
Reviewers' comments:  

 

 

Reviewer #1 (Remarks to the Author):  

 

This draft presents a longitudinal study (2 years long) on a large cohort of RA patients, in an 

attempt to illuminate mechanisms of clinical remission.  

In this Big Data study, the authors take a multi-omics perspective, collecting data from the 

transcriptome, proteome and immunophenotypes from patients, to build predictive models for 

distinguishing between RA patients and healthy controls.  

 

The methods used are solid, and well-explained. I suggest addressing the question of disparity in 

the transcriptome and the proteome among the patients in this large cohort. For example, what is 

the gene expression correlation in the RA patients? Also, were technical replicates used in all/most 

samples? If not, why?  

 

This study offers an influential way of merging clinical, biological and statistical analysis; hopefully 

more influential studies like this will be implemented.  

 

One question to the authors is how the scientific community can use this large dataset/predictive 

modeling they built/performed? Could this dataset be available as an online searchable source? I 

suggest considering to make this available (including the statistical component) through an RShiny 

app. 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

This review focuses on the statistical methodology used in this work, its appropriateness and its 

reproducibility.  

 

The methodology looks globally correct but is somewhat confusing at places. Some details look 

also inconsistent throughout the text (e.g. cohort definition) or are simply missing (e.g. the elastic 

net parameters) and, as such, would prevent this work  

from being reproducible.  

 

The detailed comments are included in an attached file.  

Most of them require some clarifications from the authors to better support the validity of their 

work.  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

In the manuscript entitled “Multi-omics monitoring of drug response in rheumatoid arthritis: in 

pursuit of molecular remission” the authors investigated patients with rheumatoid arthritis (RA) 

before and after initiation of methotrexate, infliximab or tocilizumab therapy by transcriptome, 

proteome and cell type analysis from peripheral blood samples and compared the data to healthy 

controls (HC) and for transcriptome data with other disease conditions. The authors conclude that 

molecular response data may provide more information for stable response prediction and that 

difference between remission and healthy condition displays treatment resistant signatures, which 

may implicate a therapeutic potential for RA.  

 

The manuscript presents extensive data analysis, however, there are major issues, concerning 



data analysis:  

 

1. Comparison between RA and HC blood cell counts indicates elevated white blood cells, which is 

explained by elevated neutrophils and a relative decrease of all other cell types in RA blood. 

Increased cell counts of neutrophils in RA patients are frequently observed and explained by 

increased production in the bone marrow. This so called ‘left shift’ was recently demonstrated also 

for monocytes in RA (PMID:29191820). It can be expected that the changes in whole blood 

transcriptomes are predominantly reflecting such a shift of differential cell type composition in RA. 

Therefore, instead of comparing the differentially expressed genes with lists of functional 

annotations, it would be more informative to investigate how many of these genes are 

differentially expressed between neutrophils and other cell types of the peripheral blood.  

 

Performing such a comparison would demonstrate that indeed almost all top candidate transcripts 

increased in RA are much higher expressed in neutrophils compared to lymphocytes and that 

almost all top transcripts decreased in RA are also lower or lowest in neutrophils and/or belong to 

other cell types. Annotation databases do not distinguish between gene expression in specific 

unstimulated cell types and functional patterns of stimulation. This information can only be 

extracted from the analysis of defined cell types and stimulation conditions. On this basis, the 

differentially expressed transcripts are no more supporting an interferon pathway trigger. If this 

trigger really would exist in RA blood transcriptomes, mapping the differentially expressed genes 

to transcriptomes of cells before and after IFN-stimulation should provide a more robust data 

interpretation and discussion. Data to perform such analyses may be in the hands of the authors 

(cell type transcriptomes) or can be retrieved from public repositories for Affymetrix HG-U133 Plus 

2.0 arrays.  

 

It would be helpful to distinguish more precisely between the up and the down regulated 

transcripts when characterizing their functional aspects and not only refer to all like “The genes 

highly contributed to the transcript-based model...”. It is not clear from reading to what type of 

regulation the tRNA biosynthesis function belongs. It is necessary to look up possible candidates in 

the gene list of supplementary table 2, and even there it is necessary to look at which genes are 

up and which are down and which group is dominant. The detection of tRNA biosynthesis and 

mRNA splicing processes are probably mentioned because of reduced expression in RA. At least, 

when looking up in detail, it should be recognized that there is a reduced expression of 

riboproteins in neutrophils compared to lymphocytes and that these are reduced in RA along with 

the increase of neutrophils. This aspect should be presented as this patterning is very 

characteristic for neutrophils. Whether the “complement pathway” annotation is still a relevant 

functional association, has to be tested by focusing on the precise gene list of the used pathway 

annotation and comparing it with the differentially expressed transcripts between RA and HC whole 

blood and the differential patterning between different leukocyte cell types.  

That complement, which is part of the acute phase reaction produced in the liver, may also 

contribute but on the level of proteome data, can be expected. However, for the transcriptome 

results it should be sorted out whether this pathway is really functionally activated in blood cells.  

 

2. In supplementary table 1 the individual parameters of the DAS28 (tender and swollen joint 

count, as well as VAS of patient self assessment) should be added like ESR is included. This will 

characterize more precisely the clinical situation (see also later). It would also help to better 

understand the remission index in figure 3 if the clinical parameters of TJC, SJC, VAS and ESR 

before and after treatment are displayed for each the 52 patients individually and integrated into 

the red/blue heatmap of figure 3a.  

 

3. It is not astonishing that blocking the acute phase response by inhibiting the IL-6 pathway 

presents with more or less normal levels of the acute phase parameters. It would be more relevant 

to investigate the parameters that reflect the inflammation in the joint (for example tender and 

swollen joint count). These should be presented in supplementary table 4. Where there any 

parameters of inflammation in the joint and destruction of cartilage and bone in the proteome 



screen included. What information can be extracted from these data? Are responses between IFX 

and TCZ still different? Including acute phase response dependent parameters like ESR into the 

assessment of response will produce a bias towards “polishing” the acute phase outcome but may 

not really improve joint inflammation much more than other biologics which target other factors 

that contribute to inflammation in the joint.  

 

4. Considering the bias of the DAS28 parameters for assessment of disease activity and response 

in therapies that target IL-6 signaling, CR and MR should be critically reviewed in the paragraph of 

“MR defines long-term disease activities”. Do individual parameters of the DAS28 (TJC, SJC, VAS, 

ESR) reflect the early CR and the long-term CR all in the same way or are the influences of ESR 

and CrP dominant for the interpretation of CR and MR relationship as it is currently suggested?  

 

5. The patient numbers contributing to individual subgroups that categorize response outcome are 

very small for the individual treatment groups (for example TCZ with 3 patients that are in 

remission according to all three molecular assessments and only one is without MR despite of CR). 

The authors should refer to this problem and argue more carefully with respect to the lack of 

sufficient statistical power for their statements. Future studies with extended numbers of patients 

may change the situation a bit, not completely but strong enough so that the currently favored top 

candidate parameters may change to some extent. This would substantially influence the 

development of biomarker kits for the improvement of outcome prediction and provokes criticism 

for statements like the one in the discussion “… clinical assessments can be replaced with objective 

molecular biomarkers”. More appropriate wording is necessary. May be, it is also worth to point 

out that analyzing not that many patients but individual diseases with much more profound 

molecular screens can strengthen the gain of insight into RA disease characteristics.  

