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Supporting Information Text

Data sources of publicly available datasets. The ERCC UMI count matrix of (1–3) are downloaded from the NCBI GEO website
(GSE54006, GSE63473, GSE78779). The raw FASTQ files of the 10x data from (4) is released as ArrayExpress E-MTAB-5480
and we obtain the mapped UMI counts from the original authors. The UMI count matrices of both biological genes and ERCC
spike-ins in Klein et al. (5) and Zeisel et al. (6) are downloaded from the NCBI GEO website (GSE65525, GSE60361). The
count matrices of Tung et al. (7) are downloaded from the Github page: https://github.com/jdblischak/singleCellSeq. Both the
ERCC data and the datasets of 10 purified cell types in Zheng et al. (8) are downloaded from the 10x genome website: https:
//support.10xgenomics.com/single-cell-gene-expression/datasets. To calculate the expected number of molecule amount for each
ERCC spike-in gene across cells, we referred to Table 1 of Svensson et al. (4) which summarized the dilution ratios and volumes of
the ERCC spike-ins in each of the publicly available datasets. All the ERCC spike-in datasets and information that are used in the
manuscript are also publicly available on our Github repository: https://github.com/jingshuw/DESCEND_manuscript_source_code.
The CPM counts of the Drop-seq data in Torre et al. (9) can be downloaded from the NCBI GEO website (GSE99330). Both
the raw Drop-seq UMI counts and the RNA FISH counts for the 26 genes profiled by both technologies are available on our
Github repository.

A comparison of the CV, Gini coefficient and Fano factor. Both CV and Gini coefficient are scale invariant measures of the
dispersion of a distribution. Given a sample (x1, x2, · · · , xn), the Gini coefficient is defined as
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where σ2 is the sample variance. Comparing the two, the Gini is merely a robust version of the CV, replacing the square-norm
with the absolute-norm.

In contrast, the Fano factor, defined as σ2/µ is not scale invariant, thus can not be estimated when the cell specific efficiency
constants are unavailable. A selection of HVGs based on Fano factors favors highly expressed gene. For a gene g, let the
DESCEND recovered true gene expression be the distribution of kgλcg where kg is some unknown scaling factor. In addition,
assume that the biological variation of gene g has the decomposition σ2

g = µg + θgµ
2
g, then the Fano factor of the recovered

distribution is
k2
gσ

2
g
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indicating that for genes with the similar dispersion parameters, selection based on Fano factors favors more dispersed and
highly expressed genes. Also, it depends on the assumption that the efficiency of all the genes are approximately the same,
which may not be true.

Dispersion calculation of ERCC data from Svensson et al. (4). (4) contains two datasets at different concentration levels and
because of the low efficiency (less than 0.01% on average per cell) of the experiment, their dispersion measured by CV is
calculated using a simple moment method.

For a single ERCC spike-in gene, under the “Poisson-alpha” noise model, as the observed count in one cell follows
Yc ∼ Poisson(αcλc), then conditional on αc and assume λc ∼ Poisson(λ) where λ is the expected molecule input amount,
we have Var(Yc) = αc(1 + αc)λ. as the cell efficiency αc ≈ 10−4 for the ERCC data from (4), we have Var(Yc) ≈ αcλ and
E(Yc) = αcλ.

Thus, if the “Poisson-alpha” noise model is plausible, we should have Var
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αcλ under the

“Poisson-alpha” model is fitted or not.
The reason that we use this simple moment method instead of DESCEND to check for over-dispersion for this dataset is

that under the scenario of super low cell efficiency with concentrated input molecule amount across cells (CV is mostly 0 in
this dataset), DESCEND is biased because of the usage of a penalized likelihood and the moment method provides a more
accurate assessment of dispersion for such ERCC dataset.
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Practical considerations for discretization of the deconvolved distribution in DESCEND. One component of the DESCEND
algorithm is the discretization of the deconvolved distribution to simplify computation. For discretization, we need to consider
both the range of discretized points and number of points we use. We find in practice that DESCEND is robust to the number
of points and using m = 50 points is enough to give satisfying results in most the datasets we have analyzed as the distribution
of gene expression is typically smooth, even when in a heterogenous population.

