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1. Materials and Methods 

1.1 Finite-Difference Time-Domain (FDTD) Simulation 

FDTD simulations were run with a commercial package Lumerical FDTD 

Solutions v.8.12.631. The dielectric functions of gold, silver, aluminum and copper were 

adopted from the experimental data obtained by Johnson and Christy (1), Shiles et al. (2) 

and Hagemann et al. (3), respectively. The refractive index of silica was assumed to be 

1.46. In order to obtain the reflectance spectra, an infinite thin slab model was used, 

unless otherwise specified, where periodic boundary conditions were adopted in the x and 

y directions such that a simple cubic unit cell was repeated infinitely in the x-y plane. A 

perfectly matched layer boundary condition was used in the z direction, which was also 

the light propagation direction. The length of the superlattice in the z direction was 

determined by the number of layers and the lattice constant in the z direction. The infinite 

thin slab model assumes that only the center of the reflected light is collected, namely not 

counting light reflected at the edge and side of the photonic crystals. The validity of this 

model for our experimental setup and DNA-nanoparticle (NP) superlattice was 

previously demonstrated in the literature (4). Illumination with light occurs in air (n0 = 1), 

and the crystal is assumed to lie on top of a glass substrate (ns = 1.44). For band-structure 

calculations, a single unit cell for the simple cubic lattices and four unit cells for the 

diamond lattice were simulated with Bloch boundary conditions. More than ten dipole 

sources with random orientation and location within the simulation region were used to 

excite all optical modes in the lattices. More than ten randomly located time monitors 

were used to collect the signal in the time domain, and Fourier transform was performed 

to convert data into the frequency domain. 

1.2 Nanoparticle Synthesis and Characterization 

Gold nanocubes (88 nm edge length, >95% were cube shaped with a <5% 

variation in size) were synthesized according to a seed-mediated method (5). The uniform 

seeds prepared via iterative reductive growth and oxidative dissolution reactions are 

critical to the uniformity of the final products. Particle uniformity was characterized 

based on statistical analysis of Hitachi H8100 transmission electron microscope (TEM) 

images (Fig. S1). 
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Fig. S1. Characterization of 88 nm nanocubes.  A representative TEM image (A) and 

UV-Vis spectrum (B) of the monodisperse nanocubes. 

1.3 DNA Design, Synthesis and Purification 

DNA strands used in this work were designed according to the literature 

recommendations (6, 7). Detailed DNA sequences can be found in Table S1. They have 

three key components: an anchor strand, a linker strand, and duplexer strands. The anchor 

strand with a thiol group allows them to be adsorbed onto gold nanoparticles, a dA10 

region that increase the flexibility (light gray) (8), and a region that can hybridize to the 

linker strand (dark gray). The linker strand contains three regions: an 18-base sequence 

(dark blue) complementary to the dark gray region of the anchor strand; some repeated 

40-base spacer sequences (dark green) which are designed for conveniently controlling 

the length of the “DNA bonds”; and a 4-base self-complementary sticky end (light blue) 

which determines the interaction between the assembling nanoparticles. Each region is 

separated by a single base A to provide some flexibility. The duplexer strands (light 

green) can hybridize to the 40-base spacer sequences in the linker strand (dark green).  

 

Table S1. DNA sequences used in this work. The three regions of linker strand are 

highlighted with different color. 
 DNA sequence (5’–3’) Number of base 

Anchor strand TCA ACT ATT CCT ACC TAC AAA AAA 

AAA A SH 

28 

Linker strand GTA GGT AGG AAT AGT TGA A 

TTTTTTTTTTTT ACT GAG CAG CAC TGA 

TTTTTTTTTTTTT A GCGC 

64 

Duplexer strand AAAAAAAAAAAAA TCA GTG CTG CTC 

AGT AAAAAAAAAAAA 

40 

 

DNA strands in this work were synthesized with a MM48 synthesizer 

(BioAutomation) on a solid-support with reagents purchased from Glen Research and 

purified via reverse-phase high-performance liquid chromatography (HPLC; Agilent). 

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-
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TOF-MS) was used to confirm the molecular weight and purity of HPLC-purified DNA. 

Concentration was determined by UV-vis spectrometry. The extinction coefficient of 

each DNA strand was calculated with OligoAnalyzer tool from Integrated DNA 

Technologies. 

1.4 Nanoparticle Functionalization and Assembly 

Nanocubes were chemically functionalized with anchor strand through literature 

procedures (6, 7, 9). The as-synthesized nanocubes were collected by centrifugation and 

washed with H2O.  This process was repeated. After removing the supernatant, the 

colloid was re-dispersed in an aqueous solution of the desalted anchor strand (2 OD260 of 

DNA for 1 ODSPR of nanocube). Note that this strand prior to use was maintained in the 

reduced state with dithiolthreitol (DTT, Sigma Aldirich). Both the DTT and salt must be 

removed prior to particle modification (10). Then, the mixture was brought into 0.01 M 

phosphate buffer solution (PBS) and 0.01% sodium dodecyl sulfate (SDS) solution and 

was agitated on a shaker (~1000 rpm) for 0.5 hour. Then, the nanocubes were treated by 

slow addition of NaCl, which is leads to increased DNA loading (10). The salt 

concentration of the nanocube solution was successively increased from 0.05 M to 0.1 M 

to 0.2 M to 0.3 M to 0.4 M to 0.5 M NaCl using a 2 M NaCl stock solution. These 

additions were done sequentially with 10 s sonication and 0.5 hour shaking between each 

salt addition. The colloid was treated with overnight shaking after the final salt addition 

to insure maximum DNA loading. Free DNA strands were removed by three rounds of 

centrifugation with 0.01% SDS solution. The final pellet was re-suspensed in a solution 

contained 0.01% SDS, 0.01 M PBS and 0.5 M NaCl. 

