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Abstract: ATAC-cap-seq is a high-throughput sequencing method that combines targeted nucleic
acid enrichment of precipitated DNA fragments with an upstream ATAC-seq step.
There are increased analytical difficulties arising from working with a set of regions of
interest that may be small in number and biologically dependent. Common statistical
pipelines for RNAseq might be assumed to apply but can give misleading results on
ATAC-cap-seq data. A tool is needed to allow a non-specialist user to quickly and
easily summarise data and apply sensible and effective normalisation and analysis.

We developed atacR to allow a user to easily analyse their ATAC enrichment
experiment. It provides comprehensive summary functions and diagnostic plots for
studying enriched tag abundance. Applying between-sample normalisation is made
straightforward and functions for normalising based on user-defined control regions,
whole library size and regions selected from the  least variable regions in a dataset are
provided. Three methods for detecting differential abundance of tags from enriched
methods are provided, including Bootstrap $t$, Bayes Factor and a wrapped version of
the standard exact test in the edgeR package. We compared the precision, recall and
F-score of each detection method on resampled datasets at varying replicate,
significance threshold and genes changed, we found that the Bayes factor method had
greatest overall detection power, though edgeR was slightly stronger in simulations
with lower numbers of genes changed.

Our package allows a non-specialist user to easily and effectively apply methods
appropriate to the analysis of ATAC-cap-seq in a reproducible manner. The package is
implemented in pure R and is fully interoperable with common workflows in
Bioconductor.
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Response to Reviewers: Dear Editor,

Thanks for giving us the opportunity to respond to the reviewers comments. I believe
that I have addressed them all. A number of the comments this time were seemingly
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included as comments in general or that did not need any action in the manuscript. I
have answered those as if they were suggestions for changes or comments on the
work itself. I have pasted below a point by point response to the reviewer.

Many thanks for your work

Dan MacLean

Point-by-point response

> 1. I am familiar with capture experiments. However, it is customary and good
scientific practice to cite previous papers that have used a given technique, particularly
when publishing analysis methods for said techniques.
> I also understand that this is a software application manuscript, but usually, software
is written to analyze data from existing experiments and therefore proper
contextualization is needed.
> Aren't there any papers published employing ATAC-seq followed by capture? I am
wondering if the authors are proposing this method? If so, this should be clear in the
text. The way it's written, it seems like ATAC-cap-seq is an established technique that
has been used elsewhere.
> This manuscript must properly contextualize this tool and the authors should
therefore state that they are proposing this technique. The description of the procedure
now provided to reviewer 2 seems adequate, but as there is literature about capture-
seq techniques, they should be cited.

The reviewer is correct, existing methodology should be cited, but as we pointed out in
the previous response there are no prior ATAC-cap-seq experiments. We have cited
some capture-sequence experiments. We understand the direction of the reviewers
comments and sympathise, but we dont feel it fair or balanced to suggest that our
approach is not following proper scientific practice because we have not cited, when
(as we have pointed out in the previous responses) no such specific citation exists.

The reviewer makes the point that "usually, software is written to analyze data from
existing experiments", and we think the key word here is "usually". In a lot of
experiments you do get a situation where a biologist runs ahead and generates a lot of
data and usually this is done without considering how the data are to be analysed. It
will be something farmed out to a bioinformatician/statistician to deal with as best as
can be done given the often poor state of the experimental design. Experiments are
better designed if proper consideration of how to analyse them is done at the design
phase. We have tried to do that here hence our workflow for a data type that is not yet
directly citable as an extant, peer-reviewed published data set. We have plenty of
samples for this in hand, but these have not gone through the long process of
completing the biological experiments and further the publishing process so cannot yet
be cited directly. However, ATAC-seq is cited, Cap-seq is cited and are known enough
such that the two types can be combined to simulate and prepare software to analyse
with.

The reviewer creates something of a false dichotomy when they state "the authors
should therefore state that they are proposing this technique.". Im not sure we are
proposing the technique, it may not be published elsewhere, but there also isn't a real
example of it and its biological application in this manuscript. Furthermore we don't
believe its such a novel idea that it needs to be proposed in such a sense.
Combination of DNA extracted from some sample and then enrichment is a trivial idea
at this time. We analyse simulated data to assess a workflow for data of that type. I
think we should be wary of implying priority trying to claim priority for ATAC-cap-seq
when no physical experiment exists here.

