Insulin/Snail1 Axis Ameliorates Fatty Liver Disease by

Epigenetically Suppressing Lipogenesis

Liu Y *et. al.*

Supplementary Figures

Supplementary Figure 1 Insulin upregulates hepatic Snail1. **a** Primary hepatocytes were deprived of serum overnight and stimulated with 50 nM insulin or PBS for 2 h. *Snail1* mRNA abundance was quantified by qPCR and normalized to 36B4 levels (n=4). **b** HepG2 cells were deprived of serum overnight and stimulated with 100 nM insulin for 2 h. *Snail1* mRNA levels were quantified by qPCR (normalized to GAPDH levels; n=3). **c-d** C57BL/6 male mice (8-10 wks) were fasted overnight and stimulated with insulin (0.5 units/kg body weight, i.p.) or PBS for 2 h. **c** Liver *Snail1* mRNA levels were quantified by qPCR (normalized to 36B4 levels; n=3). **d** Liver nuclear extracts were immunoblotted with antibodies against Snail1 and lamin A/C. **e** Mouse liver nuclear Snail1 levels (normalized to Hsp90 levels. **g** C57BL/6 mice (n=3) were fed a chow or HFD diet and treated with insulin at the indicated doses for 2 h. Liver nuclear Snail1 levels were normalized to lamin A/C levels. **h-i** HepG2 cells were pretreated with palmitate (100 μ M) overnight. **h** The cells were then stimulated with insulin (100 nM) or LiCl (25 mM) for 2 h. Cell extracts were immunoblotted with the indicated antibodies. **i** The cells were then stimulated with insulin at the indicated concentrations for 2 h. Snail1 levers were quantified (normalized to Hsp90 levels) (n=3). Data are presented as mean ± SEM. *p<0.05, 2-tailed unpaired Student's *t* test.

Supplementary Figure 2 Snail1 does not directly regulate insulin signaling and gluconeogenesis in hepatocytes. **a** *Snail1^{flox/flox}* (f/f) and *Snail1^{flox/flox}*; *CreERT2* (Δ hep) males were treated with tamoxifen. Liver and WAT nuclear extracts were isolated 2 wks after tamoxifen treatment and immunoblotted with the indicated antibodies. **b** Primary hepatocytes were stimulated with insulin for 12 h, and lipogenesis were measured. Data were analyzed using ANOVA. **c-d** Primary hepatocytes were transduced with GFP or Snail1 adenoviral vectors. **c** The cells were deprived of serum overnight and stimulated with 100 nM insulin for 30 min. Cell extracts were immunoblotted with anti-phospho-Akt (pSer473) or anti-Akt antibodies. **d** The cells were deprived of serum overnight and stimulated with 100 nM insulin (n=4) was measured and normalized to total protein levels as we described previously (*Liu et al. Endocrinology*, *158:1207-1216*, *2017*). Data are presented as mean ± SEM. *p<0.05, 2-tailed unpaired Student's *t* test or ANOVA.

Supplementary Figure 3 Hepatocyte-specific deletion of *Snail1* promotes NAFLD. **a-b** *Snail1*^{flox/flox} (f/f; n=7) and *Snail1*^{flox/flox}; *CreERT2* (Δhep; n=8) males were treated with tamoxifen twice as indicated, and growth curves were monitored. **b** Plasma TAG and NEFA levels. **c-d** *Snail1*^{flox/flox} (n=11) and *Snail1*^{Δhep} (n=11) male littermates were fed a HFD for 10 wks. **c** Growth curves. **d** Plasma TAG and NEFA levels. **e-f** *Snail1*^{flox/flox} (male: n=8, female: n=8) and *Snail1*^{flox/flox}; *albumin-cre* (male: n=8, female: n=7) mice were fed a HFD for 10 wks. **e** Body weight. **f** Liver TAG levels. **g-i** *Snail1*^{flox/flox} males were fed a HFD for 6 wks, transduced with AAV-GFP (n=7) or AAV-Cre (n=6) vectors, and fed a HFD for additional 4 wks. **g** Liver and WAT nuclear extracts were immunoblotted with the indicated antibodies. **h** Grown curves. AAV transduction time was marked. **i** Plasma TAG and NEFA levels. **j** C57BL/6 mice fed a HFD and transduced with GFP (n=9) or Snail1 (n=10) adenoviral vectors as described in Fig. 4a. Plasma TAG and NEFA levels were measured 3 wks after transduction. Data are presented as mean ± SEM.

