its own burst of a single mRNA molecule.  Conversely, for the often-analyzed case of 

short, well-spaced transcriptional bursts (i.e. 𝑘𝑂𝐹𝐹 ≫ 𝑘𝑂𝑁) then  

 

𝑏𝑟_𝑒𝑓𝑓 = 1 +
𝛼

𝑘𝑂𝐹𝐹
 

 

and the interpretation is that well-spaced bursts of mRNA are produced with an average burst size 

of 
𝛼

𝑘𝑂𝐹𝐹
 .  Between these extremes, the maximum 𝑏𝑟_𝑒𝑓𝑓 occurs when 𝑘𝑂𝐹𝐹 = 𝑘𝑂𝑁 giving  

 

𝑏𝑟_𝑒𝑓𝑓_𝑚𝑎𝑥 = 1 +
𝛼

4𝑘𝑂𝐹𝐹
. 

 

Finally, in the limit where 𝑘𝑂𝑁 ≫ 𝑘𝑂𝐹𝐹 

 

𝑏𝑟_𝑒𝑓𝑓 = 1 +
𝛼𝑘𝑂𝐹𝐹
(𝑘𝑂𝑁)2

≈ 1, 
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and the interpretation is that the gene is in the ON state so often that expression is nearly 

constitutive.  This final example is the state of the LTR promoter when the Tat protein level is high 

(i.e., just before the Rev-mediated negative feedback becomes activated). For this situation, the 

Fano factor of the protein level is completely determined by the effective translational burst size.  

Precursor auto-depletion acts to reduce the effective translational burst size, whereas auto-

repression leaves the effective translational burst size unchanged from its maximum value of bp. 

Furthermore, since auto-repression often operates by either decreasing 𝑘𝑂𝑁 or increasing 𝑘𝑂𝐹𝐹, it 

is even possible for this feedback to increase 𝑏𝑟_𝑒𝑓𝑓 even up to its maximum possible value as was 

demonstrated in the simulations above. This produces the so-called “perverse effect” where 

negative feedback may lead to increased noise. 

  

The table below summarizes the effects of auto-repression and precursor auto-depletion for various 

transcriptional motifs.  The left-hand column describes expression before feedback is applied.  

Auto-repression operates by decreasing either 𝛼 or 𝑘𝑂𝑁, or by increasing 𝑘𝑂𝐹𝐹. Precursor auto-

depletion operates by increasing 𝜖.  The right-hand comparison column assumes that both feedback 

motifs result in the same value of 𝑇. 

 
Expression 

Motif (Without 

Feedback) 
Auto-Repression Auto-Depletion Comparison 

 

Two-state 

(kOFF>>kON) 
𝐹𝑎𝑛𝑜 =

(1 +
𝛼
𝑘𝑂𝐹𝐹

) 𝑏𝑝

1 + |𝑇|
 𝐹𝑎𝑛𝑜 =

(1 +
𝛼
𝑘𝑂𝐹𝐹

) 𝑏𝑝_𝑒𝑓𝑓

1 + |𝑇|
 

Auto-depletion has lower 

noise but difference may 

be small if auto-repression 

operates by decreasing 𝛼 

or increasing 𝑘𝑂𝐹𝐹  

Two-state 

(kON>>kOFF) 

𝑏𝑝

1 + |𝑇|
≤ 𝐹𝑎𝑛𝑜 ≤

𝑏𝑟_𝑒𝑓𝑓_𝑚𝑎𝑥𝑏𝑝

1 + |𝑇|
 𝐹𝑎𝑛𝑜 ≈

𝑏𝑝_𝑒𝑓𝑓

1 + |𝑇|
 

Auto-depletion has lower 

noise (bp > bp_eff and 𝑏𝑟_𝑒𝑓𝑓 

remains low). As shown in 

the simulation examples 

above, transcriptional 

auto-repression may lead 

to significantly higher 

noise. 

Multistate 𝐹𝑎𝑛𝑜 =
𝑏𝑟_𝑒𝑓𝑓𝑏𝑝

1 + |𝑇|
 𝐹𝑎𝑛𝑜 =

𝑏𝑟_𝑒𝑓𝑓𝑏𝑝_𝑒𝑓𝑓

1 + |𝑇|
 

Auto-depletion has lower 

noise (bp > bp_eff) 

 
 

Noise Suppression of Auto-Depletion Does Not Depend on a Two-State Model 

 

