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Appendix 1

The full mathematical model

The concentrations of the nine enzyme configurations shown in Fig. 1 are described
by the vector ~E, defined as

~E(t) =



[ATP·E · P1 ](t)
[ATP·E · ](t)
[ATP·E ·P1P](t)
[ ·E · P1 ](t)
[ ·E · ](t)
[ ·E ·P1P](t)
[ADP·E · P1 ](t)
[ADP·E · ](t)
[ADP·E ·P1P](t)


. (A)

The total enzyme concentration, [E]tot, must be equal to the sum of the components of
~E, which we define as the norm ‖ ~E(t)‖. Enzyme conservation imposes

[E]tot = ‖ ~E(t)‖ = Constant. (B)

The experimental protocol results in the components of ~E been initially null, except
the states [ ·E · ] and [ ·E · P1 ]. We assume these configurations are in
equilibrium at t = 0, with the values

[ ·E · P1 ](0) = fP1[E]tot, (Ca)

[ ·E · ](0) = (1− fP1)[E]tot, (Cb)

where fP1 is

fP1 =
[P1]

KP1
d + [P1]

. (D)

An equivalent approach was used in simulations with pre-mixing with ATP instead of
P1.

The evolution of the enzyme vector is described by the equation

d ~E

dt
= A~E, (E)

where A is the transition matrix
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A =



−kATP
off − kP1

off − kfP ωP1 0 ωATP

kP1
off −kATP

off − ωP1 kP1P
off 0

0 0 −kATP
off − kP1P

off 0
kATP
off 0 0 −ωATP − kP1

off

0 kATP
off 0 kP1

off

0 0 kATP
off 0

0 0 0 0
0 0 0 0
kPf 0 0 0

0 0 0 0 kPr
ωATP 0 0 0 0

0 ωATP 0 0 0
ωP1 0 kADP

off 0 0
−ωATP − ωP1 kP1P

off 0 kADP
off 0

0 −ωATP − kP1P
off 0 0 kADP

off

0 0 −kADP
off − kP1

off ωP1 0
0 0 kP1

off −kADP
off − ωP1 kP1P

off

0 0 0 0 −kADP
off − kP1P

off − kPr


.

(F)

Table A contains the definitions of the parameters used in this matrix. In the general
case we should include in the above matrix the rate constants ωADP and ωP1P , which
were excluded because [ADP] ≈ [P1P ] ≈ 0. Furthermore, the matrix A could be
time-dependent, through the rates ωATP and ωP1 which depend on [ATP] and [P1]. Due
to the minimum consumption of these substances, we assume the matrix to be constant.

The matrix A is the infinitesimal generator of the continuous time Markov process
describing ~E evolution. All eigenvalues λi of such matrices are negative, except for of
one which is null, λ0 = 0.

By using the eigenvectors ~Ei of A, the initial state can be written as

~E(0) =

8∑
i=0

ci ~Ei, (G)

where the coefficients ci are determined by solving this linear system at time t = 0.
With these coefficients, the state of the enzyme as function of time can be written as

~E(t) = c0 ~E0 +

8∑
i=1

ci ~Eie
−t/τi , (H)

where we used the timescale associated with each eigenvalue,

τi = − 1

λi
. (I)

We choose the index of the eigenvalues such that τ1 > τ2 > · · · > τ8.
From Eq. (H) at t→∞ and Eq. (B), we conclude that

c0 =
[E]tot
‖E0‖

. (J)

The mean lifetimes of the transients, τ1, · · · , τ8, are associated with the eigenvectors
~E1, · · · , ~E8. The longest lasting transient is the one with the longest timescale, τ1,
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Reaction parameters
Symbol Name Definition
GP Ratio between kPf and kPr Eq. (4)

k̄ Mean reaction velocity per enzyme molecuel Eq. (2)
kScat Catalytic rate constant of substrate S Eq. (1)
kSoff Dissociation rate constant of substrate S Eq. (3)
kPf Phosphoryl group transfer rate Eq. (4)

kPr Reverse phosphoryl group transfer rate Eq. (4)
KS
d Equilibrium dissociation constant of substrate S Eq. (4)

KS
m MM dissociation constant of substrate S Eq. (1)
v Reaction rate Eq. (1)
v̄ Mean reaction rate Eq. (2)
ωS On rate of substrate S Eq. (3)

Concentrations
Symbol Substance

[E] Enzyme (P3P4P5)
[E]tot Total enzyme

[ ·E · ] Free enzyme
[A?P ·E · ] Enzyme bound to ATP or ADP
[ ·E · P1? ] Enzyme bound to P1P or P1
[A?P ·E · P1? ] Doubly bound enzyme

[P1] Unphosphorilated
[P1P ] Phosphorilated P1

[S] Substrate S

Table A. Symbols used in the paper. The role played by most of them are illustrated
in Fig. 1.
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which we will take as the relaxation time, τ ≡ τ1. It means that the steady state is only
reached when t� τ . The steady state is the eigenvector ~E0 of the null eigenvalue.

The use of the SDS sample buffer in the experiments to stop the chemical reaction
means that the measure of [P1P ] include the free and the bound proteins,

[P1PT ] = [P1P] + [ATP·E ·P1P] + [ ·E ·P1P] + [ADP·E ·P1P]. (K)

Alternatively, we can calculate [P1PT ] from the net P1 phosphorylation rate

v(t) = kPf [ATP·E · P1 ]− kPr [ADP·E ·P1P], (L)

with [ATP·E · P1 ] and [ADP·E ·P1P] obtained from Eq. (H). We can now calculate the
total phosphorylated P1 as

[P1PT ](t) =

∫ t

0

v(t′)dt′. (M)

From this, we can write the mean phosphorylation rate as

v̄(t) =
1

t

∫ t

0

v(t′)dt′. (N)
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