Choosing the range of points is more critical. The lower limit is always 0, but for the upper limit, we need to avoid either
making it too large so that most points has almost zero probability or making it too small so that the upper tail of the true
expression distribution can not be well estimated. We estimate the upper limit of the distribution from the observed counts. In
DESCEND, if at most 95% of the cells have non-zero UMI count for gene g then the upper limit is set as the 98% percentile of
{Ycg/αc, c = 1, 2, · · ·C}. However, in scRNA-seq data, there can be many genes that are very sparse. In DESCEND, if the
sparsity of gene g is larger than 95%, then the upper limit is set to be the 80% percentile of {Ycg/αc, c = 1, 2, · · ·C, Ycg 6= 0}.

Details of the simulation experiments. In the sample-splitting simulation, the 820 Oligodentroctyes cells from Zeisel et al. (6)
are randomly split into two equal-sized groups. DESCEND uses the ERCC spike-ins to compute the cell-specific efficiencies as
αc and deconvolve the true absolute gene expression distribution separately for each genes in each cell group.

In the parameteric simulation, we first run DESCEND to the observed UMI counts of 820 cells to get the estimated
parameter values. Here, we first estimate the cell size for each cell and then run DESCEND to deconvolve cell size adjusted
distribution. The log of cell size is added as the covariate for both the nonzero fraction and nonzero mean. To generate pseudo
scRNA-seq UMI counts, We assume that the cell size adjusted gene expression follows a zero-inflated log-Normal distribution
for each gene, where the mean and variance match the corresponding parameters of the deconvolved distribution by DESCEND.
We create “null” genes by setting the nonzero fraction as 1 for the genes whose estimated nonzero fraction by DESCEND is
larger than 0.8. For the coefficients of cell size on the pseudo counts, we keep the DESCEND estimated coefficients of cell
size on nonzero mean and nonzero fraction as true parameters for this synthetic data. Only genes whose average UMI counts
per cell among originally observed Oligodendroctyes cells is larger than 0.3 are used for generating pseudo RNA-seq counts,
resulting in 5045 genes used. The estimated technical noise model is taken as the true model, thus the simulated UMI count
data matrix has the same size and the same per-cell efficiency as the original filtered data.

In the down-sampling simulation, we first select the top 150 genes with the highest average UMI counts among the 820 cells.
For these genes, the original observed UMI counts are treated as the true underlying gene expression in each cell. Then, we
generate down-sampled observed counts from these true counts by adding noise following the “Poisson-alpha” noise model with
efficiencies being αc ≡ 20%, 10% and 5%. We compared the estimated parameters using DESCEND from these down-sampled
observed counts with the true parameters values (the values calculated from the original observed UMI counts).

Pre-processing and analysis of the RNA FISH data from Torre et al. (9). In this dataset, both Drop-seq and RNA FISH are
applied to the same melanoma cell line. For the Drop-seq experiment, cells with library size less than 1000 UMIs are removed
(as we use GAPDH to normalize the data for recovering the relative gene expression), and 5763 cells are left with median 1473
UMIs per cell for further analysis. For the RNA FISH experiment, cells with less than 100 or more than 1000 GAPDH UMI
read counts are removed, with 79099 cells left for further analysis. Of the 26 genes profiled by RNA FISH, the genes VCF and
FOSL1 are removed as we find apparent inconsistency between the Drop-seq data and RNA FISH data for these two genes
(The fraction of zero read counts are too high in the RNA FISH data compared with the Drop-seq data). The RNA FISH data
is normalized by GAPDH, thus we can analyze the expression of at most 23 genes (excluding VCF, FOSL1 and GAPDH). The
RNA FISH data are treated as gold standard, meaning that we ignore the measurement errors and assume that the RNA FISH
counts represent the true expression level of the genes. The DESCEND recovered distribution is re-centered to have the same
mean as the corresponding RNA FISH distribution as we allow for the linear form the “Poisson-alpha” noise model αcg = αcγg.
The distribution based measurements: nonzero fraction, CV and Gini coefficients are all scaling invariant.