The analysis above demonstrates that precursor auto-depletion operates solely through 

manipulation of the apparent translational burst size.  As a result, the table above indicates the 

precursor auto-depletion effect is completely independent of the details of transcription, and it 

holds equally well for two-state (𝐵𝑒𝑓𝑓>1), or multistate (𝐵𝑒𝑓𝑓>1; see ref.(Corrigan et al., 2016)) 

expression. The essential point is that since precursor auto-depletion operates by decreasing the 

effective translational burst size, it reduces noise for all transcriptional expression patterns where 

the noise of transcription dominates the noise behavior of the circuit.  
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Analytical Calculations Demonstrating that RNA Precursor Noise Is High Frequency 

 

Without feedback, the core of the expression model with splicing is  

 

ON
α
→ON + 𝑝𝑟𝑒 

𝑝𝑟𝑒
𝜃
→R 

𝑝𝑟𝑒
𝜖
→∅ 

R
𝛽
→R+ P 

R
𝛿
→∅ 

P
γ
→∅ 

We define the following: 

Ef = fraction of mRNA exported before splicing = 
𝜖

𝜃+𝜖
 

Then, steady-state analysis yields: 

Unspliced mRNA population:〈𝑝𝑟𝑒〉 =
𝛼

𝜃+𝜀
 

Spliced mRNA population: 〈𝑅〉 =
𝛼𝑒𝑓𝑓

𝛿
 

Protein population:  〈𝑃〉 =
𝑏𝑒𝑓𝑓𝛼

𝛾
  

Using the frequency domain formalism described in (Cox et al., 2006) (Equations 1-5), we first 

define the noise sources (note: since we assume b >> 1 we can neglect the noise source associated 

with translation). 

There are four noise sources: (1) noise associated with transcription and discussed in detail 

previous sections, (2) noise associated with pre export, (3) noise associated with splicing pre into 

R, and (4) R decay. Noise terms (2) – (4) are white noise sources and, as described earlier, are 

often dominated by the bandlimited noise of transcription.  However, splicing places an additional 

step in the mRNA decay process and will result in some additional noise. 

In the frequency domain this gene circuit has three poles where: 

 

𝑓1 =
𝜀 + 𝜃

2𝜋
 

𝑓2 =
𝛿

2𝜋
 

𝑓𝑃 =
𝛾

2𝜋
 

and the noise power gain for the splice noise is  
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𝐻𝑠𝑝𝑙𝑖𝑐𝑒
2 (𝑓) =

𝑏2(𝐸𝑓)
2

(𝛾)2

(

 
 

1 + (
𝑓
𝐸𝑓𝑓1

)
2

(1 + (
𝑓
𝑓1
)
2

)(1 + (
𝑓
𝑓2
)
2

)(1 + (
𝑓
𝑓𝑝
)
2

)
)

 
 
. 

 

Notably, this noise power gain includes a zero, indicating an increase in noise at higher 

frequencies. This high-frequency noise is the noise penalty of splicing and will be negligible as 

long as protein decay is slow compared to pre export or splicing rate. In summary, splice noise 

appears minimal and what noise it does add is high frequency and contributes little to the noise in 

protein levels as shown empirically in Figure S1C (compare CV of last two columns). 

 

Detailed Explanation of Figure 2C i-iii 

 

Analytical calculations of noise (Eqs. [1–2]) showing how precursor depletion (blue) surpasses the 

noise-suppression capabilities of transcriptional auto-repression (red).  T is the same for both 

transcriptional auto-repression and precursor auto-depletion and T=0 for the two-state model with 

no feedback (black).  Solid lines were calculated from Eqs. [1–2] in the form 
𝜎2

𝜇2
=

𝑏𝑅𝑏𝑃

𝜇∙(1+|𝑇|)
.  The 

numerical simulation results from panel B are superimposed on the analytical results as colored 

circles and can be explained using Eq. [1–2] as follows: (dotted arrow ‘i’) both transcriptional 

auto-repression and precursor auto-depletion reduce μ to half, but the former lowers μ by reducing 

f such that σ^2/μ^2 =γ/(f∙(1+|T|) ) remains at best constant (when feedback is maximal) whereas 

the latter lowers μ through reducing b_P, such that σ^2/μ^2 is decreased; (dotted arrow ‘ii’) once 

feedback saturates (T  0), transcriptional auto-repression can continue to lower μ by further 

reducing f, which causes σ^2/μ^2 to increase corresponding to the perverse effect where auto-

repression causes noise amplification (when kon >>koff, the two-state black line approaches 

constitutive expression and is closer to the origin and the red line and, hence, even for small 

decreases in μ, auto-repression perversely increases σ^2/μ^2).  In contrast, since precursor auto-

depletion lowers μ through reducing b_P, σ^2/μ^2 remains constant. 

  