 

6. The authors have focused next on untreatable molecular signatures. Why skipping the 

characteristics of response? Is there a reduction of neutrophil left shift? An increase of 

lymphocytes? Do cell activation patterns, which may exist compared to HC, disappear in 

responders? Such analysis should also concentrate on reference transcriptomes and not only on 

gene lists that belong to annotation terms. Do transcriptome patterns and cell type analysis 

correspond to each other? Are the functions of proteome response patterns associated with the 

functions of transcriptome response patterns?  

 

7. If the response patterns are defined, the untreatable patterns should be investigated in a similar 

way by testing their patterns for overlap with reference transcriptomes of cell types and 

stimulation conditions. Gene lists are not enlightening and lists of REACTOMEs with different 

names but identified by more or less the same genes (proteasome subunits) are not either. In that 

way, figures like supplementary figure 4 are not helpful and even misleading. Are these 

untreatable patterns mostly related to cell type characteristics or particular stimulation conditions? 

The splitting of gene lists according to GSEA defined functions and subsequent mapping of the 

gene sub-groups to transcriptome data is also misleading. Why not testing all untreatable genes in 

an unbiased way? If tested across different cell types from healthy controls, a preliminary rescreen 

that we performed, suggests that the majority of the upregulated genes are related to neutrophils. 

Whether these patterns may also reflect a trigger or function suggested by GSEA lists remains to 

be tested by analyzing reference transcriptomes of stimulation conditions. Otherwise, the gene 

lists of GSEA and functional annotations mostly reflect functional gene set entities which are 

preformed functional units of specialized cell types transcribed already under normal 

(unstimulated) condition but ready to react (increase, decrease, modulate) upon stimulatory 

triggers.  

 

8. The cell type specific transcriptomes used to produce supplementary figure 8 are better applied 

if RA specific i) disease, ii) response and iii) untreatable transcriptome patterns are mapped to 

these reference cell types in order to test the cellular origin of these untreatable expression 

patterns.  

 



9. What is the exact definition of the UTS genes? Only the 800 genes or all in supplementary table 

5? If these genes are tested for cell type specific expression, most of the transcripts increased in 

RA belong to neutrophils and those decreased in RA to lymphocytes, suggesting that the dominant 

effect is related to a common inflammatory shift in blood cell count, which would be expected in 

many diseases.  

 

In summary, the clinical study material and molecular raw data generation is excellent. The 

molecular analysis of transcriptome data is misleading when addressing functional interpretation. 

It is necessary to compare to reference transcriptomes instead of annotation databases as these 

generate confusing and misleading interpretations as described above. A preliminary reanalysis, 

which we performed, suggests that the main effect of differential expression in RA as well as in the 

untreatable transcript signature is related to the increase of neutrophils in RA (main inflammatory 

changes) with relative decrease of lymphocytes. Whether there are any additional effects 

(stimulation, left shift) has to be tested with appropriate reference transcriptomes that investigate 

these effects (for example PMID:29191820 or PMID:27570220). These transcriptome data should 

then be compared to the cell count analysis to confirm the results of both types of analysis. 

Sorting out the different transcriptional effects related to shifts in cellular composition or cell type 

specific changes related to stimulation effects may help to improve the screening for similarities in 

other diseases.  

 

Minor points:  

 

The language should be reviewed by a native speaker.  

 

Supplementary Table 2c should contain a brief explanation for the abbreviations. For example 

what means “DC.rWBC”?  

 

Page-5, 3rd line:  

The term ‘To understand biological molecules ...’, it sounds better if it will be changed to ‘To 

understand the function of biomolecules ….’  

Page-7_legend of figure-1: The term ‘red bar’ is misleading because it’s a vertical thin linePage-10, 

2nd paragraph headline: Print out the abbreviation MR.  

 

 

 



Response to reviewers: NCOMMS-17-27832 

 

We appreciate the reviewers’ comments; they have been addressed in detail as outlined 

below. We have completed a re-analysis with reference transcriptome/proteome data that 

extend our understanding of the cellular origins of molecular alterations in RA with drug 

treatments and improve the clarity and rigor of data analysis. 

 

For clarity, the reviewers’ comments have been italicized.  

 

 

Reviewers' Comments & Responses:  

 

Reviewer #1 (Remarks to the Author): 

This draft presents a longitudinal study (2 years long) on a large cohort of RA patients, in 

an attempt to illuminate mechanisms of clinical remission. 

In this Big Data study, the authors take a multi-omics perspective, collecting data from the 

transcriptome, proteome and immunophenotypes from patients, to build predictive models 

for distinguishing between RA patients and healthy controls. 

 

The methods used are solid, and well-explained. I suggest addressing the question of 

disparity in the transcriptome and the proteome among the patients in this large cohort. 

For example, what is the gene expression correlation in the RA patients? Also, were 

technical replicates used in all/most samples? If not, why? 

 

Response: 



We appreciate the reviewer's kind comments on our work. We agree with the reviewer 

that understanding the heterogeneity/disparity of molecular status in patients with RA is a 

very important topic and of substantial interest. Indeed, we have been investigating this 

and there were no clear sub-types that have distinct global molecular profile in our 

unmediated RA cohort. Because heterogeneity analysis would substantially impact the 

implementation of precision therapy for RA, we will further persue to identify the sub-types 

and investigate their biological and clinical implications.  

 

We have carefully considered the allocation of our limited budget to measurements of 

biological replicates versus technical replicates. Based on our previous experience 

(Sekiguchi et al., 2008) and the high productivity of the Affymetrix HG-U133 Plus 2.0 array 

(https://assets.thermofisher.com/TFS-Assets/LSG/brochures/hgu133_p2_technote.pdf), 

we decided to prioritize increasing the number of biological replicates and include 

technical replicates for a subset of samples. Essentially, if an experimental protocol is well 

designed, differentially expressed genes/proteins between cases and controls can be 

detected if biological variations are sufficiently larger than technical variations. The fact 

that we could identify a number of variables significantly associated with RA or drug 

treatments indicates that the biological variations in our samples were larger than the 

technical variations. To draw this conclusion, we carefully designed our experimental 

protocols with sample randomization so that any technical variables would not confound 

with the disease diagnosis or drug treatment groups. In addition, to gauge technical 

variability, we included technical duplicates for 20 and 19 samples for transcriptome and 

proteome analyses, respectively. The pairs of technical replicates showed greater 

concordance than those of non-technical replicates (Figure R1), indicating the high 

reproducibility of our sample preparation and measurement procedures. Furthermore, we 

previously confirmed the findings from our proteomic experiment using two conventional 



assays: a latex turbidimetric immunoassay and ELISA (Murota et al., 2015). The success 

of the validation experiment for individual proteins indicates that our omics experiments 

were well designed to detect biological signals by effectively controlling for technical 

variability. 

 

 

Figure R1. Correlation between pairs of technical and non-technical replicates. 

 

 

This study offers an influential way of merging clinical, biological and statistical analysis; 

hopefully more influential studies like this will be implemented. 

