Supplementary Material to A dual regulation mechanism of histidine kinase CheA identified by combining network-dynamics modeling and system-level input-output data Bernardo A. Mello, Wenlin Pan, Gerald L. Hazelbauer, and Yuhai Tu

Appendix 1

The full mathematical model

The concentrations of the nine enzyme configurations shown in Fig. 1 are described by the vector \vec{E} , defined as

$$\vec{E}(t) = \begin{bmatrix} [ATP \cdot E \cdot P1](t) \\ [ATP \cdot E \cdot](t) \\ [ATP \cdot E \cdot P1P](t) \\ [\cdot E \cdot P1](t) \\ [\cdot E \cdot P1P](t) \\ [ADP \cdot E \cdot P1](t) \\ [ADP \cdot E \cdot P1P](t) \\ [ADP \cdot E \cdot P1P](t) \end{bmatrix} .$$
(A)

The total enzyme concentration, $[E]_{tot}$, must be equal to the sum of the components of \vec{E} , which we define as the norm $\|\vec{E}(t)\|$. Enzyme conservation imposes

$$[E]_{\text{tot}} = \|\vec{E}(t)\| = \text{Constant.}$$
(B)

The experimental protocol results in the components of \vec{E} been initially null, except the states [$\cdot E \cdot$] and [$\cdot E \cdot P1$]. We assume these configurations are in equilibrium at t = 0, with the values

$$\cdot E \cdot \operatorname{P1}](0) = f^{\operatorname{P1}}[E]_{\operatorname{tot}}, \qquad (\operatorname{Ca})$$

$$\cdot E \cdot [0] = (1 - f^{P1})[E]_{tot},$$
 (Cb)

where f^{P1} is

$${}^{\rm P1} = \frac{[{\rm P1}]}{K_d^{\rm P1} + [{\rm P1}]}.$$
 (D)

An equivalent approach was used in simulations with pre-mixing with ATP instead of P1.

The evolution of the enzyme vector is described by the equation

f

$$\frac{l\vec{E}}{dt} = A\vec{E},\tag{E}$$

where A is the transition matrix

Table A contains the definitions of the parameters used in this matrix. In the general case we should include in the above matrix the rate constants ω^{ADP} and ω^{P1P} , which were excluded because $[\text{ADP}] \approx [P1P] \approx 0$. Furthermore, the matrix A could be time-dependent, through the rates ω^{ATP} and ω^{P1} which depend on [ATP] and [P1]. Due to the minimum consumption of these substances, we assume the matrix to be constant.

The matrix A is the infinitesimal generator of the continuous time Markov process describing \vec{E} evolution. All eigenvalues λ_i of such matrices are negative, except for of one which is null, $\lambda_0 = 0$.

By using the eigenvectors \vec{E}_i of A, the initial state can be written as

$$\vec{E}(0) = \sum_{i=0}^{8} c_i \vec{E}_i,$$
 (G)

where the coefficients c_i are determined by solving this linear system at time t = 0. With these coefficients, the state of the enzyme as function of time can be written as

$$\vec{E}(t) = c_0 \vec{E}_0 + \sum_{i=1}^8 c_i \vec{E}_i e^{-t/\tau_i},$$
(H)

where we used the timescale associated with each eigenvalue,

$$\tau_i = -\frac{1}{\lambda_i}.\tag{I}$$

We choose the index of the eigenvalues such that $\tau_1 > \tau_2 > \cdots > \tau_8$. From Eq. (H) at $t \to \infty$ and Eq. (B), we conclude that

$$c_0 = \frac{[E]_{\text{tot}}}{\|E_0\|}.$$
 (J)

The mean lifetimes of the transients, τ_1, \dots, τ_8 , are associated with the eigenvectors $\vec{E}_1, \dots, \vec{E}_8$. The longest lasting transient is the one with the longest timescale, τ_1 ,

Reaction parameters			
Symbol	Name		Definition
G^P	Ratio between k_f^P and k_r^P		Eq. (4)
$ar{k}$	Mean reaction velocity per enzyme molecuel		Eq. (2)
k_{cat}^S	Catalytic rate constant of substrate S		Eq. (1)
$k_{ m off}^{ m S}$	Dissociation rate constant of substrate S		Eq. (3)
k_f^P	Phosphoryl group transfer rate		Eq. (4)
k_r^P	Reverse phosphoryl group transfer rate		Eq. (4)
K_d^S	Equilibrium dissociation constant of substrate ${\cal S}$		Eq. (4)
$K_m^{\overline{S}}$	MM dissociation constant of substrate S		Eq. (1)
v	Reaction rate		Eq. (1)
\bar{v}	Mean reaction rate		Eq. (2)
ω^S	On rate of substrate S		Eq. (3)
Concentrations			
	Symbol	Substance	
	[E]	Enzyme (P3P4P5)	
	$[E]_{\mathrm{tot}}$	Total enzyme	
	$\begin{bmatrix} & \cdot E \cdot & \end{bmatrix}$	Free enzyme	
$[A?P \cdot E \cdot]$ Enzyme bound t		Enzyme bound to ATP or ADP	
$\begin{bmatrix} & \cdot E \cdot P1? \end{bmatrix}$		Enzyme bound to P1P or P1	
	$[\mathbf{A}?\mathbf{P}\cdot E\cdot \mathbf{P}1?]$	Doubly bound enzyme	
	[P1]	Unphosphorilated	
	[P1P]	Phosphorilated P1	
	[S]	Substrate S	

Table A. Symbols used in the paper. The role played by most of them are illustrated in Fig. 1.

which we will take as the *relaxation time*, $\tau \equiv \tau_1$. It means that the steady state is only reached when $t \gg \tau$. The steady state is the eigenvector $\vec{E_0}$ of the null eigenvalue.

The use of the SDS sample buffer in the experiments to stop the chemical reaction means that the measure of [P1P] include the free and the bound proteins,

Alternatively, we can calculate $[P1P_T]$ from the net P1 phosphorylation rate

$$v(t) = k_f^P[\text{ATP} \cdot E \cdot \text{ P1 }] - k_r^P[\text{ADP} \cdot E \cdot \text{P1P}], \tag{L}$$

with [ATP $\cdot E \cdot$ P1] and [ADP $\cdot E \cdot$ P1P] obtained from Eq. (H). We can now calculate the total phosphorylated P1 as

$$[P1P_T](t) = \int_0^t v(t')dt'.$$
 (M)

From this, we can write the mean phosphorylation rate as

$$\bar{v}(t) = \frac{1}{t} \int_0^t v(t') dt'.$$
 (N)