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Abstract

Background ATAC-cap-seq is a high-throughput sequencing method that combines ATAC-seq with targeted nucleic acid
enrichment of precipitated DNA fragment. There are increased analytical di�culties arising from working with a set of
regions of interest that may be small in number and biologically dependent. Common statistical pipelines for RNAseq
might be assumed to apply but can give misleading results on ATAC-cap-seq data. A tool is needed to allow a
non-specialist user to quickly and easily summarise data and apply sensible and e�ective normalisation and analysis.
Results We developed atacR to allow a user to easily analyse their ATAC enrichment experiment. It provides comprehensive
summary functions and diagnostic plots for studying enriched tag abundance. Applying between-sample normalisation is
made straightforward and functions for normalising based on user-de�ned control regions, whole library size and regions
selected from the least variable regions in a dataset are provided. Three methods for detecting di�erential abundance of
tags from enriched methods are provided, including Bootstrap t, Bayes Factor and a wrapped version of the standard exact
test in the edgeR package. We compared the precision, recall and F-score of each detection method on resampled datasets
at varying replicate, signi�cance threshold and genes changed, we found that the Bayes factor method had greatest overall
detection power, though edgeR was slightly stronger in simulations with lower numbers of genes changed. Conclusions
Our package allows a non-specialist user to easily and e�ectively apply methods appropriate to the analysis of
ATAC-cap-seq in a reproducible manner. The package is implemented in pure R and is fully interoperable with common
work�ows in Bioconductor.
Key words: ATAC-seq; capture-seq; RNAseq; genomics; R; work�ows;

Introduction

ATAC-cap-seq can be conceptualised as a combination of two
pre-existing, widely-used methods: the high-throughput se-
quencing of DNA from targeted enrichment capture performed
on DNA fragments obtained from prior Assay for Transposase-
Accessible Chromatin (ATAC)[1]. ATAC-seq allows for rapid de-

tection of accessible chromatin that may indicate open chro-
matin, DNA-binding protein binding sites and nucleosome po-
sition. As ATAC-seq is fast and requires low amounts of input
material [2] it is a popular and widely applicable assay used in
a range of developmental [3, 4] , medical [5, 6], environmental
[7, 8] and technical studies [9]. Targeted sequence capture uses
oligonucleotide baits to extract speci�c DNA fragments from a
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mixture and when combined with ATAC-seq allows an increase
in sensitivity of detection and throughput for particular prese-
lected genome regions at the expense of genomewide detection.
It is a trivial step to consider combining ATAC-seq and capture
to use the advantages of each in a single experiment. However,
doing so will raise new analytic concerns, discussed more fully
below. ATAC-cap-seq does not show that chromatin is open
in general, unless baits are tiled deliberately across continuous
wide regions.
A typical ATAC-cap-seq may be done by beginning with an

ATAC-seq library as described previously [2]. Next, small (ap-
proximately 9 nt) indexed sequence barcodes can be used to
amplify the ATAC libraries, Fragments are size selected, e.g.
using SageELF to enrich sequences between 300bp and 1.2kb
to give a uniform size distribution for multiplexing samples
and replicates. Baits are designed and synthesised as 120 nt
single-strand RNA baits covalently bound to biotinylated mag-
netic beads. These can be used in sequence capture with the
multiplexed ATAC libraries. Libraries are quality checked then
sequenced. Capture-seq [10, 11] is a cost-e�ective alternative
to expensive whole genome analysis. Scientists can focus on
loci of interest and multiplex multiple samples and data types
for the same sequencing cost as a single whole genome sample.
Analysis of sequence reads from ATAC-seq begins with

mapping and alignment to a genome followed by peak detec-
tion to identify read enriched regions. A wide range of tools
have been developed to perform peak �nding, notably MACS
[12], HOMER [13] and SICER [14]. In these the genome is
divided into windows and the read counts in those analysed.
RNAseq packages that deal with read counts post-mapping
work on estimates of read counts corresponding to regions that
can be thought of as windows that represent genes or tran-
scripts. The edgeR [15] and DESeq [16] packages implement
Negative Binomial models to estimate di�erential counts be-
tween samples. The Bioconductor [17] package csaw uses �xed
width windows across the entire genome [18].
The enrichment capture step can produce a data set with

characteristics that mean work�ows designed for many thou-
sands of windows may not give best results. In particular the
number of regions represented in the target set may be small
(many tens rather than some thousands). Also the selected re-
gions in an enrichment capture experiment are likely to be re-
lated biologically and can conceivably co-vary as a small num-
ber or even a single unit. The count of each feature is also de-
pendent on the magnitude of its abundance, the capture step
results in over-representation of highly abundant features in
the captured mixture. These unique features of ATAC-cap-seq
data mean that normalisation and di�erential count estimation
must be applied carefully.
The tools and methods for solving this problem already ex-

ist, but they have not been used together frequently in bioin-
formatics analysis, which have tended toward whole genome,
non-enriched sample analysis. Consequently a non-specialist
user may �nd it di�cult to bring useful methods together.
Hence a work�ow that is based around these methods would
prove useful to those beginning ATAC-cap-seq analysis from a
non-specialist background.

