Supplementary Material to A dual regulation mechanism of histidine kinase CheA identified by combining network-dynamics modeling and system-level input-output data Bernardo A. Mello, Wenlin Pan, Gerald L. Hazelbauer, and Yuhai Tu

Appendix 1

The full mathematical model

The concentrations of the nine enzyme configurations shown in Fig. 1 are described by the vector \vec{E} , defined as

$$
\vec{E}(t) = \begin{bmatrix}\n[ATP \cdot E \cdot P1](t) \\
[ATP \cdot E \cdot](t) \\
[ATP \cdot E \cdot P1P](t) \\
\vdots \\
[\cdot E \cdot P1](t) \\
[\cdot E \cdot P1P](t) \\
[ADP \cdot E \cdot P1](t) \\
[ADP \cdot E \cdot](t) \\
[ADP \cdot E \cdot P1P](t)\n\end{bmatrix} .
$$
\n(A)

The total enzyme concentration, $[E]_{\text{tot}}$, must be equal to the sum of the components of \vec{E} , which we define as the norm $\|\vec{E}(t)\|$. Enzyme conservation imposes

$$
[E]_{\text{tot}} = ||\vec{E}(t)|| = \text{Constant.} \tag{B}
$$

The experimental protocol results in the components of \vec{E} been initially null, except the states $\begin{bmatrix} E \ \cdot \end{bmatrix}$ and $\begin{bmatrix} \cdot E \ \cdot \end{bmatrix}$. We assume these configurations are in equilibrium at $t = 0$, with the values

[·E· P1](0) = f P1[E]tot, (Ca)

$$
[\t E \t [0] = (1 - fP1)[E]tot, \t (Cb)
$$

where f^{P1} is

$$
f^{P1} = \frac{[P1]}{K_d^{P1} + [P1]}.
$$
 (D)

An equivalent approach was used in simulations with pre-mixing with ATP instead of P1.

The evolution of the enzyme vector is described by the equation

$$
\frac{d\vec{E}}{dt} = A\vec{E},\tag{E}
$$

where A is the transition matrix

Table A contains the definitions of the parameters used in this matrix. In the general case we should include in the above matrix the rate constants ω^{ADP} and ω^{P1P} , which were excluded because $[ADP] \approx [P1P] \approx 0$. Furthermore, the matrix A could be time-dependent, through the rates ω^{ATP} and ω^{P1} which depend on [ATP] and [P1]. Due to the minimum consumption of these substances, we assume the matrix to be constant.

The matrix A is the infinitesimal generator of the continuous time Markov process describing \vec{E} evolution. All eigenvalues λ_i of such matrices are negative, except for of one which is null, $\lambda_0 = 0$.

By using the eigenvectors \vec{E}_i of A, the initial state can be written as

$$
\vec{E}(0) = \sum_{i=0}^{8} c_i \vec{E}_i,
$$
 (G)

where the coefficients c_i are determined by solving this linear system at time $t = 0$. With these coefficients, the state of the enzyme as function of time can be written as

$$
\vec{E}(t) = c_0 \vec{E}_0 + \sum_{i=1}^{8} c_i \vec{E}_i e^{-t/\tau_i},
$$
\n(H)

where we used the timescale associated with each eigenvalue,

$$
\tau_i = -\frac{1}{\lambda_i}.\tag{I}
$$

We choose the index of the eigenvalues such that $\tau_1 > \tau_2 > \cdots > \tau_8$. From Eq. (H) at $t \to \infty$ and Eq. (B), we conclude that

$$
c_0 = \frac{[E]_{\text{tot}}}{\|E_0\|}.\tag{J}
$$

The mean lifetimes of the transients, τ_1, \cdots, τ_8 , are associated with the eigenvectors $\vec{E}_1, \cdots, \vec{E}_8$. The longest lasting transient is the one with the longest timescale, τ_1 ,

Table A. Symbols used in the paper. The role played by most of them are illustrated in Fig. 1.

which we will take as the *relaxation time*, $\tau \equiv \tau_1$. It means that the steady state is only reached when $t \gg \tau$. The steady state is the eigenvector \vec{E}_0 of the null eigenvalue.

The use of the SDS sample buffer in the experiments to stop the chemical reaction means that the measure of $[PIP]$ include the free and the bound proteins,

$$
[P1P_T] = [P1P] + [ATP \cdot E \cdot P1P] + [\cdot \cdot \cdot E \cdot P1P] + [ADP \cdot E \cdot P1P]. \tag{K}
$$

Alternatively, we can calculate $[PIP_T]$ from the net P1 phosphorylation rate

$$
v(t) = k_f^P[\text{ATP} \cdot E \cdot \text{P1} \cdot k_r^P[\text{ADP} \cdot E \cdot \text{P1P}], \tag{L}
$$

with $[ATP·E·P1]$ and $[ADP·E·P1P]$ obtained from Eq. (H). We can now calculate the total phosphorylated P1 as

$$
[\mathbf{P1P}_T](t) = \int_0^t v(t')dt'.
$$
 (M)

From this, we can write the mean phosphorylation rate as

$$
\bar{v}(t) = \frac{1}{t} \int_0^t v(t')dt'.
$$
\n(N)