For its Drop-seq dataset, we computed the CV from the raw normalized counts using conditional variance decomposition
under the “Poisson-alpha” noise model and compare the values with the DESCEND estimated ones. For a fixed gene g, let
µY (σY ), µα(σα), µλ(σλ) be the mean (variance) of Ycg, αc and λcg across cells respectively. Here αc is the library size of each
cell. Then, we have
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from which we can estimate CV2
λ as both Ycg and αc are observable. To compute the Gini coefficient of the normalized counts,

we used the R package reldist (10).

Jingshu Wang, Mo Huang, Eduardo Torre, Hannah Dueck, Sydney Shaffer, John Murray, Arjun Raj, Mingyao Li, and Nancy R.
Zhang

3 of 14



To quantify the relationship between cell size and expression burstiness in the RNA FISH data, we use the GAPDH read
counts as the proxy of cell sizes, as experiments show that they are highly linearly correlated with the true cell size (11). Thus,
we have 23 genes left for further analysis (excluding VCF, FOSL1 and GAPDH). We run a logistic regression to estimated the
linear relationship between the log of cell size and the odds ratio of the nonzero fraction. Also, we use R packages gamlss,
gamlss.tr (12, 13) and run zero-truncated negative binomial models to estimate the linear relationship between the log of cell
size and the log of the nonzero mean for the RNA FISH data.

Analysis of the data from Tung et al. (7). The data in Tung et al. (7) contains three C1 replicates from three human induced
pluripotent stem cell lines and UMI were added to all samples. In the original paper, one replicate of the first individual (NA
19098.r2) was removed from the data due to low quality and 564 cells are kept after filtering. Of the 564 cells, the number of
cells in each of the eight replicates ranges from 51 to 85. For comparison between the two artificial groups, each group contains
randomly selected 50 cells from one replicate of each of the three individuals. For comparison between individuals, we choose
the two individuals whose all three replicates are kept and include all cells belonging to them in DESCEND.

Each replicate is a batch. As the batches are perfectly confounded with both the artificial group and the individual labels, we
are unable to adjust for the confounding effects in mean expression. However, by adding the batch indicators as covariates, we
can remove the batch biases within each testing group, thus can adjust for the confounding effect of batches on the dispersion
parameters, such as CV and Gini coefficients.

We apply DESCEND to recover the relative gene expression and add the batches as covariates on the nonzero mean.
Because of the limited number of cells in each group, we only look at the most highly expressed 187 genes whose average UMI
read counts exceed 50 in order to make the estimation errors manageable. As these are highly expressed genes, most of their
CV/Gini coefficients are also very small. In addition, as most of these genes are not bursty, there is no apparent difference
when the batches are added as covariates on both the nonzero mean and nonzero fraction.

Analysis of the data from Klein et al. (5). For the mouse embryonic stem cell data from Klein et al. (2015), the single cells are
sampled from a differentiating mESC population before and at 2, 4, 7 days after LIF withdrawal. The number of cells sampled
at each of the four times are 933, 303, 683 and 798 with the average library size being approximately 29500, 8500, 4700 and
26500 respectively. When comparing across all four datasets, we only keep genes whose fraction of non-zero read counts are
at least 5% and whose average UMI read count are at least 0.15 in every dataset, resulting in 9059 left. For the differential
analysis between Day 0 and Day 2, we ask the above criteria to be satisfied only in the two datasets involved, resulting in
13096 genes left for analysis.

In addition to using DESCEND for differential testing of the mean relative expression between Day 0 and Day 2, we also
use the R package DESeq2 (14) with default settings. For the GO over-representation analysis of this dataset, we use the R
package gProfileR (15). For the tSNE plot of the differentiation at Day 4 and Day 7, we use the R package SeuratV2.1 (16)
and follow the standard work flow on their online tutorial: http://satijalab.org/seurat/pbmc3k_tutorial.html.

Analysis of the data from Zeisel et al. (6). The dataset contains read counts of 12234 genes in 3005 cells obtained from the
mouse somatosensory cortex and hippocampus CA1 region. The 3005 cells have been further clustered into 7 major cell types:
Astrocytes-Ependymal, Endothelial-Mural, Interneurons, Microglia, Oligodendrocytes, CA1 pyramidal and S1 pyramidal, and
the number cells in each cell type are 224, 235, 290, 98, 820, 939 and 399 respectively. We recover the cell size adjusted gene
expression distribution for each cell type separately. The cell sizes are estimated as the ratio between the library size and the
cell efficiency estimated from the ERCC spike-ins. To avoid estimation bias, both the cell efficiency and cell size are treated as
covariates on both nonzero fraction and nonzero mean.

