Supplemental Figures

FIG S1 Related to Figure 1. (**A**) Above, diagram of RAG-2 with the canonical core (CORE) and plant homeodomain (PHD) indicated. Residues W453 and T490 are indicated by dotted and solid vertical lines, respectively. Below, amino acid sequences of the indicated RAG-2 mutants in the interval from residue 352 through 405, compared to the corresponding sequence of wild-type RAG-2. Mutated residues are indicated in bold type. (**B** - **F**) Upper, detection of RAG-2 variants assayed in Figs. 1B, 1C, 1D, 1E and 1F, respectively, by immunoblotting using an antimyc antibody. Lower, immunodetection of actin on the same membranes as in the upper panels.

FIG S2 Related to Figure 3. (**A**) Assay of inversional recombination as in Fig. 4C for two additional independent infections of R2K3 cells. (**B**) Effects of mutations in the RAG-2 PHD finger and inhibitory domain on endogenous V(D)J recombination in R2K3 cells. Cells stably

expressing empty vector (-), wild-type RAG-2 (wt), or the indicated RAG-2 mutants were treated with DMSO or STI-571 for 48 hr. Top, recombination at the Ig κ locus was assayed as in Fig. 2. Middle, D_H-to-J_H recombination at the IgH locus, assayed as in Fig. 2. Bottom, a PCR amplicon from the RAG-1 locus as a control for input genomic DNA. (C) Immunodetection of myctagged RAG-2 variants in the transduced R2K3 cells assayed in (A). The two lanes corresponding to each variant contain protein from the two independent infections. Lower, immunodetection of actin on the same membrane as above. (D) A portion of the IgH locus is diagrammed with the origins of two germline transcripts indicated. The µ0 transcript is initiated at the DQ52 promoter. The PCR amplicon used to assay for this transcript is indicated as a horizontal line between DQ52 and the $J_{\rm H}$ cluster. Multiple Iµ transcripts originate from the Eµ enhancer 3' of the J_H cluster in the sense orientation. The PCR amplicon used to assay for these transcripts is marked by a horizontal line between E μ and C μ . (E) Assay for germline transcription at the IgH locus. RNA was isolated from two independent R2K3 transductants arrested with STI-571 for 48 hr. RNA samples were incubated in the presence (+) or absence (-) of reverse transcriptase and cDNA corresponding to I μ (top), μ 0 (middle) or actin (ACTB) (bottom) was detected by PCR. Left and right, short and long exposures, respectively, of the same gel, stained with ethidium bromide.

A

DM

Plasmid TGTTTTTGTTCCAGTCTGTAGCACTGTG CAGGTCTC CTGAACCTG CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC

Wild-type ce	ells			
wt (4/4)	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N (5/5)	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM (5/6)	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DNA-PKdef	icient cells			
352N (5/10)	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCAC			AGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCAC			AGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCA			GTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCACTGT-			CTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTG	A		AGTACTCCACTGTCTGGCTGTACAAAAACC
DM (2/5)	TGTTTTTGTTCCAGTCTGTAGCACTGTG			CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCCAGTCTGTAGCAC			AGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCCAGTCTGTAGCACTGT-			ACAAAAACC
DM	-125bp (entire RSS deleted)			
XRCC4-defic:	ient cells			
352N	TGTTTTTGTTCCAGTCTGTAGCACTGTG			GTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCACT GTG			GTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCAC			AGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCNGTCT GTAG			TACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGC			CTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGT CT			CCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCACT			CCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCAC	Т		GTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCACTGTG	CTT		AGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
352N	TGTTTTTGTTCCAGTCTGTAGCACTG		CTGAACCTG	CACAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCC			CAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCC			CAGTGGTAGTACTCCACTGTCTGGCTGTACAAAAACC
DM	${\tt TGTTTTTGTTCCAGTCTGTAGCACT{\bf GT}}-$			AGTACTCCACTGTCTGGCTGTACAAAAACC
DM	TGTTTTTGTTCCAGT CTGTAC			AAAAACC
DM	-12bp			CTGTCTGGCTGTACAAAAACC
DM	-12bp			GTCTGGCTGTACAAAAACC
DM	TG	(24bp	untemplated)	-1
DM	-300+bp (entire RSS deleted)			