> I suggest rewriting the 2 first paragraphs of the introduction:
> - do not mention ATAC-cap in the first paragraph. Replace ATAC-cap-seq with
ATAC-seq in the first sentence.
> - start a new paragraph to describe capture (paragraph 2).
> - move "Capture-seq is a cost-effective alternative..." to the the new paragraph 2
above.
> - it should be kept in mind that while capture-seq experiments are useful to target

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



small sequencing spaces, the user still needs to sequence the data. This means either
sharing a lane with other users, which complicates logistics, or pooling several
replicates and experiments, which also complicates logistics. There is also an upfront
cost to purchase baits, which only makes sense if capturing large numbers of
replicates or experiments.
> - as ATAC-cap-seq doesn't seem to have been used in any publications, it shouldn't
be mentioned as if it is an existing method. Instead, it should be presented as a new
possibility proposed by the authors and put in the context of other capture-seq
methods. I would suggest something like "Similarly to other methods (refs, examples,
etc), one could envision coupling ATAC-seq with capture..."
> - present the software

We have approached the re-contextulisation by re-wording the first sentence to read:
"ATAC-cap-seq can be conceptualised as a combination of two pre-existing, widely-
used methods: the high-throughput sequencing of DNA from targeted enrichment
capture performed on DNA fragments obtained from prior Assay for Transposase-
Accessible Chromatin (ATAC)". Furthermore we have added the following penultimate
sentence to the end of the first paragraph "It is a trivial step to consider combining
ATAC-seq and capture to use the advantages of each in a single experiment.
However, doing so will raise new analytic concerns, discussed more fully below."

We have done the above rather than applying the suggested edit, the suggested edit
boils down to removing the first sentence which very briefly summarises ATAC-cap-seq
and jumping straight into describing the preliminary upstream ATAC-step. In our view
the first sentence gives a very high overview of what is expanded on subsequently and
avoids giving the impression that the main object is ATAC-seq  The other suggested
edits seem to follow the flow of the manuscript as it is anyway (describe atac-seq, new
paragraph, describe capture, present software).

> 2. Can atacr be used for other capture data, for example ChIP-seq? Are there any
parameters that are tuned for ATAC? Why did the authors choose to focus on ATAC?

In principal, yes, atacR could be used on ChIP-seq, but its probably not the most
straightforward workflow for the beginning ChIP-seq analyst. A bench biologist trying to
analyse ChIP-seq data would be best served by the numerous whole genome
workflows that are avaialbe for that sort of data. The advantage of atacR for reduced
representation data is that it packages up the fiddly and code heavy subsetting and
cross-referencing of the regions corresponding to the baits from the whole genome and
makes it easy for the beginning user to work with particular reference to the regions of
interest.

We developed atacR because it is the data problem we have in hand and for which we
found a useable solution lacking. atacR helps bridge the gap between the ChIP-seq
tools and the ATAC-cap-seq problem.

> 3. My comment about window stitching was in reference to tiling experiments with
overlapping windows, such as the region chr1:244,889-249,963 in the atacr example
data. It's now clear that atacr will not stitch consecutive windows that are all differential,
but merely report multiple windows, even if they are redundant.

We are pleased that the clarification was good enough to explain the operation of
atacR.

> 4. The comment above is related to my previous comment on a comparison between
atacr and existing peak caller approaches, which wasn't about peak calling itself, but
about the differential windows. In the "peak caller" approach, users usually first find
peaks, overlap them across replicates and expand them, count reads and perform
differential count comparison. One contiguous region will be reported as differential. In
atacr, this same region could be reported as a number of small regions, depending on
the size of the baits (and likely if used with ChIP of certain histone marks), hence my
curiosity to see how the two approaches compare.

Thanks to the reviewer for clarifying the nature of the comment, which we believe we
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answered in the earlier response.

> 5. What data is being plotted in the PCA? Raw counts or log transformed?
Normalized? Lack of normalization and raw counts could explain the poor grouping of
the samples. Normalized, log transformed data should be used instead for exploration
of the data.