 

One question to the authors is how the scientific community can use this large 

dataset/predictive modeling they built/performed? Could this dataset be available as an 

online searchable source? I suggest considering to make this available (including the 

statistical component) through an RShiny app. 

 

Response: 

We would highly encourage researchers to re-use our data and conduct any follow-up 

studies on top of our findings. For this purpose, we deposited our data into Gene 

Expression Omnibus and are also detailing instructive pages in the Synapse database 



(https://www.synapse.org/), which includes not only raw data but also ready-to-use 

processed data and predictive models. Unfortunately, we cannot construct interactive web 

pages using the time and human/computational resources allotted for this project, but we 

will continue to pursue the best way to share our data with a broad scientific community. 

 

 

Reviewer #2 (Remarks to the Author): 

This review focuses on the statistical methodology used in this work, its appropriateness 

and its reproducibility. 

 

The methodology looks globally correct but is somewhat confusing at places. Some details 

look also inconsistent throughout the text (e.g. cohort definition) or are simply missing (e.g. 

the elastic net parameters) and, as such, would prevent this work 

from being reproducible. 

 

The detailed comments are included in an attached file. 

 

Most of them require some clarifications from the authors to better support the validity of 

their work. 

 

The detailed comments below are listed essentially following the order of presentation in 

the text. Most of them require some clarifications from the authors to better support the 

validity of their work.  

• Untreated cohort The so-called unmedicated cohort is described in a somewhat 

inconsistent way. Line 68 and supplementary table 1 refer to 45 RA and 35 HCs but 



line 397 mentions 68 RA and 42 HCs. Maybe the difference comes from some 

excluded patients (see line 399) but this should be clarified by stating in the methods 

section how many patients are left out, specifically from RA and HCs. Besides, Line 

481 mentions 75 patients which again differs from 45+35.   

 

Response: 

Sixty-eight	patients with RA and 42 HCs are the total number of individuals who 

were subjected to the omics experiments conducted in this study. Of these, 67 

patients with RA and 35 HCs were used for whole blood transcriptome, serum 

proteome, and immunophenotyping analyses, and data from 45 patients with RA 

without any drug treatments and 35 HCs were used for training models, which are 

described in Supplementary Table 1. Out of 68 patients, 49 were treated with 

MTX, IFX, or TCZ, and the whole blood transcriptome, serum proteome, and 

immunophenotypes were measured at multiple time points. Of note, two patients 

belonged to both the inadequate responders to IFX and the responders to TCZ 

group, and one patient was an inadequate responder to both IFX and TCZ. The 

demographic background and disease statuses of the patients with drug 

treatments are described in Supplementary Table 5. Out of 68 RA patients and 

42 HCs, 14 patients with RA and 16 HCs were used for the transcriptome analysis 

of the immune cell subsets described in Supplementary Table 8. We have revised 

the methods section to include this information, and patient information will also be 

available in Supplementary Table 10, the Gene Expression Omnibus and 

Synapse repositories. The description of 75 patients on line 481 represents the 

number of patients with uremia in the public transcriptome data from GSE37171. 



We have revised the sentence to clearly indicate 75 for the number of patients with 

uremia. 

 

• Treated cohort The treated cohort (n=245) is mentioned in lines 249, 302, 497, 498 

but is never actually described (accrual procedure, demographics, possible 

confounding factors, ...). Besides, some key results (figure 2, supplementary figure 

6, ...) are reported on a small subset (claimed to be n=10 for each drug). Firstly, it is 

not clear why this analysis has been restricted to only 10 patients for each drug if 245 

patients were under study. Secondly, it is not clear how the specific subsets of 10 

patients have been chosen. Why were some patients left out? How were selected the 

10 patients (x 2, R versus IR) for each drug? Thirdly, Supplementary Table 4 actually 

reports even fewer patients n=8 (IFX(IR)) and n=3 (TCZ(IR)). Why?   

 

Response: 

We reviewed the number of patients carefully and found that we misdescribed the total 

number of samples used for analyzing drug response. We left out 6 samples due to the 

potential inconsistency of sample sources with their clinical records and finally decided 

to use 239 samples. We have revised the total number of samples to 239. The 

demographics and background information for all patients with RA in the drug-treated 

cohort is described in Supplementary Table 5. Because we profiled whole blood 

samples at multiple time points (4 or 5 time points for responders and 2 or 3 time points 

for inadequate responders), the sample size of the drug response cohort was 239 in 

total. Based on the EULAR response criteria, we enrolled 10 responders who met our 

criteria for each drug. However, for inadequate responders, because most of the patients 



responded well to IFX or TCZ in our cohort, only 8 or 3 patients met the criteria of 

inadequate responders in patients treated with IFX and TCZ, respectively.  

 

 

• Line 72 A clear motivation of the use of PLSR would be interesting to include. The 

problems at hand are standard binary classification problems (RA versus HC in the 

untreated cohort, R versus IR in the treated cohort) for which hundreds of methods 

exist (logistic regression, Bayes classifier, SVM, Random Forests, ... just to name a 

few). Picking one such method would be fine if the authors would at least state why 

they believe it is a relevant one. The "motivation" (line 486) with a single reference 

looks a bit short. In particular, PLSR is generally viewed as a dimensionality reduction 

technique for a regression problem (= continuous response). Here the authors address 

classification problems, even restricted to a binary response (e.g. R versus IR), without 

any specific focus on dimensionality reduction (at least through PLSR, see also below). 

  

 

Response: 

We used PLSR in this study based on two characteristics that we considered important. 

The first point is to handle a large number of variables without prior feature selections 

since there are many arbitrary ways to select the features used for prediction, and thus, 

the inclusion of feature selection steps increases the hyper-parameters that need to be 

tuned. The second point is that the model should be easily interpreted based on existing 

biological knowledge, such as gene ontologies and reference transcriptomes of purified 

immune cells. The first point can be addressed by regularization-based methods, such as 

Elastic Net, and also by PLSR, which utilizes lateral factors for prediction. Importantly, 



PLSR can be applied to not only regression but also to classification, which is called partial 

least squares discriminant analysis. Although Elastic Net potentially shows good 

performance, we had a concern with Elastic Net regarding the second point. Elastic Net 

essentially aims to estimate a sparse model, potentially making the interpretation of the 

model difficult. Specifically, for instance, gene expression levels of particular gene groups 

are known to be highly correlated with each other, called co-expression modules. These 

modules represent biological systems and are enriched with various known biological 

pathways, and capturing such modules is thus critical for interpreting data. However, from 

the characteristic of Elastic Net, Elastic Net would give weight to a fewer number of 

informative genes within a module and no weights to other genes even if those genes are 

highly correlated with the informative genes. Thus, we expected that capturing biological 

systems that are co-fluctuated together via an Elastic Net model might be not 

straightforward. Conversely, PLSR does not select particular genes for prediction but 

rather finds lateral predictive factors embedded in the data. These lateral factors 

potentially reflect biological systems, such as cell abundance. Then, we can evaluate the 

importance of each gene to the prediction via assessing the gene's contribution to lateral 

factors (see details below). This procedure essentially finds all genes correlated with 

lateral factors and thus does not have the Elastic Net problem. As we expected, we could 

identify biological pathways and cell types significantly associated with variables highly 

contributing to the prediction in PLSR models. The sparseness of Elastic Net would benefit 

the actual implementation of prediction models in the clinic because we can make 

predictions based on a fewer number of genes. However, in this study, we prioritized 

interpreting biological mechanisms using the model and therefore chose RLSR. 