-300+bp (entire RSS deleted)

FIG S3 Related to Figure 4. (A) Signal joints recovered from wild-type CHO cells, XRCC4deficient cells or DNA-PK_{cs}-deficient cells expressing wild-type RAG-2 (wt), RAG-2(D/E352-405A) (352N) or RAG2(D/E352-405A, W453A) (DM). The unrecombined RSSs of pJH200 and a portion of the flanking sequences are shown at top (Plasmid). Heptamer elements are shown in blue. Each section lists the signal joint sequences obtained from one of the three cell lines assayed, expressing the RAG-2 variant indicated at left. The number of precise signal joints relative to the total number of unique joints is given in parentheses. Microhomologies are designated by bold type and deletions by dashed lines. A templated insertion is shown in green. Only unique sequences from each transformation are included. (B) Lengths of deletions at signal joints from XRCC4-deficient cells. 352N, RAG2(D/E352-405A); DM, RAG2(D/E352-405A, W453A) Mean \pm SD are indicated; means are significantly different (p < 0.005) by Kruskal-Wallis test. (C) Lengths of deletions at signal joints from DNA-PK_{CS}-deficient cells, displayed as in (B). Means are not significantly different (p > 0.05). (D) Lengths of microhomologies at signal joints from XRCC4-deficient cells, as in (B). Means are not significantly different (p > 0.05). (E) Lengths of microhomologies at signal joints from DNA-PK_{CS}-deficient cells, as in (B). ns, p > 0.05.