It is not clear to what the reviewer is referring. We presume that the PCA is the
_example_ of how to generate a PCA plot in the atacR documentation/help as no PCA
is done or concluded from or referred to in the manuscript. With regard to the PCA in
the help document - that PCA is done on non-normalised data, as is clear from the
tutorial and the arguments to the function made therein.  The didactic structure of the
tutorial document makes it easier to introduce the function as a QC/investigatory
function before we get to the thornier issue of normalisation. In any analysis the user is
able
to run the PCA plot at any time, any number of times on any section of the data, so can
easily do it before or after normalisation, according to what the user thinks is a good
approach for their experiment.

> 6. The Goodness of fit normalization method relies on the existence of several
windows that are invariable. What is the minimum number/proportion of control
windows that the user should specify? Some recommendation should be provided so
users can design their baits accordingly.

Goodness of Fit is more subtle than that. It actually bridges the gap between using an
invariant set of windows approach (which is accomodated in atacR by an appropriate
function as described in the manuscript and tutorial/documentation) and total-count
based normalisation.  GOF normalisation will find the _least_ variable windows within a
threshold - it does not rely on an absolutely invariant set. The algorithm for computing
this set is dynamic and if the windows are too variable a good set of invariant windows
will not be found. The windows that are deemed invariant can conceivably be different
from sample to sample. The original PoissonSeq paper in which the GoF normalisation
is developed is cited.

We do not think it is wise to recommend a proportion of windows for users to design
their baits. There isn't enough data available for us to make such a calculation and
every experimental system would be different. We would hate if a number we
suggested on not very broad data became used. If an experimenter is to choose to use
an invariant set then they should be responsible for determining the proportion needed
based on the variability in their experimental setup.

> 7. As far as I know, edgeR requires raw counts and scaling factors instead of
normalized counts. The authors should check whether their normalization doesn't
violate edgeR assumptions.

This is correct. But we don't force users to put normalised data through edgeR. We
provide two other functions that are suitable for the normalised data and provide
edgeR for situations that are appropriate - when data have only a few expected
changing windows. The analysis on data described in the manuscript do not use any
normalisations.

> 8. Why is the term "gene" used (for example in the normalization vignette and in
Figure 2)?

In this data, the baits correspond to genic regions. It is a simple mix-up in terms while
writing and has been corrected.

> 9. Regarding my comment in submission 1, in Figure 1E, on the extreme left, the
sample labeled as control_003 has a very tall bar, while the other 2 control samples
have very low bars. Two treatment samples have high bars in the same location, so
maybe this was a sample swap - although it could be variation in the data (in which
case more samples would be needed to confirm this difference).
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We have checked carefully and the data are correctly labelled, the reviewer is correct
to point out these data are variable, their observation is sound. The figure displays
sample data only that are not used in concluding anything biological or methodological
in the manuscript.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract

Background ATAC-cap-seq is a high-throughput sequencing method that combines ATAC-seq with targeted nucleic acid
enrichment of precipitated DNA fragment. There are increased analytical di�culties arising from working with a set of
regions of interest that may be small in number and biologically dependent. Common statistical pipelines for RNAseq
might be assumed to apply but can give misleading results on ATAC-cap-seq data. A tool is needed to allow a
non-specialist user to quickly and easily summarise data and apply sensible and e�ective normalisation and analysis.
Results We developed atacR to allow a user to easily analyse their ATAC enrichment experiment. It provides comprehensive
summary functions and diagnostic plots for studying enriched tag abundance. Applying between-sample normalisation is
made straightforward and functions for normalising based on user-de�ned control regions, whole library size and regions
selected from the least variable regions in a dataset are provided. Three methods for detecting di�erential abundance of
tags from enriched methods are provided, including Bootstrap t, Bayes Factor and a wrapped version of the standard exact
test in the edgeR package. We compared the precision, recall and F-score of each detection method on resampled datasets
at varying replicate, signi�cance threshold and genes changed, we found that the Bayes factor method had greatest overall
detection power, though edgeR was slightly stronger in simulations with lower numbers of genes changed. Conclusions
Our package allows a non-specialist user to easily and e�ectively apply methods appropriate to the analysis of
ATAC-cap-seq in a reproducible manner. The package is implemented in pure R and is fully interoperable with common
work�ows in Bioconductor.
Key words: ATAC-seq; capture-seq; RNAseq; genomics; R; work�ows;