 

 



• Line 81 The use of an ensemble of 15 models to get a more robust prediction looks 

sound but the reported results with such an ensemble are presented in a somewhat 

misleading fashion. In particular, the results reported in Figure 1 C and Supplementary 

Figure 1 are no longer test accuracies since the whole dataset (apparently 35 HCs + 

45 RA) has been used (through a 3x5-CV protocol) in order to compute the average 

prediction. In other words, results reported in Figure 1 C and Supplementary Figure 1 

are training set accuracies, as far as the ensemble is concerned, and should be 

reported as such. An additional collection of new and independent samples/patients 

would be needed to assess the classification performance of such an ensemble on a 

real test set not seen before. Fortunately, since these models are eventually used to 

compute RA odds on the treated cohort (which is the central topic here) this is not 

critical for the rest of the manuscript. Yet, the captions of Figure 1 C and 

Supplementary Figure 1 + the related text should be fixed.  

 

Response: 

We agree with the reviewer that Figure 1C represents the training set accuracies and 

clarified this in the legend. Supplementary Figure 1 indicates the average of cross-

validation accuracies, which is essentially the same as that in Figure 1B. We clarified this 

in the legend of Supplementary Figure 1. In addition, we revisited the estimation of null 

distributions and found that the cross-validation accuracies of models trained with 

permutated data should also be averaged in each ensemble, as we did for an ensemble 

of 15 models trained with actual data. The null distributions estimated via the revised 

scheme show smaller variance, and the significant performances of the actual models 

became more evident (Figure R2). We replaced Supplementary Figure 1 with Figure 

R2. 



 

 

Figure R2. Null distributions of averaged cross-validation accuracies. The red bars 

indicate the averaged cross-validation accuracies of 15 model ensembles with non-

permuted data. 

 

As we described above, we built the model based on data from 45 patients with RA who 

had not received any medications, while patients who had been treated with any 

medications were left out of the training process. With this respect, we examined whether 

the models introduce upward bias on RA probability for the samples used in the training 

process. To do this, we compared the RA odds between 45 patients who were used in the 

training and 22 patients who had been treated with medications but didn’t respond to them 

and found that there were no significant differences in the RA odds estimated from any of 

the models (Figure R3). These results indicate that our ensemble models are reasonably 

accurate and not significantly biased in the training samples. We have added Figure R3 

in the revised manuscript as Supplementary Figure 6. 

 



 

Figure R3. Comparison of RA odds between training and test samples. P-values from 

Welch’s t-test are indicated above the boxplots. 

 

 

• Line 118 + Supplementary figure 2 The authors should describe in the Methods 

section how they actually computed the contribution of each specific covariate to the 

ensemble model prediction. A precise mathematical formula would be even better. 

 

Response: 

We have added a detailed procedure for computing the contribution of each specific 

covariate to the prediction in the methods section as follows: 

The mathematical formulation of the PLSR model can be described as, 

𝑋 = 𝑇𝑃% + 𝜀(, 

𝑌 = 𝑇𝐵% + 𝜀+, 



where X is the 𝑛 ×𝑚 matrix of omics measurement, Y is the outcome vector of length 𝑛, 

T is the 𝑛 × 𝑙 matrix of orthogonal scores, P is the	𝑚 × 𝑙 matrix of loading, B is the loading 

vector of length 𝑙, 𝜀( and 𝜀+ are the error terms, 𝑛 is the number of individuals, 𝑚 is the 

number variables in omics measurement, and 𝑙 is the number of orthogonal components. 

To estimate the relative variable contribution to the prediction, we first estimated the 

contribution of each orthogonal component to the prediction. The predictive function of 

diagnosis given the orthogonal components of the 	𝑘th individual is defined as 

𝑓3(𝑘) = ∑ 𝑡89 × 𝑏93
9;< , 

where 𝑡89 is the orthogonal score in the 𝑘th row and 𝑖th column of matrix T, 𝑏9 is the 

loading score for the 𝑖th orthogonal component, and 𝑠 is the number of orthogonal 

components used for prediction. Then the mean squared error of prediction (MSEP) 

using 𝑠 orthogonal components was estimated as 

𝑀𝑆𝐸𝑃3 =
<
B
∑ (𝑓3(𝑘) − 𝑦8)EB
8;< , 

where 𝑦8 is the diagnosis for the 𝑘th individual, and 𝑛 is the number of individuals. The 

relative contribution of the 𝑠th orthogonal component to the prediction was estimated as 

𝑤3 =
GHIJKLGHIJKMN

∑ (GHIJOLGHIJOMN)P
OQN

, 

where 𝑙 is the number of orthogonal components in the model, and 𝑀𝑆𝐸𝑃R corresponds 

to the MSEP of the model including only intercept. Finally, the contribution of the 𝑖th 

variable to the prediction, 𝑔9, was estimated as the weighted average of its loadings, and 

𝑔9 was then normalized to obtain the relative contribution, 𝑟9, as follows, 

𝑔9 =
<
U
∑ 𝑝9W × 𝑤WU
W;< , 

𝑟9 =
XO

∑ XYZ
YQN

, 

where 𝑝93 is the loading in the 𝑖th row and 𝑠th column of matrix P. We further normalized 



𝑟 by scaling the maximum 𝑟 to 100. After calculating 𝑟 for each model in the ensembles, 

we averaged the 𝑟 values for each variable across models and used this for the 

evaluation of influential variables. The procedure for MSEP estimation is described in 

(Mevik and Cederkvist, 2004) and is implemented in the caret R package.  

 

• Figure 2 C This interesting figure reports differences (in RA odds) globally for the 

treated cohort (and 3 specific drugs). Since this is a multi-omics approach, 3 sub-

figures are proposed respectively for WB transcript, serum protein and cell count with 

somewhat consistent trends. It would be interesting to analyze whether the 3 models 

(one for each data source) are actually consistent on a per sample (= per patient) basis 

rather than only globally. To which extent is the same patient correctly predicted to be 

R versus IR from the 3 models? If not so, why?  

 

Response: 

We have conducted pair-wise comparisons of the treatment effects on RA odds estimated 

by the 3 models. We found a significant consistency between the protein-based model 

and the cell count-based model, while the transcript-based model showed modest positive 

correlations with the others (Figure R4). Additionally, the responders and inadequate 

responders were well separated via the protein-based model and the cell count-based 

model (Figure R5). Conversely, although the responders tended to show more reductions 

in RA odds in the transcript-based model than the inadequate responders, the difference 

did not reach the statistical significance level. This was not because drug treatments 

effectively normalize the transcriptional signatures associated with RA in both responders 

and inadequate responders but rather that the treatment effects on the transcriptional 

signatures are limited even in responders. Indeed, we identified a sizable number of genes 



that remain to be differentially expressed even after drug treatments in the responders, 

suggesting that molecular unmet needs mainly exist in transcriptomes. We have added 

Figure R4 and Figure R5 in the main figures as Supplementary Figure 11 and Figure 

2d, respectively. 