$\overline{\Lambda}$			D	
Plasmid	GCTGCAGGTCGAC	GGATCCCCGGGGATC	DNA-PKcs-deficient cells	
Wild-type	cells		wt CTGCAG <u>GTCGAC</u> <u>GTCGAC</u> TC	GGATCC GGATCCCCGGGGGATC
wt	GCTGCAGGTCGAC	GGATCCCCGGGGATC	352N GCTGCAGG <u>TCGAC</u> GTC <u>GATC</u>	<u>GGATC</u> CCCGGGGATC
wt	GCTGCAGGTCGAC GT	CCCGGGGATC	352N GCTGCAGGTC <u>GAC</u> GTC	- <u>GA</u> TCCCCG <mark>AC</mark> GGATC
wt	GCTGCAGGTCGAC G	TCCCCGGGGATC	352N TGCAGGTC <u>GAC</u> <u>GTC</u>	CCCCGGGGATC
wt	GCTGCAGGTCGAC	-GATCCCCGGGGATC	DM GCTGCAGGTCG <u>AC</u> <u>GT</u>	-22
wt	GCTGCAGGTCGA-	TCCCCGGGGATC	XRCC4-deficient cells	
wt	GCTGCAGGTCGA-	TCCCCGGGGATC	wt TGCAGGTC <u>GAC</u> <u>GTC</u>	- <u>GA</u> TCCCCGGGGATC
wt	GCTGCAGGTCGAC	CCCCGGGGATC	352N GCTGCAGGT	-GATCCCCGGGGATC
wt	GCTGCAGGTCGAC	CCCGGGGATC	352N GCTGCAGGTC	CCGGGGATC
wt	GCTGCAGGTC	CGGGGATC	352N GCTGCAGGTC <u>GAC</u> <u>GTCC</u>	<u>GGA</u> TCCCCGGGGATC
W453A	GCTGCAGGTCG <u>AC</u> GT	-GATCCCCGGGGATC	352N GCTGCAGGTC <u>GAC</u> <u>GTCC</u>	<u>GGA</u> TCCCCGGGGATC
W453A	GCTGCAGGTCG <u>AC</u> GT	CCCGGGGATC	352N GCTGCAGGTC <u>GAC</u> GTC	GGATCCCCGGGGATC
W453A	GCTGCAGGTCGAC G	TCCCCGGGGATC	352N GCTGCAGGTC <u>GAC</u> <u>GTC</u>	-GATCCCCGGGGATC
W453A	GCTGCAGGTCGAC	-GATCCCCGGGGATC	352N GCTGCAGGTC <u>GA</u> - <u>TCC</u>	<u>GGA</u> TCCCCGGGGATC
W453A	GCTGCAGGTCGA-	TCCCCGGGGATC	352N GCTGCAGG <u>TCGAC</u> <u>GTCGATCC</u>	<u>GGATC</u> CCCGGGGATC
W453A	GCTGCAGGTCGA-	TCCCCGGGGATC	352N GCTGCAGG <u>TCGAC</u> GTC <u>GA</u> TCC	<u>GGATC</u> CCCGGGGATC
W453A	GCTGCAGGTCGAC	CCCGGGGATC	352N GCTGCA CTA	-19
W453A	GCTGCAGGTC	CCGGGGATC		
352N	GCTGCAGGTCGAC GAC	GGATCCCCGGGGATC		
352N	GCTGCAGGTCGAC GT	CCCGGGGATC		
352N	GCTGCAGG AT	CCCGGGGATC	C AA8 Deletions D	AA8 Microhomology
352N	GCTGCA T	CCCGGGGATC	20-	
352N	GCTGCAGGT	GGATCCCCGGGGATC	20-	2.5
352N	GCTGCAGG	ATCCCCGGGGATC		2.0- ••• •• ••
352N	GCTGCAGGTCGA-	TCCCCGGGGATC	8 15- 8	
352N	GCTGCAGGTCGAC	CCCCGGGGATC	Σ T Δ	^{1.5}
352N	GCTGCAGGTCG	CGGGGATC	° 10- ● ▲ ▲ ♀	
352N	GCTGCAGGTC	CGGGGATC	<u>ia</u> ■ ↑ <u>_</u> ¥▼ _ E	
DM	GCTGCAGGT GAT	CCCGGGGATC		0.5-
DM	GCTGCAGGTCG <u>AC</u> GT	CCCGGGGATC		00- eesee aalaa min vyyyy
DM	GCTGCAGGTCGA- T	CCCGGGGATC		
DM	GCTGCAGGTCGAC	-GATCCCCGGGGATC	0	0.5
DM	GCTGCAGGTCGAC	-GATCCCCGGGGATC	ACH ACH ACH AN	ACH ACH ACH AN
DM	GCTGCAGGCCG	-GATCCCCGGGGATC	WAS SLASS WAS	WA SZA WA
DM	GCTGCAGGTCGAC	CCCGGGGATC	OK2 NOSA	OFF2 NOSA
DM	GCTGCAGGTC	CCGGGGATC	~	·
DM	GCTGCAGG	ATC	DIF	OFF

R

Δ

FIG S4 Related to Figure 4. Coding joints recovered from wild-type CHO cells (**A**) or NHEJdeficient cells (**B**) expressing wild-type RAG-2 (wt), RAG-2(D/E352-405A) (352N) or RAG2(D/E352-405A, W453A) (DM). The unrecombined coding sequences flanking the RSSs of pJH200 are shown at top (Plasmid). Microhomologies are designated by bold type and deletions by dashed lines. P insertions are underlined and potential microhomologies within the P insertions are marked by thick underlining. A mutation from the plasmid sequence is indicated in red type. Six complex rearrangements were ambiguous and excluded. Only unique sequences from each transformation are included. (**C**) Lengths of deletions at coding joints from wild-type cells. Mean \pm SD are indicated; no significant differences were observed (p > 0.05, Kruskal-Wallis). (**D**) Lengths of microhomologies at coding joints from wild-type cells. Means were not significantly different (p > 0.05, Kruskal-Wallis).

FIG S5 The PHD of RAG-2 mediates preferential binding to sites of H3K4 trimethylation. Assay for binding of RAG-2 to transcribed, non-immunoglobulin loci in 63-12 cells (**A**) and R2K3 cells (**B**) by ChIP. Mean \pm SD are indicated; n=2. (**C**) Distribution of H3K4me3 at the IgH locus in R2K3 cells, assayed by ChIP. Enrichment of H3K4me3 over each of the genomic regions defined below was assayed by qPCR as described (Ji et al. 2010). Mean \pm SD are indicated; n=2.