Introduction

ATAC-cap-seq can be conceptualised as a combination of two
pre-existing, widely-used methods: the high-throughput se-
quencing of DNA from targeted enrichment capture performed
on DNA fragments obtained from prior Assay for Transposase-
Accessible Chromatin (ATAC)[1]. ATAC-seq allows for rapid de-

tection of accessible chromatin that may indicate open chro-
matin, DNA-binding protein binding sites and nucleosome po-
sition. As ATAC-seq is fast and requires low amounts of input
material [2] it is a popular and widely applicable assay used in
a range of developmental [3, 4] , medical [5, 6], environmental
[7, 8] and technical studies [9]. Targeted sequence capture uses
oligonucleotide baits to extract speci�c DNA fragments from a
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mixture and when combined with ATAC-seq allows an increase
in sensitivity of detection and throughput for particular prese-
lected genome regions at the expense of genomewide detection.
It is a trivial step to consider combining ATAC-seq and capture
to use the advantages of each in a single experiment. However,
doing so will raise new analytic concerns, discussed more fully
below. ATAC-cap-seq does not show that chromatin is open
in general, unless baits are tiled deliberately across continuous
wide regions.
A typical ATAC-cap-seq may be done by beginning with an

ATAC-seq library as described previously [2]. Next, small (ap-
proximately 9 nt) indexed sequence barcodes can be used to
amplify the ATAC libraries, Fragments are size selected, e.g.
using SageELF to enrich sequences between 300bp and 1.2kb
to give a uniform size distribution for multiplexing samples
and replicates. Baits are designed and synthesised as 120 nt
single-strand RNA baits covalently bound to biotinylated mag-
netic beads. These can be used in sequence capture with the
multiplexed ATAC libraries. Libraries are quality checked then
sequenced. Capture-seq [10, 11] is a cost-e�ective alternative
to expensive whole genome analysis. Scientists can focus on
loci of interest and multiplex multiple samples and data types
for the same sequencing cost as a single whole genome sample.
Analysis of sequence reads from ATAC-seq begins with

mapping and alignment to a genome followed by peak detec-
tion to identify read enriched regions. A wide range of tools
have been developed to perform peak �nding, notably MACS
[12], HOMER [13] and SICER [14]. In these the genome is
divided into windows and the read counts in those analysed.
RNAseq packages that deal with read counts post-mapping
work on estimates of read counts corresponding to regions that
can be thought of as windows that represent genes or tran-
scripts. The edgeR [15] and DESeq [16] packages implement
Negative Binomial models to estimate di�erential counts be-
tween samples. The Bioconductor [17] package csaw uses �xed
width windows across the entire genome [18].
The enrichment capture step can produce a data set with

characteristics that mean work�ows designed for many thou-
sands of windows may not give best results. In particular the
number of regions represented in the target set may be small
(many tens rather than some thousands). Also the selected re-
gions in an enrichment capture experiment are likely to be re-
lated biologically and can conceivably co-vary as a small num-
ber or even a single unit. The count of each feature is also de-
pendent on the magnitude of its abundance, the capture step
results in over-representation of highly abundant features in
the captured mixture. These unique features of ATAC-cap-seq
data mean that normalisation and di�erential count estimation
must be applied carefully.
The tools and methods for solving this problem already ex-

ist, but they have not been used together frequently in bioin-
formatics analysis, which have tended toward whole genome,
non-enriched sample analysis. Consequently a non-specialist
user may �nd it di�cult to bring useful methods together.
Hence a work�ow that is based around these methods would
prove useful to those beginning ATAC-cap-seq analysis from a
non-specialist background.

Findings

A key aim of our atacR package is to allow the user to eas-
ily assess the success of their ATAC enrichment experiment
and determine what further preparative work is required. It
achieves this with comprehensive summaries and functions for
diagnostic plots. Applying between sample normalisation is
made straightforward. Functions to apply pre-selected con-
trol gene normalisation, library size normalisation or normal-

isation based on the least varying regions in the sample are
implemented. Di�erential count estimation functions for the
application of edgeR exact-test, bootstrap t-tests and a Bayes
factor t-test are provided. The package is implemented in pure
R, it’s base objects are standard Bioconductor and as such is
designed to be fully interoperable with common work�ows in
the Bioconductor framework.