The DNA linker strand was mixed with duplexer strand in a solution containing 

0.5 M NaCl and 0.01 M PBS, and then incubated at 40 oC for 0.5 hour for pre-

hybridization. The duplexed DNA linker solution was then added into the functionalized 

nanocube colloid in excess to the amount of the anchor strands on particle surface. The 

mixture was allowed to incubate overnight at room temperature to form aggregates. 150 

μL solutions with aggregates were pipetted into 150 μL PCR 8-tube strips (Life 

Technologies) and placed into a thermal cycler (Life Technologies). The temperature of 

the thermal cycler was first increased to 60 oC, and then slowly cooled to room 

temperature in a rate of 0.1 °C per 10 minutes. The slow cooling rate provides sufficient 

time for the superlattice to reach equilibrium during the assembly process (11). 

1.5 Superlattice Characterization 

Nanocube superlattices were embedded in silica before electron microscope, 

optical microscope and small angle X-ray scattering (SAXS) characterization. This 

method can preserve crystal symmetry and lattice parameter when superlattices are 

transferred from solvent (12). Scanning electron microscope (SEM; Hitachi SU8030) and 

scanning transmission electron microscope (Hitach HD2300) were used to observe the 

morphologies of nanocube superlattice. SAXS experiments, which reveal lattice 

parameters (Fig. S2), were performed at the DuPont-Northwestern-Dow Collaborative 

Access Team (DND-CAT) beamline of the Advanced Photon Source at Argonne 

National Laboratory. X-rays with λ= 1.24 Å (E = 10 keV) were used.   
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Fig. S2. SAXS data of nanocube superlattice. The lattice parameter of the nanocube 

superlattice is 134 nm based on the SAXS data. 

1.6 Optical Measurements  

Silica embedded superlattices (12) were first drop cast onto plasma cleaned 

Indium Tin Oxide (ITO) coated glass slides, and the solvent was fully evaporated, 

resulting in a population of superlattices with their flat surfaces lying parallel to the 

substrate. Superlattices were then observed and located with both a Zeiss Axio 

Observer.Z1 microscope and a Hitachi SU8030 SEM to ensure proper orientation and a 

flat top surface. A coverslip deposited with anti-reflection coating purchased from 

Evaporated Coatings Inc. is then fixed close to the sample by carbon tape at the corners. 

Subsequently, immersion oil with a refractive index matching that of silica was slowly 

injected in-between the coverslip and the glass slide, such that the samples were fully 

immersed in the oil. This effectively provides an optically homogeneous background for 

the silica-embedded superlattices. A Xenon lamp (XBO 75) with a broad-band spectrum 

(300 – 1100 nm) was used as the light source. In bright field (BF) reflection mode, the 

sizes of field-stop and aperture were minimized to minimize the angle of incident light. A 

50× objective (N.A. 0.8) was used to collect light from only the center of the 

superlattices. A spectrometer with 50 g/mm grating (Princeton Instrument) and a charge 

coupled device (PyLoN) were connected to the microscope and were used to collect the 

backscattering spectra. A slit (50 µm) was used to extract the backscattering spectrum 

from a thin line at the center of the superlattice, which enables the use of the thin slab 

model in FDTD to simulate this system (4). Finally, a background spectrum was chosen 

from a clean region near the superlattice and was used to remove the signal from the 

background in the backscattering spectrum. 
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2. Considerations in Designing Photonic Crystals 

In the one-dimensional case, the PC can be viewed as periodically alternating 

layers of high- and low-index materials or a distributed Bragg reflector (13), and the PBG 

can be identified as the spectral region with high reflectance (low transmittance) in the 

far-field spectra, in other words a stopband in the reflectance spectra. For incident angles 

perpendicular to the layers, the Bragg condition is best met when the optical length of 

each layer of the PC is a quarter of the relevant wavelength, equation (1). 

 
𝜆0

4
= 𝑑ℎ𝑛ℎ = 𝑑𝑙𝑛𝑙      (1) 

Here, λ0 is the center wavelength of the photonic band, and dh, nh and dl, nl are the 

thicknesses and refractive indices of the high- and low-index materials, respectively (14). 