Supplemental materials and methods

Expression constructs. RAG-1 and RAG-2, tagged at the N terminus with maltose-binding protein (MBP) tag and at the C-terminus with a c-myc epitope and a polyhistidine sequence, were expressed in the vectors pcDNA1 and pcDNA3.1 respectively. Methods and oligonucleotide sequences used to generate RAG-2 variants are given in Supplemental Table 1. For GeneArt String (Thermo Fisher) constructs, endogenous PasI and PfIMI restriction sites were used. Truncation mutations were introduced by PCR using the forward primer indicated as RAG-2 truncation F and appropriate reverse primers followed by cleavage with BamHI and EcoRI.

Supplemental Table 1. Cloning methods and oligonucleotide reagents for generation of RAG2 variants.

Mutation	Cloning	Primers 5' to 3'
RAG2(P372A)	Site Directed Mutageneis	F: TGGAGTCACCAGCATCTTCTGTTGATGTCTGACT R: AGTCAGACATCAACAGAAGATGCTGGTGACTCCA
RAG2(P377A)	Site Directed Mutageneis	F: TGAGTCTTCAAAGGCAGTGGAGTCACCAGGATC R: GATCCTGGTGACTCCACTGCCTTTGAAGACTCA
RAG2(P372,377A)	Site Directed Mutageneis	Sequential use of primers for P372A and P377A
RAG2(370-387A ₁₈)	Divergent PCR	F: GCCGCTGCAGCTGCTGCTGCTGCTGCTGCTGCTGCT GCTGCTGAAGCAACCAGTTTTG R: GCCGCTGCAGCGGCGGCGGCGGCGGCGGCGG CTGTTGATGTCTGACTGTTG
RAG2(D/E370- 405A)	GeneArt Strings	GGCGCCCCCTGGGTACCCCAGCAGTGAATTGCACAGTCTTG CCAGGAGGAATCTCTGTCTCCAGTGCAATCCTCACTCAAAC AAACAATGATGAATTTGTTATTGTGGGTGGTTATCAGCTGG AAAATCAGAAAAGGATGGTCTGCAGCCTTGTCTCTCTAGGG GACAACACGATTGAAATCAGTGAGATGGAGACTCCTGACTG GACCTCAGATATTAAGCATAGCAAAATATGGTTTGGAAGCA