For each cell type, we only recover the expression distribution of the genes whose fraction of non-zero read counts are at
least 5% and whose average UMI read count are at least 0.3 for estimating the burstiness parameters with acceptable accuracy.
The number of genes kept are then 3855, 3496, 7984, 3299, 4951, 7866 and 7683 respectively for each cell type. When we
compare across cell types, we only consider the intersection of the genes from the involved cell types. For example, there are
2105 genes which are kept in all cell types.

For the GO over-representation analysis of this dataset, we use the R package clusterProfiler (17) which allows user-defined
list of the background genes. We define the list of background genes to be all genes who passes our filtering criteria to avoid
possible biases introduced during the filtering process.

Cell type identification. For cell clustering of the datasets from Zeisel et al. (6) and Zheng et al. (8), we follow the steps in
the online tutorial of Seurat (Version 2.1). We try different values of the resolution parameter to get the desired number of
clusters (K = 7 for (6) and K = 10 for (8)) in each scenario and compare the clustering accuracy of Seurat with and without
DESCEND at the given number of clusters. To compute the adjusted Rand index, we use the R package mclust (18).
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Mathematical Details of DESCEND

In this section, we elaborate on some of the statistical details underlying the DESCEND method with a more mathematically
rigorous language than the method section of the manuscript. The methods build on the ideas in (19), and it may also be
helpful to read that paper in order to understand the technical details of DESCEND.

Model Specification. As we introduced in the “Model Overview” section of the main manuscript, the observed read count Ycg
for gene g in cell c is modeled as a convolution of the true gene expression λcg and independent technical noise:

Ycg ∼ Fcg(λcg) [1]

where Fcg(·) quantifies the technical variations of the noise. The technical noise distribution Fcg aims to capture reverse
transcription loss, PCR amplification bias, sequencing loss, batch effects and other library preparation biases. Below, we first
describe the possibilities for Fcg and then discuss modeling the biological variation of the true gene expression λcg.

The model for the technical noise. For scRNA-seq with UMI barcoding, the observed data are the counts of UMI barcodes for each
gene in each cell. For this type of data, DESCEND currently allows two classes of technical noise models: the “Poisson-alpha”
model and the “NB-alpha” model. The Poisson-alpha model assumes

Ycg ∼ Poisson(αcgλcg) [2]

where αcg is a cell- and gene-specific efficiency constant. For most data sets in our paper, with the exception of (7), we allowed
the simplification αcg = αc. Here, we will discuss the general model.

An analytic argument for model Eq. (2) was given by (20), which we recapitulate here. scRNA-seq technology includes
three main steps: reverse transcription, then PCR amplification, followed by sequencing. In the first step, the number of copies
Wcg of gene g in cell c should approximately follow

Wcg ∼ Binomial(λcg, p1cg)

where p1cg is the probability of a transcript molecule being reverse transcribed. The amplification step amplifies Wcg, but with
UMI barcoding, the amplification noise can be ignored. The sequencing step following amplification takes a sample from the
UMI barcodes in the library, and thus, the observed UMI barcode count Ycg follows

Ycg ∼ Binomial(Wcg, p2cg)

where p2cg is the probability of a transcript being amplified then sequenced. Let αcg = p1cgp2cg, then, since the three steps are
independent, we have

Ycg ∼ Binomial(λcg, αcg)
which is approximately model Eq. (2). The substitution of the Poisson for the Binomial distribution is reliable when αcg is
small, which is true for most scRNA-seq data sets. For large αcg, Ycg under the Binomial distribution should be slightly less
dispersed than under the Poisson distribution, and using the Poisson distribution would lead to more conservative inference,
which we feel is not a bit issue.

DESCEND can accommodate four forms for αcg:

• constant across genes for each cell: αcg ≡ αc

• linear for each gene across cells: αcg ∝ αc or more specifically, αcg = αcγg

• log-linear for each gene across cells: αcg = α
γg
c as suggested in (21)

• batch-correction form: αcg = αc exp(Ubcβbg) where Ubc is the batch indicator covariates for cell c.