 

 

 

Figure R4. Correlation between the treatment effects on RA odds based on three 

molecular classes. 

 

 

Figure R5. Correlation between the model-based assessments of drug effects and the 

clinical definition of drug response.  

 

 



• Line 205 ”By using stringent criteria (see Methods), we found 800 transcripts”…" 

Referring to line 526, a q-value < 0.25 does not look stringent at all. Why not 

considering a more standard threshold: q-value < 0.05? This would also be consistent 

with FDR < 0.05, a common threshold the authors themselves use (e.g. lines 122, 

172, ...)   

 

Response: 

We have revised the analyses with the use of q-value < 0.05 as a criterion of significance. 

The numbers of untreatable variables in each treatment arm were slightly decreased, but 

the untreatable variables shared among the three treatment arms remained the same.  

 

 

• Supplementary Figure 4 I wonder what can actually be inferred from such a "messy 

cloud" and the authors themselves do not say a word about it (apart from referring to 

this figure in line 241 without any comment). Which kind of negative control is 

considered here (I believe, none)? How is this figure informative? So, I suggest to 

plainly skip this figure or to argue much more convincingly about it. If kept, I would 

recommend to produce it with FDR < 0.05.  

 

Response: 

We agree with the reviewer’s comment. We removed Supplementary Figure 4 from the 

revised manuscript.  

 

 



• Line 302 and line 560 Which are the actual λ and α values used? How were they 

chosen?  

 

Response: 

We used the λ and α values that showed the lowest root-mean-square error (RMSE) in 

three repeated 10-fold cross-validation procedures. The actual parameters are as follows: 

α= 0.4 and λ= 0.01 for protein residual molecular signatures (RMSs) down-regulated in 

RA, α= 0 and λ= 0.03 for protein RMSs up-regulated in RA, α = 0 and λ= 0.01 for 

transcriptional RMSs down-regulated in RA, and α = 0 and λ= 0.03 for transcriptional 

RMSs up-regulated in RA. We have described the λ and α values in the method section.  

 

 

• Line 542 What does it mean exactly to be concordant? How was this actually 

computed?  

 

Response: 

The aim of this analysis was to identify untreatable genes that are common to all three 

drugs. Therefore, we intended to describe that we ensured that untreatable genes were 

differentially expressed in the same direction compared to the HCs in all three treatment 

groups. We have clarified the statement to indicate that we ensured the directional 

concordance of differentially expressed genes in the three treatment groups. In fact, none 

of the genes were filtered with this criterion.  

 

 



• Line 561, Line 567 "We constrained the coefficients of the variables to be positive." "... 

with the positive coefficients in the elastic net model." A multivariate linear regression 

model penalized with elastic net has absolutely no guarantee to be restricted to 

positive coefficients. Besides, there is generally no need for such a positivity 

constraint. For instance, if one would like to interpret the model coefficient associated 

to a particular covariate as a measure of variable importance, the absolute value of 

the model coefficient (which can be either positive or negative) is very commonly used. 

So, the authors should clarify why they wanted to enforce a positivity constraint on the 

model coefficients and how they did it. It would also be interesting to mention the 

specific solver they used (or at least a reference to a package implementing such a 

solver) to fit a multivariate regression with Elastic Net.  

 

Response: 

We conducted Elastic Net using the R glmnet package developed by researchers at 

Stanford University. This implementation allows users to set upper and lower bounds of 

coefficients (https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html). We believed 

that it is a natural assumption that the gene expression levels in whole blood are the 

summation of the gene expression levels in each immune cell in whole blood. Therefore, 

to follow this assumption, we placed a constraint on the coefficients in the model so that 

immune cells can only positively contribute to the transcriptional levels in whole blood. 

Based on the reviewer’s comment, we reconsidered this scenario and agreed with the 

reviewer’s thought that this constraint is not necessary. Specifically, the cell type with a 

negative coefficient can be interpreted as that expressing lower levels of the transcriptional 

signature compared to other cell types. We rebuilt the Elastic Net model without any 

constraints on coefficients and found that the result concurs with the reference 



transcriptome data for each cell type (Figure R22). We appreciate the reviewer’s comment 

that led us to better understanding our data. 

 

 

Reviewer #3 (Remarks to the Author): 

In the manuscript entitled “Multi-omics monitoring of drug response in rheumatoid 

arthritis: in pursuit of molecular remission” the authors investigated patients with 

rheumatoid arthritis (RA) before and after initiation of methotrexate, infliximab or 

tocilizumab therapy by transcriptome, proteome and cell type analysis from peripheral 

blood samples and compared the data to healthy controls (HC) and for transcriptome 

data with other disease conditions. The authors conclude that molecular response data 

may provide more information for stable response prediction and that difference between 

remission and healthy condition displays treatment resistant signatures, which may 

implicate a therapeutic potential for RA. 

 

The manuscript presents extensive data analysis, however, there are major issues, 

concerning data analysis: 

 

1. Comparison between RA and HC blood cell counts indicates elevated white blood 

cells, which is explained by elevated neutrophils and a relative decrease of all other cell 

types in RA blood. Increased cell counts of neutrophils in RA patients are frequently 

observed and explained by increased production in the bone marrow. This so called ‘left 

shift’ was recently demonstrated also for monocytes in RA (PMID:29191820). It can be 

expected that the changes in whole blood transcriptomes are predominantly reflecting 

such a shift of differential cell type composition in RA. Therefore, instead of comparing 

the differentially expressed genes with lists of functional annotations, it would be more 



informative to investigate how many of these genes are differentially expressed between 

neutrophils and other cell types of the peripheral blood. 

 

Performing such a comparison would demonstrate that indeed almost all top candidate 

transcripts increased in RA are much higher expressed in neutrophils compared to 

lymphocytes and that almost all top transcripts decreased in RA are also lower or lowest 

in neutrophils and/or belong to other cell types. Annotation databases do not distinguish 

between gene expression in specific unstimulated cell types and functional patterns of 

stimulation. This information can only be extracted from the analysis of defined cell types 

and stimulation conditions. On this basis, the differentially expressed transcripts are no 

more supporting an interferon pathway trigger. If this trigger really would exist in RA 

blood transcriptomes, mapping the differentially expressed genes to transcriptomes of 

cells before and after IFN-stimulation should provide a more robust data interpretation 

and discussion. Data to perform such analyses may be in the hands of the authors (cell 

type transcriptomes) or can be retrieved from public repositories for Affymetrix HG-U133 

Plus 2.0 arrays. 

 

It would be helpful to distinguish more precisely between the up and the down regulated 

transcripts when characterizing their functional aspects and not only refer to all like “The 

genes highly contributed to the transcript-based model...”. It is not clear from reading to 

what type of regulation the tRNA biosynthesis function belongs. It is necessary to look 

up possible candidates in the gene list of supplementary table 2, and even there it is 

necessary to look at which genes are up and which are down and which group is 

dominant. The detection of tRNA biosynthesis and mRNA splicing processes are 

probably mentioned because of reduced expression in RA. At least, when looking up in 

detail, it should be recognized that there is a reduced expression of riboproteins in 



neutrophils compared to lymphocytes and that these are reduced in RA along with the 

increase of neutrophils. This aspect should be presented as this patterning is very 

characteristic for neutrophils. Whether the “complement pathway” annotation is still a 

relevant functional association, has to be tested by focusing on the precise gene list of 

the used pathway annotation and comparing it with the differentially expressed 

transcripts between RA and HC whole blood and the differential patterning between 

different leukocyte cell types.  