		ACATGGGAAACGGGACTATTTTCCTTGGCATACCAGGAGAC AATAAGCAGGCTATGTCAGAAGCATTCTATTTCTATACTTT GAGATGCTCTGAAGAGGGATTTGAGTGAAGATCAGAAAATTG TCTCCAACAGTCAGACATCAACAGCAGCTCCTGGTGCCTCC ACTCCCTTTGCAGCCTCCAGCCGCATTTTGTTTCAGTGCTGC AGCAACCAGTTTTGCTGGTGCCGCCGCTGCATTTGCCACCTACA ATGCAGCTGATGAAGATGACGAGTCTGTAACCGGCTACTGG ATAACATGTTGCCCTACTTGTGATGTTGACATCAATACCTG GGTTCCGTTCTATTCAACGGAGCTCAATAAACCCGCCATGA TCTATTGTTCTCATGGGGATGGGCACTGGGTACATGCCCAG TGCATGGGGCGCC
RAG2(P370-405A)	GeneArt Strings	CCGCGGCCCTGGGTACCCCAGCAGTGAATTGCACAGTCTTG CCAGGAGGAATCTCTGTCTCCAGTGCAATCCTCACTCAAAC AAACAATGATGAATTTGTTATTGTGGGTGGTTATCAGCTGG AAAATCAGAAAAGGATGGTCTGCAGCCTTGTCTCTCTAGGG GACAACACGATTGAAATCAGTGAGATGGAGACTCCTGACTG GACCTCAGATATTAAGCATAGCAAAATATGGTTTGGAAGCA ACATGGGAAACGGGACTATTTTCCTTGGCATACCAGGAGAC AATAAGCAGGCTATGTCAGAAGCATTCTATTTCTATACTTT GAGATGCTCTGAAGAGGGATTTGAGTGAAGATCAGAAAATTG TCTCCAACAGTCAGACATCAACAGAAGATCCTGGTGACTCC ACTCCCGCTGAAGACTCAGAGGAAGCTTGTGCCAGTGCTGA AGCAACCAGTCGAGACTCAGAGGAAGCTTGTGCCAGTGCTGA ATGAAGATGATGAAGATGACGAGTCTGTAACCGGCTACTGG ATTAACATGTTGCCCTACTTGTGACGATGAAGCTGACACCTACA ATGAAGATGATGAAGATGACGAGTCTGTAACCGGCTACTGG GTTCCGTTCTATTCAACGGAGCTCAATAAACCCGCCATGA TCTATTGTTCTCATGGGGATGGGCACTGGGTACATGCCCAG TGCATGGGGCGCC
RAG2(S/T370- 450A)	GeneArt Strings	CCGCGGGCCCTGGGTACCCCAGCAGTGAATTGCACAGTCTTG CCAGGAGGAATCTCTGTCTCCAGTGCAATCCTCACTCAAAC AAACAATGATGAATTTGTTATTGTGGGTGGTTATCAGCTGG AAAATCAGAAAAGGATGGTCTGCAGCCTTGTCTCTCTAGGG GACAACACGATTGAAATCAGTGAGATGGAGACTCCTGACTG GACCTCAGATATTAAGCATAGCAAAATATGGTTTGGAAGCA ACATGGGAAACGGGACTATTTTCCTTGGCATACCAGGAGAC AATAAGCAGGCTATGTCAGAAGCATTCTATTTCTATACTTT GAGATGCTCTGAAGAGGATTTGAGTGAAGATCAGAAAATTG TCTCCAACAGTCAGACGCAGAGGAATTTGGTGACGCC GCTCCCTTTGAAGAGCCAGCAGAGGAATTTTGTTCGCTGCTGA AGCAGCCGCTTTTGATGGTGACGACTCTGTAACCGGCTACA ATGAAGATGATGAAGATGACGAGTCTGTAACCGGCTACA ATGAAGATGATGAAGATGACGAGTCTGTAACCGGCTACTG GATTCCCTTTGAAGAAGATGACGAGTCTGTAACCGGCTACTG GTTCCGTTCTATTCAACGGAGCTCAATAAACCCGCCATGA TCTATTGTTCTCATGGGGGATGGGCACTGGGTACATGCCCAG TCTATTGTTCTCATGGGGGATGGGCACTGGGTACATGCCCAG
RAG2(D/E352- 405A)	GeneArt Strings	GGCGCCCCTGGGTACCCCAGCAGTGAATTGCACAGTCTTG CCAGGAGGAATCTCTGTCTCCAGTGCAATCCTCACTCAAAC