The higher the contrast between the high and low refractive indices, the broader the 

photonic band width, as governed by equation (2): 

 
∆𝜆0

𝜆0
=  

4

𝜋
 arcsin (

𝑛ℎ − 𝑛𝑙

𝑛ℎ + 𝑛𝑙
)      (2) 

where Δλ0 and λ0 are the width and center frequency of the band (15). The maximum 

reflectance (Rmax) is not only dependent on the index contrast but also on the number of 

layers through the equation: 

 𝑅𝑚𝑎𝑥 = [
𝑛0(𝑛ℎ)2𝑁 − 𝑛𝑠(𝑛𝑙)2𝑁

𝑛0(𝑛ℎ)2𝑁 + 𝑛𝑠(𝑛𝑙)2𝑁
]2      (3) 

n0 and ns are the indices of the top and bottom layers outside of the crystal, and N is the 

number of layers of the high-index material (14). 

For all of the fabrication methods for photonic crystals, a critical parameter for 

achieving large PBG and high reflectance is the refractive index contrast between the 

high- and low-index materials, the importance of which can be seen in equations (1)-(3) 

above (16-18). Moreover, as can be seen in equation (1), in order to satisfy the Bragg 

condition at certain wavelengths, the thickness of each layer can be reduced by using 

materials with a higher index, which is important for the miniaturization of devices.   
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3. Spectra of a Single Nanoparticle 

For a systematic investigation of the effect of lattice parameters on the stopband 

features, FDTD simulations are performed where spherical Au NPs with 54 nm radius are 

arranged in a lattice structure, unless otherwise specified. Fig. S3 shows the absorption, 

scattering, and extinction spectra of a single spherical NP in silica host. 

 
Fig. S3. Absorption, scattering, and extinction spectra of a single NP. The radius of 

the spherical NP is 54 nm.  The NP is modeled to be in silica with a refractive index of 

1.46. 
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4. Results for Cubic Superlattices 

4.1 Effect of the number of NP layers 

The dependence on N can be seen in Fig. S4, where the reflection spectra of 

superlattices with simple cubic (cP) lattice symmetry, 200 nm lattice constant but 

different number of layers (1 – 20) are shown. The stop band between 600 – 770 nm 

saturates at only 7 layers. However, as the lattice constants increases, more layers are 

needed for the reflection band to saturate (Fig. S5). To keep the computational time 

reasonable, the exact dependence on the number of layers is not examined, and 7 layers 

of superlattices are used (i.e. N = 7) in all simulations throughout the main text, unless 

otherwise specified. 

 

 
Fig. S4. Thickness dependence of the reflectance spectra. The spherical NP radius is 

54 nm, and the crystal has simple cubic symmetry and a 200 nm lattice constant. The 

number of layers is shown in the legend. The reflectance spectra resemble that of 

dielectric photonic crystals. When there is only one layer, the structure is not periodic in 

the light propagation direction, thus no Bragg reflection occurs. As the number of layers 

increases, the reflection band appears and saturates quickly. The number of layers at 

which the stop-band saturates is 7 in this case. 
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Fig. S5. Thickness dependence of the reflectance spectra of a crystal with larger 

lattice constant. The NP radius is 54 nm, and the crystal has simple cubic symmetry and 

a 240 nm lattice constant. Again, the number of layer is shown in the legend. In contrast 

with the superlattice with a smaller lattice constant (Fig. S4), the stop-band is not 

saturated until the number of layers exceeds at least 10.   
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4.2 Relationship between Stopband Features and Lattice Constant in a Cubic 

System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6. Dependence of maximum reflectance and its corresponding wavelength on 

the lattice constant of cP, cI and cF lattices. The NP radius is 54 nm, and 7 layers are 

used. The spectra of these data points are shown below. 
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4.3 Reflectance Spectra of Cubic Superlattices 

Fig. S7. Dependence on lattice constant of the reflectance, transmittance and 

absorbance spectra of cP lattices. The NP radius is 54 nm, and the layer number is 

fixed at 7. Lattice constants are shown in the legends. The range of lattice constants was 

chosen so that strong near-field coupling between NPs is avoided. As can be seen, the 

LSPR peak overlaps with the photonic band when the lattice constant is at or below 200 

nm (top), while it is separated at a lattice constant equal to or larger than 220 nm 

(middle). When the lattice constant further increases beyond 300 nm, the first order peak 

further red shifts and a second order peak arises close to the LSPR (bottom).   
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Fig. S8. The reflectance spectra dependence on lattice constant for cI lattices. The 

NP radius is 54 nm, and the lattices have 7 layers, namely 3 unit cells. Lattice constants 

are shown in the legends. 
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Fig. S9. Dependence on lattice constant of the reflectance spectra of cF lattices. The 

NP radius is 54 nm, and the lattices have 7 layers. Lattice constants are shown in the 

legends. 
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5. Results for Superlattices of Other Crystal Systems 

5.1 Results of Tetragonal Superlattices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S10. Dependence of the bandwidth on the layer periodicity of tP and tI lattices. 

The NP radius is 54 nm, and the lattices have 7 layers. The lattice constant within each 

layer is kept at 200 nm. The reflectance spectra of the data points are shown below. 

  

200 300 400
0.05

0.10

0.15

0.20
 tP

 tl

 

 




0

Layer periodicity (nm)



 

 

15 

 

 

Fig. S11. Dependence on the layer periodicity of the reflectance spectra of tP lattices. 