Supplementary Figure 4 Hepatocyte Snail1 suppresses the hepatic lipogenic program. **a** *Snail1^{flox/flox}* and *Snail1^{flox/flox}; albumin-Cre* male mice were fed a HFD for 10 wks. Livers were harvested under non-fasting conditions and subjected to Affymetrix GeneChip Arrays analysis. Gene expression was presented using a heatmap. **b** C57BL/6 mice were fed a HFD for 6 wks and transduced with GFP (n=5) or Snail1 (n=5) adenoviral vectors. Liver gene expression was measured by qPCR 4 wks later, and normalized to 36B4 levels. Data are presented as mean ± SEM.

Supplementary Figure 5 Snail1 downregulates Srebp-1c in the liver. **a** *Snail1^{flox/flox}* and *Snail1^{Δhep}* male littermates were fed a HFD for 10 wks. Liver extracts were immunoblotted with antibodies against Srebp-1c and α-tubulin. Srebp-1c levels were normalized to α-tubulin levels. **b** C57BL/6 mice were fed a HFD for 7 wks and transduced with GFP or Snail1 adenoviral vectors for 3 wks. Liver Srebp-1c levels were normalized to α-tubulin levels. **c-e** *Fasn* and *Fasn* (Δ SRE) luciferase activities in HepG2 cells transfected with the indicated expression plasmids. Data are presented as mean ± SEM. *p<0.05, 2-tailed unpaired Student's *t* test.

Supplementary Figure 6 Snail1 epigenetically suppresses hepatic *Fasn* expression. **a** C57BL/6 male mice (8-9 wks) were fed a HFD for 7 wks and then transduced with Snail1 (n=3) or GFP (n=3) adenoviral vectors. Livers were harvested 3 wks after transduction. The levels of H3Kme3, H3K9me3, and H3K27me3 on the *Fasn*, *NCH*, or *Actb* promoter were measured in the liver by ChIP-qPCR and normalized to inputs. **b** *Snail1*^{Δhep} (n=3) and *Snail1*^{flox/flox} (n=3) males were fed a HFD for 10 wks. The levels of H3K4me3, H3K9me3, and H3K27me3 on the *Fasn*, *NCH*, or *Actb* promoter were measured in the liver and normalized to inputs. **c**-**e** Primary hepatocytes were transduced with Snail1 and treated with TSA. **c** Lipogenesis (normalized to protein levels) (n=3). **d**-**e** Hepatocyte extracts were immunoblotted with the indicated antibodies. Fasn levels were normalized to α-tubulin levels. **f** Primary hepatocytes were transduced with Snail1 or ΔN20 adenoviral vectors for 24 h, and then stimulated with insulin (50 nM) for 12 h. Cell extracts were immunoblotted with the indicated antibodies. **g** Primary hepatocytes were transduced with Snail1, ΔN20, or GFP adenoviral vectors. H3K9ac levels on the *Fasn* promoter were measured by ChIP. Data are presented as mean ± SEM. *p<0.05, 2-tailed unpaired Student's *t* test.

Supplementary Figure 7 The uncropped scans of western blots and gels for Figures 1-2.

Supplementary Figure 8 The uncropped scans of western blots and gels for Figures 4-5.

Supplementary Figure 9 The uncropped scans of western blots and gels for Figures 6-7.