		AAACAATGATGAATTTGTTATTGTGGGTGGTTATCAGCTGG
		AAAATCAGAAAAGGATGGTCTGCAGCCTTGTCTCTCTAGGG
		GACAACACGATTGAAATCAGTGAGATGGAGACTCCTGACTG
		GACCTCAGATATTAAGCATAGCAAAATATGGTTTGGAAGCA
		ACATGGGAAACGGGACTATTTTCCTTGGCATACCAGGAGAC
		AATAAGCAGGCTATGTCAGAAGCATTCTATTTCTATACTTT
		GAGATGCTCTGCGGCCGCTTTGAGTGCAGCTCAGAAAATTG
		TCTCCAACAGTCAGACATCAACAGCAGCTCCTGGTGCCTCC
		ACTCCCTTTGCAGCCTCAGCCGCATTTTGTTTCAGTGCTGC
		CGCAACCAGTTTTGCTGGTGCCGCTGCATTTGCCACCTACA
		ATGCAGCTGATGAAGATGACGAGTCTGTAACCGGCTACTGG
		ATAACATGTTGCCCTACTTGTGATGTTGACATCAATACCTG
		GGTTCCGTTCTATTCAACGGAGCTCAATAAACCCGCCATGA
		TCTATTGTTCTCATGGGGATGGGCACTGGGTACATGCCCAG
		TGCATGGGGCGCC
	DCD	
pCLIP2A	PCK	F: GUGATUGATACUATGTUUUTGUAGATGGTAAU
		R: GCGCTCGAGCGGCCGCTTATAACGCGCGC
RAG2 truncation F	PCR	F: GCTCGGATCCCGGGTACC
	ron	
RAG2(1-351) R	PCR	R: GAATTCAGAGCATCTCAAAGTATAGAAATA
RAG2(1-387) R	PCR	R: GAATTCACTGAAACAAAATTCCTCTGAG
RAG2(1-405) R	PCR	R: GAATTCATCTTCATTGTAGGTGTCAAATTC
PAC2(1.405	DCD	
D/F352 / (1-403) P	ICK	K. GAATICAGCIGCATIGIAGGIGGCAAA
$D_1 L_3 J_2 - 4 U_3 \Lambda J \Lambda$		

Assays for recombination of endogenous immunoglobulin gene segments. The retroviral vector pCLIP2A (Pomerantz et al. 2002) was programmed to coexpress puromycin N-acetyl transferase and RAG-2 variants. The RAG-2 cassettes were amplified from the corresponding pcDNA3.1 subclones by PCR using primers indicated in Table 1. Viral particles were generated by cotransfection of pCLIP2A constructs and pCL-Eco into 293T cells and concentrated by centrifugation. The B progenitor cell lines 63-12 and R2K3 were infected by spin inoculation in the presence of 10 μ g/mL polybrene. Cells were maintained under selection with 1 μ g/mL puromycin for 21 - 25 days, at which time they were assayed for recombination. Recombination

was induced in R2K3 cells (10 ml at 10^6 cells/ml) by addition of STI-571 (3 mM stock in DMSO) to a concentration of 3 μ M for 48 or 96 hr.

Genomic DNA was isolated from approximately 10^6 cells (Qiagen Dneasy) and D_H-to-J_H or V \varkappa -to-J \varkappa rearrangements were detected by PCR. Rearrangements were amplified from 100 ng genomic DNA template by PCR using primers and annealing temperatures indicated in Table 2. RAG-1 was amplified for purposes of normalization from 30 ng genomic DNA template. Reaction products were fractionated by electrophoresis through 1% agarose, transferred to Hybond N+ membranes (GE Healthcare) and detected by hybridization to radiolabeled probes defined in Supplemental Table 2. For quantitation, background was subtracted using a rolling ball algorithm and band area was determined by ImageJ.

Assay for coupled DNA cleavage

Coupled cleavage assays were performed using the duplex oligonucleotide substrates HL44/45 (12-RSS) and HL46/47 (23-RSS) (1) as described (2). In brief, equivalent amounts of active wild-type or mutant RAG tetramer (1 nM) were incubated with 5 nM ³²P-labeled HL44/45, 5 nM unlabeled HL46/47 and varying amounts of H3K4me3 or H3K4me0 peptide in 10 µL of a reaction buffer containing 25 mM 3-(4-Mopholino)propane sulfonic acid-KOH pH 7.0, 30mM KCl, 30 mM potassium glutamate, 5 mM CaCl₂, 0.5 mM DTT, 0.1 mg/mL BSA and 1% glycerol. After 20 min at 37°C, MgCl₂ was added to 5 mM and incubation was continued for 1 hr. Reactions were stopped by addition of loading buffer (90% formamide, 0.2% bromophenol blue) and incubation at 90°C for 2 min. Products were fractionated on a 15% polyacrylamide-urea gel, detected by phosphorimaging and quantified using ImageQuantNL.