Work�ow

The atacR work�ow is based around three major steps - data
loading and inspection, identi�cation of best targets to use
for normalisation and detection of di�erential count estimates.
The package provides functions that make each step of the
work�ow straightforward and helps to make these potentially
complex analyses more reproducible and the components re-
useable in di�erent contexts. Tutorial vignettes are provided
that can be loaded directly from the R console.
Loading
The atacR package relies on Bioconductor SummarizedExper-
iment [19] container objects to record counts in user de�ned
windows. Window locations, BAM �le paths and associated
sample information are speci�ed from GFF �les provided by
the user. Read counts are loaded and calculated from BAM us-
ing the windowCounts method in R csaw [18] or Rsamtools [20].
A single function allows loading and read �ltering directly from
BAM �les. The atacR package prepares these data into struc-
tures suitable for downstream analysis.
The atacr object
The atacr object describes sample metadata, bait locations and
the counts in target and non-target windows. Generic sum-
mary and plot methods are available that quickly present diag-
nostic information from which the success of the experiment
with respect to read alignment to on/o� targets can swiftly be
ascertained. Functions operating on this object each have a ’by’
parameter which allows the user to specify on/o� target sub-
sets to analyse. As the atacr object is essentially an R list, new
data containing the counts after application of any processing
step can be added to a custom slot and analysed using atacr
functions in the same syntax.
Diagnostic plots and normalisations
Data in the atacr object can be assessed for sample bias us-
ing specialised plot functions on a per sample and treatment
basis, Plots can be generated using functions for whole sam-
ple count histograms, chromosome coverage density, MA plots,
heatmaps comparing sample counts, density plots of genome
regions designated on/o� target and density plots of variability
in regions nominated as normalisation controls. See Figure 1
for examples.
atacR provides a small set of useful normalisation methods

applicable to small sets of target windows or those in which
the large proportion show the same change in di�erential ac-
cessibility. A straightforward library size normalisation is pro-
vided. For most ATAC purposes this will be underpowered, be-
cause the low number of windows or high proportions of chang-
ing windows will cause skew between samples. This method
useful when the experiment has reasonably high counts (> 20
mean) and it is certain few windows (< 10%) will display di�er-
ential counts. The atacR package also implements a dynamic
method based on estimating the Goodness of Fit (GoF) measure
described in [21]. This method calculates GoF, a window/gene
level measure of variability across all samples and selects the
windows with lowest GoF as the subset on which to normalise.
It is fast, automatically �nds the least varying and best fea-
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Table 1. Parameters for simulated datasets
Parameters Values Used
Replicates per treatment 3,5,10
Number of counts changed 5, 10, 20
Fold change 1,5, 2, 4
Signi�cance detection level 0.1, 0.05, 0.01*

*For Bayes Factor runs, signi�cance levels were Bayes Factor of 1.1, 1.5 and 2
were used.

tures in the data to normalise with and does a reasonable job
of between-sample normalisation. It is usually the best one to
choose. It is particularly useful when it is not known whether
many windows will be changing or just a few will be, as it
should perform the same regardless. Further to library size
and GoF a user-led method is provided in which control win-
dows corresponding to regions of the genome not expected to
show di�erential accessibility can be de�ned in a text �le. This
is passed to a normalisation function that uses di�erences in
these windows between samples or treatments to scale whole
experiment counts. For ease of use with other normalisation
strategies, a set of custom normalisation factors can also be
provided as a simple vector and used directly.