The NP radius is 54 nm, and the lattices have 7 layers. Lattice constants in each metallic 

layer (a) is kept at 200 nm. Layer periodicities are shown in the legends. Interestingly, as 

the layer periodicities increase, the Bragg band starts from being convoluted with LSPR 

(140 – 200 nm), to separated (220 – 320 nm), to producing second order band that’s 

convoluted with LSPR (360 – 400 nm), to second order band separated from LSRP (440 

– 480 nm). 
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Fig. S12. Dependence on the layer periodicity of the reflectance spectra of tI lattices. 

The NP radius is 54 nm, and the lattices have 7 layers. Lattice constants in the x-y plane 

(a) is kept at 200 nm. Layer periodicities are shown in the legends. Notice how similar 

the spectra are compared to the ones in Fig. S11. Similarly, as the layer periodicities 

increase, the Bragg band starts from being convoluted with LSPR (140 – 200 nm), to 

separated (220 – 320 nm), to producing second order band that’s convoluted with LSPR 

(360 – 400 nm), to second order band separated from LSRP (440 – 480 nm). 
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Fig. S13. Dependence on the layer periodicity of the reflectance spectra of tP lattices 

with 15 layers. The NP radius is 54 nm. This time the lattices have 15 layers. Lattice 

constant in each metallic layer (a) is kept at 200 nm. Layer periodicities are shown in the 

legends. As the layer periodicities increase, the Bragg band starts from being separated 

from LSPR (220 – 320 nm), to producing second order band that’s convoluted with 

LSPR (360 – 400 nm), to second order band separated from LSRP (440 – 480 nm). 
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Fig. S14. Dependence on the layer periodicity of the reflectance spectra of tP lattices 

with a = 140 nm. The NP radius is 54 nm, and the lattices have 7 layers. Lattice constant 

in the x-y plane (a) is kept at 140 nm, which is smaller than that shown in the Fig. S11. 

Layer periodicities are shown in the legends. In this case, large Bragg reflection band is 

observed for all layer periodicities investigated. More interestingly, as the layer 

periodicities increase, the Bragg band starts from being convoluted with LSPR (140 – 

200 nm), to separated (220 – 300 nm), to producing second order band that’s convoluted 

with LSPR (320 – 400 nm), to second order band separated from LSRP (440 – 600 nm). 
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Fig. S15. Dependence of maximum reflectance, λ0, and Δλ/λ0 on the lattice constant 

(a) in each layer of tP lattices. The NP radius is 54 nm, and the lattices have 7 layers. 

Layer periodicity is kept at 240 nm.  

  

0.7

0.8

0.9

1.0

750

800

850

100 200 300 400 500

0.1

0.2

0.3

0.4
 

 

R
m

a
x

 tP

 

 


0
 (

n
m

)

 

 





0

a (nm)



 

 

20 

 

 
Fig. S16. Dependence of the reflectance spectra on the lattice constant in each layer 

of tP lattices. The NP radius is 54 nm, and the lattices have 7 layers. Layer periodicity is 

kept at 240 nm. Lattice constants in each metallic layer are shown in the legends. 

Interestingly, as the lattice constants in each layer increase, the lower energy side of all 

the reflection bands seems to be at the same wavelength, while the band width and 

reflectance on the rest of the band decreases.  
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5.2 Results of Orthorhombic Superlattices 

 

 

Fig. S17. The reflectance spectra dependence on the lattice constant in each layer of 

oP lattices. The NP radius is 54 nm, and the lattices have 7 layers. Layer periodicity is 

kept at 240 nm. One lattice constant in each metallic layer (a) is kept constant at 250 nm, 

while the other (b) is shown in the legends. Again, the higher energy side of all the 

reflection bands seems to be at the same wavelength, while the band width and 

reflectance on the rest of the band decreases.  
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5.3 Results of Hexagonal Superlattices 

 

 

Fig. S18. Dependence on the NP spacing in each layer of the reflectance spectra of 

hP lattices. The NP radius is 54 nm, and the lattices have 7 layers. Layer periodicity is 

kept at 240 nm. Lattice constant in each layer is shown in the legends. The higher energy 

side of all the reflection bands seems to be at the same wavelength, while the band width 

and reflectance on the rest of the band decreases.  
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Fig. S19. Reflectance, transmittance and absorbance of a hP lattice. The NP radius is 

54 nm, and the lattices have 7 layers. The lattice constant in each layer is 140 nm, and the 

layer periodicity is 240 nm. This is the same lattice with the largest volume fraction in the 

previous figure. The highest reflectance is ~97%, due to the material absorption, as can 

be seen in absorbance spectrum (bottom). 
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5.4 Results of Trigonal Superlattices 

 

 

Fig. S20. Dependence on the angle between each layer of the reflectance spectra of 

hR lattices. The NP radius is 54 nm, and the lattices have 7 layers. Layer periodicity is 

kept at 240 nm. Lattice constant in each layer is shown in the legend.  