Primer	Anneal/Hybridization	Sequence 5' to 3'
	(°C)	
	× ,	
DSP2 F	65 Anneal	ATGGCCCCTGACACTCTGCACTGCT
_ ~		
DFL16.1 F	65 Anneal	ACACCTGCAAAACCAGAGACCATA
DILIONI		
Ih4 R	65 Anneal	AAAGACCTGGAGAGGCCATTCTTACC
	05 / Hillear	
Ih probe	61 Hybridization	СТТАССТСАССАСАСССТСАС
JII prote	of Hybridization	
IcKy E	65 Appeal	CSTTCASWCCCACTCCPTCTCC
Igit v I	05 Annear	db11cAbwddcAd1ddA1c1dd
Mor25 D	65 Appeal	<u>λλΟλΟΨ</u> ΩΩλΨλλλΩΟλΩΨΨΨλΨΩΟΟΟΨΨΨΟ
IVIAISS K	05 Annear	
IaV maha	50 Hybridization	
igk piobe	38 Hybridization	GCICATIAICAGIIGACGIGGC
	Annaal	ССАЩСЩАЩСЩАССАЩСЩСС
KAULE	Anneal	GCATCIAIICIGIAGGAICIGC
DAC1 D	A.u.u.a.a.1	
KAGIK	Anneal	AAACAATGTCAAGCAGACAGCC
ΙΓ		
Imu F	60 Anneal	AATACCCGAAGCATTTACAGTGACT
I D		
Imu R	60 Anneal	AAGATTTTGTGAAGCCGTTTTTGACCA
Mu0 F	60 Anneal	GTGCAGGTCCCTCTCTTGTT
Mu0 R	60 Anneal	GACATTGCATCCACCCTTCT
ACTB F	61 Anneal	TGACGTGGACATCCGCAAAG
ACTB R	61 Anneal	CTGGAAGGTGGACAGCGAGG

Supplemental Table 2. Primers and probes used to assay rearrangement in B-cell progenitors.

Supplemental Table 3. Primers used in ChIP analyses.

Primer	Sequence 5'-3'	Source
γ-actin FP	GACACCCAACCCCGTGACG	
γ-actin RP	GCGGCCATCACATCCCAG	
Cγ3 FP	TGGACAAACAGAAGTAGACATGGGTC	(Subrahmanyam et al. 2012)
Cy3RP	GGGGTTTAGAGGAGAGAAGGCAC	
DSP2s FP	TGTTACCTTACTTGGCAGGGATTT	
DSP2s RP	TGGGTTTTTGTTGCTGGATATATC	
DFL16.1 FP	CAAAGCAGCCACCATCCAG	
DFL16.1 RP	GCAGCACGGTTGAGTTTCAG	
DQ52 FP	CCCTGTGGTCTCTGACTGGTG	(Chakraborty et al. 2009)
DQ52 RP	GATTTCTCAAGCCTCTCTACTTCCTC	
JH2 FP	TACTTTGACTACTGGGGC	

JH2 RP	CCCTAGTCCTTCATGACC	
Jul FP	TTGTACAGCCAGACAGTGGAG	
Jא1 RP	GCCACAGACATAGACAACGG	
Jx2 FP	CAGATTCTGGCACTCTCCAA	
Jz2 RP	ACTGAGCATGGTCTGAGCAC	(Ji et al. 2010)
Jх4 FP	AGTGTGAAAGCTGAGCGAAA	
Jא4 RP	CACAGTGAGGACTATGACATGC	
Cи FP	GTGGAAGATTGATGGCAGTG	
Cи RP	GCTCATGCTGTAGGTGCTGT	
Fahd1FP	AGAGACCTTTCGCTGACCTC	
Fahd1RP	GGTCATGTGACCACCGACT	
Rik FP	GTTTCCACCGGAAGTGCT	
Rik RP	GCGCGCTAATAGGGTCTTT	

Supplemental references

- Shimazaki N, Tsai AG, & Lieber MR (2009) H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol. Cell 34:535-544.
- Lu C, Ward A, Bettridge J, Liu Y, & Desiderio S (2015) An autoregulatory mechanism imposes allosteric control on the V(D)J recombinase by histone H3 methylation. Cell Rep. 10:29-38.