Findings

A key aim of our atacR package is to allow the user to eas-
ily assess the success of their ATAC enrichment experiment
and determine what further preparative work is required. It
achieves this with comprehensive summaries and functions for
diagnostic plots. Applying between sample normalisation is
made straightforward. Functions to apply pre-selected con-
trol gene normalisation, library size normalisation or normal-

isation based on the least varying regions in the sample are
implemented. Di�erential count estimation functions for the
application of edgeR exact-test, bootstrap t-tests and a Bayes
factor t-test are provided. The package is implemented in pure
R, it’s base objects are standard Bioconductor and as such is
designed to be fully interoperable with common work�ows in
the Bioconductor framework.

Work�ow

The atacR work�ow is based around three major steps - data
loading and inspection, identi�cation of best targets to use
for normalisation and detection of di�erential count estimates.
The package provides functions that make each step of the
work�ow straightforward and helps to make these potentially
complex analyses more reproducible and the components re-
useable in di�erent contexts. Tutorial vignettes are provided
that can be loaded directly from the R console.
Loading
The atacR package relies on Bioconductor SummarizedExper-
iment [19] container objects to record counts in user de�ned
windows. Window locations, BAM �le paths and associated
sample information are speci�ed from GFF �les provided by
the user. Read counts are loaded and calculated from BAM us-
ing the windowCounts method in R csaw [18] or Rsamtools [20].
A single function allows loading and read �ltering directly from
BAM �les. The atacR package prepares these data into struc-
tures suitable for downstream analysis.
The atacr object
The atacr object describes sample metadata, bait locations and
the counts in target and non-target windows. Generic sum-
mary and plot methods are available that quickly present diag-
nostic information from which the success of the experiment
with respect to read alignment to on/o� targets can swiftly be
ascertained. Functions operating on this object each have a ’by’
parameter which allows the user to specify on/o� target sub-
sets to analyse. As the atacr object is essentially an R list, new
data containing the counts after application of any processing
step can be added to a custom slot and analysed using atacr
functions in the same syntax.
Diagnostic plots and normalisations
Data in the atacr object can be assessed for sample bias us-
ing specialised plot functions on a per sample and treatment
basis, Plots can be generated using functions for whole sam-
ple count histograms, chromosome coverage density, MA plots,
heatmaps comparing sample counts, density plots of genome
regions designated on/o� target and density plots of variability
in regions nominated as normalisation controls. See Figure 1
for examples.
atacR provides a small set of useful normalisation methods

applicable to small sets of target windows or those in which
the large proportion show the same change in di�erential ac-
cessibility. A straightforward library size normalisation is pro-
vided. For most ATAC purposes this will be underpowered, be-
cause the low number of windows or high proportions of chang-
ing windows will cause skew between samples. This method
useful when the experiment has reasonably high counts (> 20
mean) and it is certain few windows (< 10%) will display di�er-
ential counts. The atacR package also implements a dynamic
method based on estimating the Goodness of Fit (GoF) measure
described in [21]. This method calculates GoF, a window/gene
level measure of variability across all samples and selects the
windows with lowest GoF as the subset on which to normalise.
It is fast, automatically �nds the least varying and best fea-
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Table 1. Parameters for simulated datasets
Parameters Values Used
Replicates per treatment 3,5,10
Number of counts changed 5, 10, 20
Fold change 1,5, 2, 4
Signi�cance detection level 0.1, 0.05, 0.01*

*For Bayes Factor runs, signi�cance levels were Bayes Factor of 1.1, 1.5 and 2
were used.

tures in the data to normalise with and does a reasonable job
of between-sample normalisation. It is usually the best one to
choose. It is particularly useful when it is not known whether
many windows will be changing or just a few will be, as it
should perform the same regardless. Further to library size
and GoF a user-led method is provided in which control win-
dows corresponding to regions of the genome not expected to
show di�erential accessibility can be de�ned in a text �le. This
is passed to a normalisation function that uses di�erences in
these windows between samples or treatments to scale whole
experiment counts. For ease of use with other normalisation
strategies, a set of custom normalisation factors can also be
provided as a simple vector and used directly.