  



 

 

25 

 

5.5 Results of Monoclinic Superlattices 

 

 
Fig. S21. Dependence on the angle between each layer of the reflectance spectra of 

mP lattices with fixed c. The NP radius is 54 nm, and the lattices have 7 layers. The 

three monoclinic lattice constants are kept constant. The angle is shown in the legend. 
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Fig. S22. Dependence on the angle between each layer of the reflectance spectra of 

mP lattices with fixed z. The NP radius is 54 nm, and the lattices have 7 layers. The 

lattice constant in each layer and the layer periodicity are kept constant. The angle is 

shown in the legend. All the spectra are exactly on top of each other. 
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Fig. S23. Dependence on the angle between each layer of the reflectance spectra of 

mC lattices with fixed c. The NP radius is 54 nm, and the lattices have 7 layers. The 

three monoclinic lattice constants are kept constant.  The angle is shown in the legend. 

The reflectance of the mC lattices is higher than that of its monoclinic counterpart 

because of higher volume fraction in each layer. 
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Fig. S24. Dependence on the angle between each layer of the reflectance spectra of 

mC lattices with fixed z. The NP radius is 54 nm, and the lattices have 7 layers. The 

lattice constant in each layer and the layer periodicity are kept constant. The angle is 

shown in the legend. All the spectra are exactly on top of each other. The reflectance of 

the mC lattices is higher than that of its monoclinic counterpart because of higher volume 

fraction in each layer. 
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6. Reflectance with Effective Medium Theory and Transfer 

Matrix Method 

Since the volume fraction, rather than the exact arrangement of the NPs, within 

each NP layer affects the properties of the stop-band, one can use the Maxwell-Garnett 

Effective Medium Theory (EMT) (4) to obtain the effective index neff of the NP layer, 

followed by using the Transfer Matrix Method (TMM) (19), as commonly used in 

layered dielectric films, to calculate the reflectance and transmittance of the superlattices. 

The neff is only dependent on the dielectric constants of the composite materials and the 

volume fraction by the equation: 

𝜀𝑒𝑓𝑓 − 𝜀𝑚𝑎𝑡𝑟𝑖𝑥

𝜀𝑒𝑓𝑓 + 2𝜀𝑚𝑎𝑡𝑟𝑖𝑥
= 𝐹𝐹 ∗ 

𝜀𝐴𝑢 −  𝜀𝑚𝑎𝑡𝑟𝑖𝑥

𝜀𝐴𝑢 + 2𝜀𝑚𝑎𝑡𝑟𝑖𝑥
  (4) 

 

where FF is the fill factor (volume fraction of Au) in each layer, as explained in Fig. 3 

and Fig. S25. εAu and εmatrix are the dielectric constant of Au and the background matrix 

(Au is embedded in silica in this case). The εeff is the effective dielectric constant of the 

layer and neff can then be calculated as the square root of εeff. The real and imaginary part 

of the neff of the NP layers in three simple cubic lattices with 200, 240, and 300 nm lattice 

constant (a) are show in Fig. S25. As can be seen, the smaller the lattice constant (hence 

larger FF), the larger the real part of neff, which is important since large index contrast is 

desired. 

 
 

Fig. S25. The real and imaginary part of the effective index calculated with EMT. 

Here the thickness of the NP layer is twice that of the NP radius. Simple cubic 

superlattices are used and the lattice constants are shown in the legend. 
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Now that we know both neff and nsi (1.46), one can calculate the reflectance, 

transmittance and absorbance of the layered structure by using the TMM. Fig. S26 

compares the results calculated through the EMT+TMM codes (done in Matlab) and 

FDTD of the three superlattices mentioned in the previous paragraph. Overall there is 

good agreement between the two methods, especially at longer wavelength. The 

EMT+TMM method underestimates the strength of the stop-band, likely because of 

blurring of the index contrast. In other words, the full FDTD calculation sees much larger 

dielectric contrasts. The agreement at shorter wavelength (around or below the NP LSPR 

at ~600 nm) is poorer mostly due to the limitation in EMT. For example, the quadrupole 

mode at ~ 550 nm is not predicted by EMT. And when a = 200 nm, the LSPR and stop-

band is separate with EMT methods, while the two couple with FDTD. 

 

 

Fig. S26. Comparison between FDTD and EMT methods. Reflectance (top), 

transmittance (middle) and absorbance (bottom) spectra of simple cubic superlattices 

with 7 layers and 200 (left), 240 (center) and 300 (right) nm. 
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7. Angle-Dependent Reflectance Spectra 
 

The dependence of reflectance on the incidence angle is investigated through 

simulation and plotted in Fig. S27. NPs with 54 nm in radius are arranged in cP lattice 

with 300 nm lattice constant and 30 layers, in order to ensure sufficient number of layers 

are used and the reflectance is saturated. The stopband, which is the red-colored broad 

band in Fig. S27, blue-shifts as the angle of incidence increases. This is because as the 

angle of incidence increases, the effective layer periodicity along the light propagation 

direction decreases, thus the stopband shifts shorter wavelength. The stopband exists up 

until ~ 50° then gradually disappears at steep angle of incidence, due to the fact the 

distinction between high- and low-index materials become blurred along a certain range 

of angles. 