That complement, which is part of the acute phase reaction produced in the liver, may 

also contribute but on the level of proteome data, can be expected. However, for the 

transcriptome results it should be sorted out whether this pathway is really functionally 

activated in blood cells. 

 

Response: 

We agree with the reviewer that transcriptional changes likely reflect alterations in the 

cellular composition of whole blood. To clarify the contributions of each cell type to the 

transcriptional changes observed in patients with RA, we assessed the expression profiles 

of up- or down-regulated genes based on our own reference transcriptomes of 14 purified 

immune cells measured via the Affymetrix HG-U133 Plus 2.0 array (Figure R6) and the 

public reference proteomes of 26 immune cells (Rieckmann et al., 2017). Specifically, the 

single-sample GSEA method (Barbie et al., 2009) was used to merge the gene expression 

levels of multiple genes into single meta-expression. This meta-expression strategy is 

particularly useful for understanding the expression profiles of a small number of genes, 

such as genes in pathways across immune cells, whereas a standard enrichment analysis 

has very low statistical power for a small number of genes. Using this meta-expression 

approach, we evaluated the expression profiles of up- or down-regulated genes that are 



important for discriminating RA vs HC in the PLSR model and pathways enriched with 

those genes. As the reviewer expected, the genes up-regulated in RA are highly 

expressed in neutrophils, and the genes down-regulated in RA are lowly expressed in 

neutrophils (Figure R7). Furthermore, pathways enriched with transcriptional changes in 

RA, including interferon signatures, tRNA biosynthesis, and mRNA splicing, show higher 

expression in neutrophils compared to that in other cell types (Figure R8). These results 

were also confirmed at the protein levels based on a public proteome reference (Figure 

R9). These results suggest that the increase in neutrophil counts is the major reason 

underlying the transcriptional changes in both gene and pathway levels. The model based 

on cell counts in this study is based on absolute white blood counts and the relative 

abundance of each cell type in white blood. Since white blood is a mixture of cell types 

that have distinct expression profiles and functions, as the reviewer suggested, absolute 

white blood counts would lead to the misinterpretation of the results. Therefore, to obtain 

a more interpretable result, we decomposed the white blood counts into absolute counts 

of each cell type and rebuilt the model based on absolute counts and the relative 

composition of cell types. The updated model indicates that the increase in both the 

absolute count and relative composition of neutrophils is the major factor for discriminating 

RA vs HC (Figure R10). As the results from the cell count-based model and transcript-

based model both point to the elevation of neutrophils, we described the ‘left shift’ as the 

biological interpretation of diagnostic models in the main text. 

 

 



 

Figure R6. Hierarchical clustering of gene expression profiles from 14 immune cells. 

 

 

Figure R7. Expression patterns of up and down-regulated RA signatures in immune cell 

subsets. 



 

Figure R8. Expression patterns of pathways enriched with up- and down-regulated RA 

genes in immune cell subsets. 

 



 

Figure R9. Protein expression profiles of important transcripts across 26 immune cells. 

Meta-expression features for the key transcripts up-regulated or down-regulated in RA 

were calculated separately using the ssGSEA method based on the protein expression 

profiles of 26 immune cells and standardized across immune cells. 



 

 

Figure R10. The top ten important cell types for discriminating between patients with RA 

and HC. The red and blue vertical bars indicate variables that were upregulated and 

downregulated in RA, respectively. The error bars represent variabilities in the 

contribution to the model prediction that originated from the model ensemble.  

 

 

2. In supplementary table 1 the individual parameters of the DAS28 (tender and swollen 

joint count, as well as VAS of patient self assessment) should be added like ESR is 

included. This will characterize more precisely the clinical situation (see also later). It 

would also help to better understand the remission index in figure 3 if the clinical 

parameters of TJC, SJC, VAS and ESR before and after treatment are displayed for 

each the 52 patients individually and integrated into the red/blue heatmap of figure 3a.  

 

Response: 

We have revised Supplementary Table 1 (Table R1) and Figure 3A (Figure R11) to 

include the individual parameters of DAS28. 

abs: absolute count 
rWBC: count relative to white blood cells 



 

Table R1. Updated Table S1 with inclusion of the individual parameters of DAS28 

 

Figure R11. Updated Figure 3A with integration of the individual parameters of DAS28 

CDAI, and HAQ. 

 

3. It is not astonishing that blocking the acute phase response by inhibiting the IL-6 

pathway presents with more or less normal levels of the acute phase parameters. It 

would be more relevant to investigate the parameters that reflect the inflammation in the 

joint (for example tender and swollen joint count). These should be presented in 

supplementary table 4. Where there any parameters of inflammation in the joint and 

destruction of cartilage and bone in the proteome screen included. What information can 



be extracted from these data? Are responses between IFX and TCZ still different? 

Including acute phase response dependent parameters like ESR into the assessment of 

response will produce a bias towards “polishing” the acute phase outcome but may not 

really improve joint inflammation much more than other biologics which target other 

factors that contribute to inflammation in the joint.  

 

Response: 

We have revised Supplementary Table 4 (Table R2) to include the individual parameters 

of the DAS28. We agree with the reviewer that assessments without the inclusion of acute 

phase response-dependent parameters are better for further understanding the drug 

response. To enable a more detailed characterization of drug response, in addition to 

DAS28 (ESR), we used CDAI, which defines clinical remission without considering acute 

phase response-dependent parameters, and HAQ-DI, which defines functional remission. 

These indices are included in Figure 3A (Figure R11) and are also focused upon in the 

remaining analysis in Figure 3. The revised analysis indicates that TCZ is more effective 

for inducing the clinical remission defined by DAS28 (ESR) but not as effective for CDAI 

and HAQ-DI, while patients treated with IFX archived remission in mostly DAS28 (ESR), 

CDAI and HAQ-DI (Figure R11). We have revised the analysis for relating molecular 

remission and clinical and functional remission using these three indices. 

 



 

Table R2. Updated Table S4 with the inclusion of individual DAS28 parameters 

 

 

4. Considering the bias of the DAS28 parameters for assessment of disease activity and 

response in therapies that target IL-6 signaling, CR and MR should be critically reviewed 

in the paragraph of “MR defines long-term disease activities”. Do individual parameters 

of the DAS28 (TJC, SJC, VAS, ESR) reflect the early CR and the long-term CR all in the 

same way or are the influences of ESR and CrP dominant for the interpretation of CR 

and MR relationship as it is currently suggested?  