Di�erential abundance and comparisons

The atacR package implements three methods of detecting dif-
ferential abundance; the standard and e�ective edgeR method
is wrapped for ease- of-use. A bootstrap-t test and Bayes fac-
tor method are also provided. These can be run in single factor
manner on pairs of samples, or on all samples simultaneously
with a common reference sample speci�ed by the user.
We compared the precision, recall and F-score of each

method on simulated ATAC-cap-RNAseq data at varying repli-
cate, signi�cance threshold and genes changed. To create a
simulated dataset we examined counts from three indepen-
tent RNA-capseq datasets of 52 target enriched regions. These
showed a double peak in the count distribution, though the
residual to the mean count was roughly normally distributed
(Supplemental Information 1). We used the count set as a
sample from which to randomly select base counts and from
these a preselected number were multiplied in all replicates of
the treatment by a preselected factor to represent di�erential
expression. Experimental noise was also simulated for each
count. At each combination of parameters (Table 1 ) The edgeR
exact-test, Bootstrap t test and Bayes Factor methods in atacR
were used to identify di�erentially abundant counts. We calcu-
lated precision, recall and F as described in methods. Ten itera-
tions of the simulation were run andmean plotted in Figure 2 B
and C. The edgeRmethod performed best in recall and precision
in all simulations with lower numbers of changed windows (5)
whereas Bootstrap t and Bayes Factor were stronger to recall
at 10 and 20 changed windows. The Bootstrap showed great-
est precision at 20 changed windows. The F-score represents a
balance between precision and recall, here we observed slightly
larger F-score Bayes Factor over all parameters values tested
when 20 windows were changed. The edgeR method had high-
est F-scores when only �ve windows had di�erential counts.
From this we conclude that Bayes Factor is a likely good all
round method in data with many changing windows (in this
experiment approximately 40 percent of windows), whereas
edgeR out-performs at lower levels (approximately ten per-
cent).

Table 2. Machine used to run analyses.
Environment Parameters Values
platform x86_64-apple-darwin15.6.0
arch x86_64
os darwin15.6.0
system x86_64, darwin15.6.0
major 3
minor 4.2
year 2017
month 09
day 28
svn rev 73368
language R
version.string R version 3.4.2 (2017-09-28)
nickname Short Summer

Methods

To run simulations, 52 fake genome windows were de�ned in a
control and treatment experiment. The counts for each window
were selected from a dataset of 156 counts from a pilot wild-
type Arabidopsis RNAcap-seq experiment. These counts are
stored in the atacR package as a data object ‘athal_wt_counts’
for re-use. At each run of the simulation the replicates per
treatment, number of counts changed, the fold ratio by which
the counts change and the signi�cance level at which detec-
tion was carried out was varied. For each combination of pa-
rameters described in Table 1 we carried out ten repetitions
of the simulation. The edgeR exact-test, Bootstrap t test and
Bayes Factor t test were performed on each run using atacR
and counted True Positive (TP) False Positive (FP) and False
Negatives. TP was de�ned as the number of windows set with
di�erential counts that were correctly called by the detection
method. FP was de�ned as the number of windows that were
called but were not set with di�erential counts. FN is the num-
ber of windows that were set as di�erential but were not called
di�erential. From these precision, recall and F were calculated
as below.

Precision = TP
TP + FP (1)

Recall = TP
FN + TP (2)

F = 2precision× recall
precision + recall (3)

The simulated data experiments were carried out in RStu-
dio. The whole experiment code is provided in Supplemental
Materials. These are executable RMD �les that can be re-run
to reproduce our experiment exactly in the R programming lan-
guage.
The version of atacR used was 0.4.13. The base counts that

were modi�ed in simulations are available in the atacR package
in the object ‘atacr::athal_wt_counts’
Simulations and analyses were run on an Apple Macintosh

computer with R and OS speci�cations as described in Table 2

Availability of source code and requirements

• Project name: atacR
• Project home page: https://github.com/TeamMacLean/atacr
• Operating system(s): Platform independent
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Figure 1. Example plots from atacR, generated on simulated data. A. Per sample coverage count density, B. GoF estimate density plot for control / non-control
windows. C. Per sample MA plot. D. Per sample similarity heatmap. E. Per sample chromosome coverage count histogram

• Programming language: R
• License: GNU GPL 3
The library is provided as an R package
that can be installed from Github using dev-
tools::install_from_github(’TeamMacLean/atacr’)

Availability of supporting data and materials

The R code supporting the results of this article is available
in the [https://github.com/TeamMacLean/atacr] repository. The
software is registered in the SciCrunch.org database with a Re-
search Resource Identi�cation Initiative ID of SCR_016286.
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