 

 

Fig. S27. Angle-dependent reflectance spectra of simple cubic superlattices. The NPs 

are 54 nm in radius, and the lattice constant is 300 nm. 30 layers are simulated to ensure 

sufficient layer number. The stopband blue-shifts as the angle of incidence increases, 

which can be rationalized since the layer periodicity decreases accordingly. At steep 

angles (> 50°) the definition between the high- and low-index layers along the light 

propagation becomes blurry, thus the stopband gradually disappears.  
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8. Effect of Nanoparticle Size 

The effect of NP size is explored by using cP lattices with the same densities (i.e. 

constant volume fractions of the overall superlattice) and 7 layers, we compare the 

photonic properties of superlattices made with nine different NP sizes (10 – 90 nm in 

radius) and four volume fractions (8.2%, 10%, 15%, 20%). The lattice constants are 

summarized in Table S2.  

Table S2. Lattice constants in nanometers used for different NP radius (r) and 

volume fractions (vf) for simple cubic superlattices. Lattice constants are in nm. 

         r(nm) 

vf (%) 

10 20 30 40 50 60 70 80 90 

8.2 37 74 111 148 185 222 259 296 333 

10 35 69 104 139 174 208 243 278 313 

15 30 61 91 121 152 182 212 243 273 

20 28 55 83 110 138 165 193 220 248 

 

No reflectance larger than 0.9 is observed in 10-40 nm NP superlattices at all six 

volume fractions (Fig. S28). For superlattices with 50-90 nm NPs, Rmax increases to a 

saturation value (Fig. S30B). Moreover, the larger the NP size, the more the stopband is 

to the red, which is true for all volume fractions (Figs. S29 and S30C). This is likely 

because that at a constant volume fraction, the layer periodicity is larger for larger NP 

size, thus λ0 increases as predicted by equation (4). Likewise, the stopband blue shifts as 

the volume fraction increases, due to smaller layer periodicity at larger volume fraction. 

From Fig. S30 we see that at sufficient volume fraction both the Rmax and Δλ/λ0 increases 

with larger NPs. Thus, at a constant Au volume fraction, larger NPs are more suitable for 

optimizing PPCs performance. 
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Fig. S28. Reflectance spectra of simple cubic superlattices with small NP building 

blocks at four volume fractions. The NP size is indicated in the legend, and the volume 

fraction is shown in the top-right corner of each plot. The lattices have 7 layers. No 

reflectance larger than 0.9 exists when the three sizes of NPs are used at all four volume 

fractions. 
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Fig. S29. Reflectance spectra of simple cubic superlattice with larger NP building 

blocks at four volume fractions. The NP size is indicated in the legend, and the volume 

fraction is shown in the top-right corner of each plot. The lattices have 7 layers. As is 

evident, the stop-band becomes broader with larger NP building blocks.   
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Fig. S30. NP size as a design parameter for PPCs. (A) At the same volume fraction and 

lattice symmetry (simple cubic), the effect of the NP size on the stopband features is 

explored. (B-D) The dependence of Rmax (B), λ0 (C) and Δλ/λ0 (D) on NP size of four 

different volume fractions as shown in the legend. 
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9. Bandstructure of PPCs 
The stop-band that is observed in the reflectance spectra can also be viewed in the 

band diagram of the corresponding superlattice. To avoid interband transitions in Au, the 

Drude model is used to generate the dielectric constant of Au: 

𝜀𝐷(𝜔) =  𝜀∞ −
𝜔𝐷

2

𝜔2 + 𝑖𝛾𝐷𝜔
 (5) 

 

where ε∞ = 11.4577, ωD = 9.4027 eV, and γD = 0.08314 eV. The calculated refractive 

index is compared with the experimental results from Johnson and Christy in Fig. S31.  

 

 
Fig. S31. Comparison between the refractive indexes obtained from Drude model 

and experimental results. The real (“Drude real(n)”) and imaginary (“Drude imag(n)”) 

part of the refractive index from the Drude model fits well with the real (“JC real(n)”) 

and imaginary (“JC imag(n)”) part of the experimental results reported by Johnson and 

Christy (1). 

 

By importing the Drude model as the material property, a single simple cubic unit 

cell of spherical gold NP with 54 nm radius is simulated. Bloch boundary conditions are 

used in all three dimensions and the dispersion relation in the ΓX direction is 

investigated. The unit cell is excited with multiple randomly distributed dipole sources. 

The electric field as a function of time is collected by multiple randomly placed monitors 

and Fourier-transformed to produce the dispersion relation (Fig. S32). 
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Fig. S32. Band diagram of simple cubic lattice with two different lattice constants. 

The lattice constants are labeled on top of the band diagram. 

 

Large Ag NPs with larger lattice constant are also investigated in order to separate the 

photonic band gap from the NP LSPR. Fig. S33 shows the bandstructure of a cP lattice 

with 180 nm NP and 300 nm lattice constant. A broad bandgap exists in the ΓX direction 

but gradually closes up in other directions. This shows a similar trend to our angle-

dependent study shown in Fig. S27. A full photonic band gap is observed in a diamond 

lattice, as can be seen in the case of a diamond lattice made of 180 nm Ag NPs and 500 

nm lattice constant, in order to avoid NP touching (Fig. S34). The band gap is 0.42 eV, 

which is larger than similar structures made with the same volume fraction of high-

indexed dielectric materials, as reported by Ho et al. (20). 