ANTIBODY	SOURCE	IDENTIFIER	DILUTION
Snail1	Cell Signaling Technology	#3895	1:1000
Lamin A/C	Cell Signaling Technology	#4777	1:2000
p-Akt (pThr308)	Cell Signaling Technology	#13038	1:5000
p-Akt (pSer473)	Cell Signaling Technology	#4060	1:5000
Akt	Cell Signaling Technology	#4685	1:2000
α-tubulin	Santa Cruz	sc-5286	1:10000
Fasn	Cell Signaling Technology	#3180	1:5000
ACC1	Cell Signaling Technology	#3676	1:5000
ACL	Cell Signaling Technology	#13390	1:5000
HDAC1	Cell Signaling Technology	#5356	1:1000
HDAC2	Cell Signaling Technology	#5113	1:1000
Snail1	Cell Signaling Technology	#3879	1:200
H3K9ac	Cell Signaling Technology	#9649	1:200
H3K9me3	Cell Signaling Technology	#13969	1:200
H3K27ac	EMD Millipore	07-360	1:200
H3K27me3	Cell Signaling Technology	#9733	1:200
H3K4me3	Cell Signaling Technology	#9751	1:200
pGSK3	Cell Signaling Technology	#8566	1:3000
GSK3	Cell Signaling Technology	#5676	1:3000
HSP90	Cell Signaling Technology	#4877	1:5000
НА	U-M Hybridoma Core	12C5	1:1000
Ubiquitin	Santa Cruz	sc-8017	1:1000
Srebp-1c	Santa Cruz	Sc-13551	1:500

Supplementary Table 2 qPCR and ChIP primers

Genes	Forward	Reverse	
Snail1 (mouse)	CCTTGTGTCTGCACGACCTGT	CACTGGTATCTCTTCACATCCG	
Snail1 (human)	TCGGAAGCCTAACTACAGCGA	AGATGAGCATTGGCAGCGAG	
Fasn	TTGACGGCTCACACACCTAC	CGATCTTCCAGGCTCTTCAG	
ACC1	CAGGGACTATGTCCTGAAGCA	GGAATCCATTGTGGAGAGGA	
Srebp-1c	AACGTCACTTCCAGCTAGAC	CCACTAAGGTGCCTACAGAGC	
Lxra	GAGTTCTCCAGAGCCATGAATG	ATATGTGTGTGCAGCCTCTCT	
MTTP	CTCCACAGTGCAGTTCTCACA	AGAGACATATCCCCTGCCTGT	
ароВ	CCAGAGTGTGGAGCTGAATGT	TTGCTTTTTAGGGAGCCTAGC	
Cpt1a	CTGATGACGGCTATGGTGTTT	GTGAGGCCAAACAAGGTGATA	
LPL	AGAAGGGAAAGGACTCAGCAG	TCAAACACCCAAACAAGGGTA	
LCAD	CACTCAGATATTGTCATGCCCT	TCCATTGAGAATCCAATCACTC	
Ecad	ACCGGAAGTGACTCGAAATG	GCTGCCTTCAGGTTTTCATC	
Cldh1	GGGGACAACATCGTGACCG	AGGAGTCGAAGACTTTGCACT	
Fn1	ATGTGGACCCCTCCTGATAGT	GCCCAGTGATTTCAGCAAAGG	
vimentin	GACCTCACTGCTGCCCTGCG	GACTCCTGCTTGGCCTGGCG	
αSMA	GTTCAGTGGTGCCTCTGTCA	ACTGGGACGACATGGAAAAG	
Colla 1a1	TCACCTACAGCACCCTTGTG	GGTGGAGGGAGTTTACACGA	
TNFα	CATCTTCTCAAAATTCGAGTGACAA	TGGGAGTAGACAAGGTACAACCC	
F4/40	CTTTGGCTATGGGCTTCCAGTC	GCAAGGAGGACAGAGTTTATCGTG	
MCP1	ACTGAAGCCAGCTCTCTCTCCTC	TTCCTTCTTGGGGTCAGCACAGAC	
IL6	AGCCAGAGTCCTTCAGA	GGTCCTTAGCCACTCCT	
ACL	CCTCAAGGACTTCGTCAAACA	GCCCATACTCCTTCCTAGCAC	
34B4	AAGCGCGTCCTGGCATTGTCT	CCGCAGGGGCAGCAGTGGT	
GAPDH (human)	CGACCACTTTGTCAAGCTCA	AGGGGTCTACATGGCAACTG	
Fasn (ChIP)	TGCAACCGTAGTCCAACGAG	GCCTCAGCGGAAGTCATCAG	
NCH (ChIP)	GGATGGCTCCAAGATAAGGCA	ACAACATCCACACGTCCAGT	
Actb (ChIP)	AATAGCCTCCGCCCTTGTG	CGTGACATCCACACCCAGA	