Di�erential abundance and comparisons

The atacR package implements three methods of detecting dif-
ferential abundance; the standard and e�ective edgeR method
is wrapped for ease- of-use. A bootstrap-t test and Bayes fac-
tor method are also provided. These can be run in single factor
manner on pairs of samples, or on all samples simultaneously
with a common reference sample speci�ed by the user.
We compared the precision, recall and F-score of each

method on simulated ATAC-cap-RNAseq data at varying repli-
cate, signi�cance threshold and genes changed. To create a
simulated dataset we examined counts from three indepen-
tent RNA-capseq datasets of 52 target enriched regions. These
showed a double peak in the count distribution, though the
residual to the mean count was roughly normally distributed
(Supplemental Information 1). We used the count set as a
sample from which to randomly select base counts and from
these a preselected number were multiplied in all replicates of
the treatment by a preselected factor to represent di�erential
expression. Experimental noise was also simulated for each
count. At each combination of parameters (Table 1 ) The edgeR
exact-test, Bootstrap t test and Bayes Factor methods in atacR
were used to identify di�erentially abundant counts. We calcu-
lated precision, recall and F as described in methods. Ten itera-
tions of the simulation were run andmean plotted in Figure 2 B
and C. The edgeRmethod performed best in recall and precision
in all simulations with lower numbers of changed windows (5)
whereas Bootstrap t and Bayes Factor were stronger to recall
at 10 and 20 changed windows. The Bootstrap showed great-
est precision at 20 changed windows. The F-score represents a
balance between precision and recall, here we observed slightly
larger F-score Bayes Factor over all parameters values tested
when 20 windows were changed. The edgeR method had high-
est F-scores when only �ve windows had di�erential counts.
From this we conclude that Bayes Factor is a likely good all
round method in data with many changing windows (in this
experiment approximately 40 percent of windows), whereas
edgeR out-performs at lower levels (approximately ten per-
cent).

Table 2. Machine used to run analyses.
Environment Parameters Values
platform x86_64-apple-darwin15.6.0
arch x86_64
os darwin15.6.0
system x86_64, darwin15.6.0
major 3
minor 4.2
year 2017
month 09
day 28
svn rev 73368
language R
version.string R version 3.4.2 (2017-09-28)
nickname Short Summer

Methods

To run simulations, 52 fake genome windows were de�ned in a
control and treatment experiment. The counts for each window
were selected from a dataset of 156 counts from a pilot wild-
type Arabidopsis RNAcap-seq experiment. These counts are
stored in the atacR package as a data object ‘athal_wt_counts’
for re-use. At each run of the simulation the replicates per
treatment, number of counts changed, the fold ratio by which
the counts change and the signi�cance level at which detec-
tion was carried out was varied. For each combination of pa-
rameters described in Table 1 we carried out ten repetitions
of the simulation. The edgeR exact-test, Bootstrap t test and
Bayes Factor t test were performed on each run using atacR
and counted True Positive (TP) False Positive (FP) and False
Negatives. TP was de�ned as the number of windows set with
di�erential counts that were correctly called by the detection
method. FP was de�ned as the number of windows that were
called but were not set with di�erential counts. FN is the num-
ber of windows that were set as di�erential but were not called
di�erential. From these precision, recall and F were calculated
as below.

Precision = TP
TP + FP (1)

Recall = TP
FN + TP (2)

F = 2precision× recall
precision + recall (3)

The simulated data experiments were carried out in RStu-
dio. The whole experiment code is provided in Supplemental
Materials. These are executable RMD �les that can be re-run
to reproduce our experiment exactly in the R programming lan-
guage.
The version of atacR used was 0.4.13. The base counts that

were modi�ed in simulations are available in the atacR package
in the object ‘atacr::athal_wt_counts’
Simulations and analyses were run on an Apple Macintosh

computer with R and OS speci�cations as described in Table 2

Availability of source code and requirements

• Project name: atacR
• Project home page: https://github.com/TeamMacLean/atacr
• Operating system(s): Platform independent
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A

B
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Figure 1. Example plots from atacR, generated on simulated data. A. Per sample coverage count density, B. GoF estimate density plot for control / non-control
windows. C. Per sample MA plot. D. Per sample similarity heatmap. E. Per sample chromosome coverage count histogram

• Programming language: R
• License: GNU GPL 3
The library is provided as an R package
that can be installed from Github using dev-
tools::install_from_github(’TeamMacLean/atacr’)

Availability of supporting data and materials

The R code supporting the results of this article is available
in the [https://github.com/TeamMacLean/atacr] repository. The
software is registered in the SciCrunch.org database with a Re-
search Resource Identi�cation Initiative ID of SCR_016286.
An archival copy of the code and results of resampling exper-

iments are also available via the GigaScience repository GigaDB
[22]
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