 
Fig. S33. Band diagram of simple cubic lattice made of Ag NPs. The NPs are 90 nm in 

radius and the lattice constant is 300 nm. 
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Fig. S34. Band diagram of diamond lattice made of Ag NPs. The NPs are 90 nm in 

radius and the lattice constant is 500 nm. 

. 
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10. Effect of NP Shape 

In order to investigate the effect of NP shape through simulation, spherical, cubic 

and octahedral NPs of the same volume are used as building blocks. The radius of the 

spherical NP is 54 nm, the edge length and rounding are 88 and 5 nm for cubic NP and 

112 and 5 nm for octahedral NP. Simple cubic lattice structure with 200 nm lattice 

constant is used such that all the superlattices with different NP shape share the same 

volume fraction too. Once again, 7 layers are used in the calculations. Fig. S35 shows the 

reflectance spectra of the three superlattices. Here, we see that the stop-band exists in all 

three spectra, which indicates that the same general guidelines that are discussed in the 

main text can be applied to other NP shapes.  

 

 

Fig. S35. Reflectance spectra of simple cubic superlattice with spherical (top), cubic 

(middle) and octahedral (bottom) NPs. The three types of NP building blocks have the 

same volume and their corresponding superlattices have the same lattice constant and 

volume fraction. A stop-band is observed in all spectra. 
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11. Performance of PPCs with Different NP Composition 

Here, we perform a set of simulations on superlattices with the same geometry as 

the experimental sample, namely a simple cubic lattice structure, 134 nm lattice constant, 

88 nm cubic NP with 5 nm rounding, but different materials (Ag, Au, Al, Cu). Again, 

only 7 layers are probed. Fig. S36 shows the reflectance, transmittance and absorbance 

spectra. Obviously, the stopband of Ag shows the highest reflectance and lowest 

absorption, followed by Au, Cu and lastly Al. We note that this trend might not hold true 

in superlattice with different lattice parameters, due to reasons such as the fact that 

material loss is dependent on the NP size and its dielectric environment and the effective 

indices depend on wavelength. The highest reflectance of the Ag NP superlattices reaches 

~0.986 and might be further increased by adjusting the lattice parameters and layer 

number. Indeed, the simulated spectra of a tetragonal Ag NP superlattice with 134 nm in-

plane lattice constant, 300 nm layer periodicity and 15 layers are plotted in Fig. S37, in 

which the largest reflectance reaches more than 0.996.  
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Fig. S36. Reflectance (top), transmittance (middle) and absorbance (bottom) spectra 

of simple cubic superlattice with Ag, Au, Al, and Cu NPs. Ag NP superlattice shows 

the largest reflectance and lowest loss at its stop-band wavelengths. The lattice constant is 

kept at 134 nm, and the number of layers is 7. Cubic NPs with 88 nm edge length and 5 

nm rounding are used. 
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Fig. S37. Reflectance (top), transmittance (middle) and absorbance (bottom) spectra 

of tetragonal superlattice with Ag NPs. The Rmax for this structure is ~ 0.996. The 

structural parameters for this superlattice are a = 140 nm, c = 300 nm, 15 layers. Cubic 

NPs with 88 nm edge length and 5 nm rounding are used. 
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12. Performance of PCs with Different Metallic NPs  

Here, FDTD simulations where spherical NPs with a 54 nm radius were arranged 

in a cP superlattice with 134 nm lattice constant were performed. The top part of Fig. S38 

summarizes the reflectance spectra of plasmonic NPs (Ag, Au, Al, Cu), where there is a 

significant stopband, which is absent for lattices made from non-plasmonic NPs (Cr, Fe, 

Ti, Fig. S38). Further investigation of Ti NP superlattices as a function of changing layer 

number (Fig. S39) and lattice constant (Fig. S40) reveals that there is not a significant 

stopband at smaller lattice constants, whereas at larger lattice constants, the stopband is 

much weaker than the analogous case with plasmonic particles (compare with Fig. S7). 
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Fig. S38. Reflectance spectra of a simple cubic superlattices with different NP 

compositions. Plasmonic NPs show large stopband (top) compared to metallic NPs with 

poor plasmonic properties (bottom). Spherical NPs with 54 nm radius were used, and the 

lattice constant is 134 nm. 7 layers were used. 
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Fig. S39. Thickness dependence of the reflectance spectra. The spherical NPs are 

made of Ti and the radius is 54 nm, and the crystal has cP symmetry and a 134 nm lattice 

constant. The number of layers is shown in the legend. The peak at ~600 nm does not 

change with increasing number of layers (shown in legend). 