 

Response: 

To clarify the relationships between the molecular and clinical remission indices, we 

computed the correlation between the molecular remission in each molecular class and 

the clinical remission indices at 24 weeks of treatment. Molecular remissions defined 

based on serum proteins are strongly correlated with DAS28 (ESR) but not with CDAI 

and HAQ-DI. Cell count- and transcript-based remissions were not associated with any 



clinical remission indices, suggesting that these measures reflect the characteristics of 

patients, which is not included in the clinical indices. Then, we further examined the 

individual parameters that drive an association between protein-based remission and 

DAS28 (ESR), as the reviewer suggested. We found that ESR was significantly 

associated with molecular remission based on proteins (Figure R12). We note that 

although the associations did not reach the significance level, all parameters were closer 

to the normal state in patients with MR than those with non-MR. We also examined the 

individual parameters of DAS28 that reflect the relationships between long-term CR and 

MR. The result indicates that ESR and TJC28 are associated with the MR status (Figure 

R13), suggesting that MR influences not only ESR but also the long-term inflammation 

status in joints. 

 

Figure R12. Relation between molecular remission and individual parameters of DAS28 

and CDAI at 24 weeks. The dashed line represents a p-value corresponding to 0.05. 



 

Figure R13. Relation between the number of classes archived for molecular remission 

and individual parameters of DAS28 and CDAI in biologics-treated patients at 90 weeks 

in the follow-up. The dashed line represents a p-value corresponding to 0.05. 

 

 

5. The patient numbers contributing to individual subgroups that categorize response 

outcome are very small for the individual treatment groups (for example TCZ with 3 

patients that are in remission according to all three molecular assessments and only one 

is without MR despite of CR). The authors should refer to this problem and argue more 

carefully with respect to the lack of sufficient statistical power for their statements. Future 

studies with extended numbers of patients may change the situation a bit, not completely 

but strong enough so that the currently favored top candidate parameters may change to 

some extent. This would substantially influence the development of biomarker kits for the 

improvement of outcome prediction and provokes criticism for statements like the one in 

the discussion “… clinical assessments can be replaced with objective molecular 



biomarkers”. More appropriate wording is necessary. May be, it is also worth to point out 

that analyzing not that many patients but individual diseases with much more profound 

molecular screens can strengthen the gain of insight into RA disease characteristics. 

 

Response: 

We agree with the reviewer’s comment that our statement is too deterministic for the 

result based on the limited samples. We described a limitation of the molecular 

signatures as prediction makers and placed more emphasis on the deep molecular 

understanding of RA pathogenesis in the context of drug response in the discussion. 

 

6. The authors have focused next on untreatable molecular signatures. Why skipping the 

characteristics of response? Is there a reduction of neutrophil left shift? An increase of 

lymphocytes? Do cell activation patterns, which may exist compared to HC, disappear in 

responders? Such analysis should also concentrate on reference transcriptomes and not 

only on gene lists that belong to annotation terms. Do transcriptome patterns and cell 

type analysis correspond to each other? Are the functions of proteome response 

patterns associated with the functions of transcriptome response patterns? 

 

Response: 

In the response to the reviewer’s comment, we characterized the effects of drug 

treatments on the levels of each transcript, protein, and cell type (Figure R14). 

Approximately 600 transcripts were differentially expressed in patients treated with IFX or 

TCZ, but no genes exceed the significance criteria for MTX treatment (Figure R14). 

Transcriptional changes induced by IFX and TCZ treatments occur mainly in genes that 



are highly or lowly expressed in neutrophils (Figure R15), suggesting that the neutrophil 

signature is normalized by drug treatments. The decrease in neutrophil abundance was 

confirmed with actual cell count data (Figure R16), indicating that the drug treatments 

reduced the left shift in neutrophils observed in un-medicated patients with RA. TCZ 

treatment had a strong effect on serum proteins (Figure R15), which was also indicated 

by the protein model-based analysis. MTX affects a greater number of proteins than IFX, 

but a sizable number of those proteins are altered in a direction away from the healthy 

state (Figure R15). This directional inconsistency corresponds to the moderate reduction 

in RA odds in MTX-treated patients assessed by the protein-based model. Pathway 

analysis of serum proteins showed that proteins involved in complement pathways are 

enriched in proteins affected by IFX and TCZ but not by MTX (Figure R17). Complement 

pathways are also enriched in proteins associated with un-medicated patients with RA, 

suggesting that IFX and TCZ specifically target pathways aberrantly activated in RA. 

These results are included in Figure 2 and Supplementary Figure 12 in the revised 

manuscript. 

 

 

 



Figure R14. Number of variables affected by drug treatments (24 weeks vs 0 weeks). 

 

 

Figure R15. Meta-expression of transcripts affected by IFX or TCZ in purified immune 

cells. 

 

 



 

Figure R16. Drug effects on the abundance of neutrophils and NK cells. The asterisks 

represent a p-value <0.05 and FDR <0.05. 

 

 

Figure R17. Pathway analysis of serum proteins affected by drug treatments. The 

asterisks represent a p-value <0.05 and FDR <0.05.  



 

 

7. If the response patterns are defined, the untreatable patterns should be investigated 

in a similar way by testing their patterns for overlap with reference transcriptomes of cell 

types and stimulation conditions. Gene lists are not enlightening and lists of 

REACTOMEs with different names but identified by more or less the same genes 

(proteasome subunits) are not either. In that way, figures like supplementary figure 4 are 

not helpful and even misleading. Are these untreatable patterns mostly related to cell 

type characteristics or particular stimulation conditions? The splitting of gene lists 

according to GSEA defined functions and subsequent mapping of the gene sub-groups 

to transcriptome data is also misleading. Why not testing all untreatable genes in an 

unbiased way? If tested across different cell types from healthy controls, a preliminary 

rescreen that we performed, suggests that the majority of the upregulated genes are 

related to neutrophils. Whether these patterns may also reflect a trigger or function 

suggested by GSEA lists remains to be tested by analyzing reference transcriptomes of 

stimulation conditions. Otherwise, the gene lists of GSEA and functional annotations 

mostly reflect functional gene set entities which are preformed functional units of 

specialized cell types transcribed already under normal (unstimulated) condition but 

ready to react (increase, decrease, modulate) upon stimulatory triggers.  

 

Response: 

We are thankful for the reviewer's insightful suggestions. We re-analyzed untreatable 

molecular signatures to elucidate associated clinical phenotypes, functions and cell types 

in an unbiased manner. First, we found that the levels of untreatable molecular signatures 

approach those of healthy controls even though they are still significantly different (Figure 



R18). From this, we believe that residual molecular signature (RMS) is a more appropriate 

term for these molecular signatures than the untreatable molecular signature. In terms of 

clinical phenotypes associated with RMS, we found that transcriptional RMS and protein 

RMS showed weak correlations with DAS28-ESR and CDAI at week 0 (Figure R19). 

However, these trends were not observed at week 24. Conversely, morning stiffness is 

associated with transcriptional RMS at week 24, but this association is not present at week 

0 (Figure R20). Together, these results indicate that relations between RMSs and specific 

clinical phenotypes are not supported robustly in our data. Therefore, we revised the 

clinical implication of RMSs to not focus on morning stiffness or other phenotypes but 

rather to emphasize that RMSs are the molecular characteristics of patients with RA that 

are largely independent of disease severities and cannot be normalized completely with 

the current symptomatic treatments. 