 

 
Fig. S40. The reflectance spectra dependence on lattice constant for cP lattices. The 

NPs are made of Ti, the particle radius is 54 nm, and the lattices have 7 layers. Lattice 

constants are shown in the legends. 
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13. Performance of PC with Dielectric NPs 

In order to benchmark our technique with conventional PC fabrication methods, 

simulations are done with dielectric NP building blocks. Specifically, the NPs have 54 

nm radius and their material is set to be dielectric with a constant positive refractive 

index. The NPs are arranged into lattice structures in the same manner as the metallic NP 

superlattices discussed in the main text. The dielectric NP superlattices show similar 

behavior as its metallic counterpart, such as a stronger stopband with larger number of 

layers (Fig. S41), a red-shift as the lattice constant increase (Fig. S42). They also obey 

well the design principles derived with metallic NP superlattices (Figs. S44-46). 

Importantly however, a larger number of layers are needed for the stopband to saturate, 

and the bandwidth is smaller in the dielectric NP superlattice compared to the metallic. 

 

Fig. S41. Thickness dependence of the reflectance spectra of dielectric NP 

superlattices. The NP radius is 54 nm, the crystal has simple cubic symmetry and 240 

nm lattice constant. The number of layers is shown in the legend. The dielectric index of 

the NPs is fixed at 4. The reflection spectra resemble that of superlattices made with 

metallic NPs with the exact same lattice parameters. A larger number of layers is required 

to achieve high reflectance (> 0.9), and the stopband does not saturate even for 30 layers. 
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Fig. S42. Dependence on the lattice constant of the reflectance spectra of dielectric 

NP superlattices. The NP radius is 54 nm, and the crystal has simple cubic symmetry. 

The number of layers is fixed at 20. The dielectric constant of the NPs is 4. The lattice 

constant is shown in the legend. The stopband red shifts as the lattice constant increases, 

similar to the case of plasmonic nanoparticle superlattice. 

 

 

Fig. S43. Dependence on the dielectric index of the reflectance spectra of dielectric 

NP superlattices. The NP radius is 54 nm, and the crystal has simple cubic symmetry 

and 240 nm lattice constant. The number of layers is fixed at 20. The dielectric index of 

the nanoparticles is shown in the legend. As the index increase, there is a slight red-shift 

in the stopband location.  
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Fig. S44. Effect of layer periodicity on the reflectance spectra of dielectric NP 

superlattices. The NP radius is 54 nm, and the dielectric constant is 4. The superlattice 

has 200 nm in-plane lattice constant and 15 layers. The lattice symmetry is shown in the 

legend. The two spectra coincides with each other well, indicating again that layer 

periodicity, rather than lattice constant in z-direction, determines the stopband features. 

 

 

Fig. S45. Effect of NP arrangement in each layer on the reflectance spectra of 

dielectric NP superlattices. The NP radius is 54 nm, and the dielectric constant is 4. The 

superlattice has 240 nm layer periodicity and 20 layers. The lattice symmetry is shown in 

the legend. The two spectra overlap with each other, indicating again that the exact 

arrangement of nanoparticles in each layer does not affect the stopband features. 
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Fig. S46. Comparison between reflectance spectra from FDTD and EMT+TMM 

methods. The EMT+TMM method is done in the exact same manner as described in 

section 5 of this SI, except that the inclusion material is dielectric instead of Au. The NP 

radius is 54 nm and its dielectric constant is 4. The superlattice has simple cubic lattice 

symmetry, 240 nm lattice constant and 7 layers. Consequently, volume fraction in the NP 

layer is ~ 21.2% and resulting refractive index of the layer is ~ 1.8 (independent of 

wavelength). Again, the EMT+TMM method predicts correctly the location of the 

stopband but underestimates its intensity, just as in the case of lattices made of metallic 

NP. 

 

 
Fig. S47. The stopband features can be improved by the use of spacer group. 

Dielectric NPs are also used to demonstrate the importance of having spacer groups (i.e. 

having NPs well-separated). The superlattice has tetragonal symmetry with a = 140 nm 

and 7 layers. The radius and dielectric constant of the NPs are 54 nm and 4, respectively. 

The lattice constant in the z direction (c) is shown in the legend. When c = 108 nm, 

adjacent NP layers are touching. The bandwidth increases as the NP layers are further 

separated.   
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14. Effect of Dielectric Medium 
The superlattice can have a different dielectric medium. Experimentally, this can be 

easily achieved by immersing the superlattices in different index-matching oils. Thus, we 

investigate through simulation the effect of a different dielectric medium. Again, the 

superlattice is set to have the same structural properties with 88 nm edge length and 5 nm 

rounding Au nanocubes, simple cubic lattice structure, 134 nm lattice constants and 7 

layers. Fig. S48 summarizes the reflectance, transmittance and absorbance spectra of the 

superlattices with different dielectric medium. Obviously, the spectral location of the 

stop-band can be easily tuned by changing the dielectric medium. Moreover, the larger 

the dielectric medium, the broader the stop-band, which might be due to larger index 

contrast between the metal and dielectric layer. 

 

 
 

Fig. S48. Reflectance (left), transmittance (middle) and absorbance (right) spectra of 

superlattice with different dielectric media. The superlattice parameters are fixed, 

namely nanocubes with 88 nm edge length and 5 nm rounding, 134 nm lattice constant 

and 7 layers are used. The refractive index of the dielectric medium is shown on the top-

right corner of the absorbance spectra. 
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