 

We next investigated cell types associated with RMS using reference transcriptomes and 

proteomes from purified immune cells. Transcriptional RMS up-regulated in RA is highly 

expressed in neutrophils and monocytes, and transcriptional RMS down-regulated in RA 

is lowly expressed in these cell types (Figure 21). In contrast, protein RMS does not show 

specific expression in some cell types. We then next examined whether cell counts can 

explain the expression levels of transcriptional and protein RMSs. Cell counts are 

estimated to explain 40% and 48% of the variation in up and down-regulated 

transcriptional RMSs and 33% and 37% of the variation in up and down-regulated protein 

RMSs, respectively. These fractions are significantly higher than random expectations 

(permutation p-value < 0.001). The abundance of neutrophils and monocytes largely 

explain the levels of transcriptional and protein RMSs (Figure 22). Considering both the 

expression specificity and associations with cell counts, the increases in neutrophil and 

monocyte counts would be the major driver for transcriptional RMS. Indeed, we found 



significant correlations between transcriptional RMS and neutrophil or monocytes counts 

at week 0 (Figure 23). However, at week 24, correlations between transcriptional RMS 

and neutrophil counts were weaker than those at week 0, while the relationship with 

monocytes remained the same. This suggests that transcriptional RMS after drug 

treatment is not only due to the left shift in neutrophils but also to the left shift in monocytes. 

 

We further asked whether cell composition variabilities explain the observed differences 

in the levels of RMSs between RA and HC. To evaluate this, we removed cell count effects 

from RMSs and contrasted the residuals between RA and HC. When cell count was 

accounted for, the variabilities in RMSs explained by the RA diagnosis were decreased 

but still significantly high for all three drugs (Figure 24). This raised the possibility that 

expression changes at the cellular level might also contribute to RMS. To test this, we 

compared the expression profiles of purified immune cells from RA and HC. 

Transcriptional RMSs tended to be differentially expressed in a manner concordant with 

whole blood in the varieties of cell subsets tested (Figure 25). Together, our re-analysis 

clarified the major contribution of cell composition and cellular level expression to the 

presence of transcriptional RMS in RA. 

 



 

Figure R18. Levels of transcriptional and protein RMS before and after drug treatments. 

 



 

Figure R19. Association with RMSs and disease severity indices before and after drug 

treatments. Asterisks represent a p-value of 0.05. 

 



 

Figure R20. Association with transcriptional RMSs and various clinical phenotypes 

before and after drug treatments. Asterisks represent a p-value of 0.05. 

 



 

Figure R21. Expression profiles of transcriptional RMSs in purified immune cells. 

 

 

Figure R22. Variance in RMSs explained by cell counts. 

 



 

Figure R23. Correlation between the RMSs and cell counts of key cell types before and 

after drug treatments. The dashed line represents a p-value of 0.05. 

 



 

Figure R24. Contribution of cell counts to the differential expression of RMSs between 

RA and HC. 

 

 



Figure R25. Differential expression profiles of transcriptional RMSs in a variety of 

purified immune cells from RA and HC. 

 

 

8. The cell type specific transcriptomes used to produce supplementary figure 8 are 

better applied if RA specific i) disease, ii) response and iii) untreatable transcriptome 

patterns are mapped to these reference cell types in order to test the cellular origin of 

these untreatable expression patterns.  

 

Response: 

In the revised manuscript, we annotated transcripts and genes based on the reference 

transcriptomes and proteomes, as we have shown in this response. 

 

9. What is the exact definition of the UTS genes? Only the 800 genes or all in 

supplementary table 5? If these genes are tested for cell type specific expression, most 

of the transcripts increased in RA belong to neutrophils and those decreased in RA to 

lymphocytes, suggesting that the dominant effect is related to a common inflammatory 

shift in blood cell count, which would be expected in many diseases. 

 

Response: 

The definition of RMS is genes/proteins/cell types whose levels are significantly different 

(FDR<0.05) between RA and HC both before (week 0) and after (week 24) treatment. 

We then assesed the intersection of RMS for all three drugs, resulting in the 



identification of 800 genes and 13 proteins as consensus RMSs, which were used for 

the subsequent analyses. The RMS for each drug is also listed in Supplementary Table 

7. As we described above, we have added a detailed investigation to understand the 

cellular origins of RMS based on reference transcriptomes/proteomes, cell counts, and 

transcriptomes from purified immune cells. 

 

In summary, the clinical study material and molecular raw data generation is excellent. 

The molecular analysis of transcriptome data is misleading when addressing functional 

interpretation. It is necessary to compare to reference transcriptomes instead of 

annotation databases as these generate confusing and misleading interpretations as 

described above. A preliminary reanalysis, which we performed, suggests that the main 

effect of differential expression in RA as well as in the untreatable transcript signature is 

related to the increase of neutrophils in RA (main inflammatory changes) with relative 

decrease of lymphocytes. Whether there are any additional effects (stimulation, left shift) 

has to be tested with appropriate reference transcriptomes that investigate these effects 

(for example PMID:29191820 or PMID:27570220). These transcriptome data should 

then be compared to the cell count analysis to confirm the results of both types of 

analysis. Sorting out the different transcriptional effects related to shifts in cellular 

composition or cell type specific changes related to stimulation effects may help to 

improve the screening for similarities in other diseases. 

 

Response: 

We appreciate the reviewer’s constructive comments throughout the manuscript, which 

led to substantial improvements in the biological interpretation of our data.  

 



 

Minor points: 

 

The language should be reviewed by a native speaker. 

Response: 

We appreciate your suggestion. All text in the revised manuscript has been reviewed by 

experts.  

 

Supplementary Table 2c should contain a brief explanation for the abbreviations. For 

example what means “DC.rWBC”? 

Response: 

Thank you for bringing this to our attention. “DC.rWBC” represents dendritic cell counts  

normalized by total white blood cell count. We have added a description for each cell 

variable.  

 

 

Page-5, 3rd line:  

The term ‘To understand biological molecules ...’, it sounds better if it will be changed to 

‘To understand the function of biomolecules ….’ 

Page-7_legend of figure-1: The term ‘red bar’ is misleading because it’s a vertical thin 

linePage-10, 2nd paragraph headline: Print out the abbreviation MR. 

Response: 



We have revised the corresponding text as the reviewer suggested. We appreciate the 

reviewer’s careful reading of our manuscript. 
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REVIEWERS' COMMENTS:  

 

 

Reviewer #1 (Remarks to the Author):  

 

The authors have addressed all comments satisfactorily.  

 

 

Reviewer #2 (Remarks to the Author):  

 

All my suggestions and remarks about the previous version of this manuscript have been carefully 

addressed.  

 

 

Reviewer #3 (Remarks to the Author):  

 

From my point of view, the authors have dealt precisely and purposefully with the outstanding 

questions and suggestions.  

Due to the improvements and changes made, I therefore see no need for further changes of the 

manuscript and would suggest acceptance for publication.  



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

The authors have addressed all comments satisfactorily. 

 

Reviewer #2 (Remarks to the Author): 

All my suggestions and remarks about the previous version of this manuscript have been carefully 

addressed. 

 

Reviewer #3 (Remarks to the Author): 

From my point of view, the authors have dealt precisely and purposefully with the outstanding 

questions and suggestions. Due to the improvements and changes made, I therefore see no need 

for further changes of the manuscript and would suggest acceptance for publication. 

 

 

We would greatly appreciate insightful and constructive reviews.   
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