The default form for αcg in DESCEND is the constant form. If the linear form is assumed, the distribution of γgλcg can
still be deconvolved by DESCEND. Though γg is unidentifiable, one can still recover scale-invariant properties of the true gene
expression distribution, such as nonzero fraction, Gini or CV. The log-linear form allow gene-specific efficiency effects and the
batch-correction form allows correction of batch effects on each gene differently. The log-linear and the batch-correction forms
look complicated, but, as we shall see, the coefficients in both models can be estimated in DESCEND by treating αc or Ubc as
covariates. DESCEND also accepts the estimated αc or γg computed by other software, such as (21).

As described in the main manuscript, the constant/ linear forms of the “Poisson-alpha” model capture most of the random
variation in ERCC spike-in genes for the 9 public UMI datasets we have examined. It is important to note that the cell-specific
αc factor is able to account for noise introduced in multiple stages of the experiment, including reverse transcription loss
sequencing error and cell-level average batch effects, although the adjustment is not gene-specific. In the main manuscript, we
also showed using the data from Tung (2017) that the batch-correction form is useful for removing batch effects for biological
genes. The appropriate model choice should always be made in consideration of the specific protocol that generated the data.

The efficiency constants αcg discussed above is slightly different from the scaling constant αc discussed in the “Model
Overview” and “Methods” sections of the main manuscript. There, the more general scaling constant αc either represent the
efficiency as described here or the efficency times the total number of mRNA copies in the cell. With gene and cell specific
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constant αcg, we from now on also allow for such generalization, where αcg is either the efficiency, or efficiency times the total
number of mRNAs in cell c. For the latter scenario, λcg is then intepreted as the true expression concentration (or relative
expression) instead of the true absolute expression levels. We will discuss in detail in the model estimation section how such
generalization enables estimation of the technical noise model without presence of ERCC spike-ins.

Another type of technical noise model allowed by DESCEND is the NB-alpha model, which extends the Poisson-alpha
model by assuming

Ycg ∼ Negative Binomial(αcgλcg, θ),

where the over-dispersion parameter θ quantifies possible over-dispersion beyond Poisson. We have shown on ERCC spike-ins
that θ is almost 0 in most datasets, and thus ignore this small level of over-dispersion. Yet, it is possible that some datasets
can have relatively large over-dispersion due to unknown sources of technical variation.

We believe carefully done spike-ins are invaluable for checking the appropriateness of the noise model for any scRNA-seq
experiment. Note, however, that in DESCEND, if deconvolving the relative expression distribution, spike-ins are used only for
model checking and not for the estimation of any noise parameters. Thus, even in the absence of reliable spike-ins, one can still
recover the distribution for relative expression.

The model for the true gene expression. As explained in the main manuscript, and in the previous subsection, we allow λcg to
represent either the absolute or relative expression. Hereon, we refer to λcg as true expression, with its interpretation implicit
given by the choice of the scaling constants αcg.

First, consider the scenario when no covariates are present. We denote the distribution of λcg as

λcg ∼ Hg(·)

where the distribution Hg is modeled as an exponential family distribution with density:

h(x) = exp{Q(x)Tα− φ(α)} [3]

where α is a vector of parameters and φ(α) is the normalization factor. We do not use a simple parametric form for Q(x), but
set it as a 5-degree natural cubic spline function, thus allowing more flexibility to adapt to the unknown distribution of true
gene expression. We discretize the distribution to simplify computation. As discussed in (19), we limit the possible values of
true expression to x ∈ x = (x1, · · · , xm). Then, for a random viariable X following the discretized form of Hg,

P [X = x] = exp{QTα− φ(α)} [4]

where Q is the 5-degree natural cubic spline matrix at x.
Due to transcriptional bursting and cell subpopulation heteogeneity, the true expression / concentration can have a point

mass at 0, which we model separately. Similar to what is suggested by (19), to incorporate the point mass at 0, we define

Q1 =
(

1 0
0 Q

)
. Let x0 = (0,x) (the original discretization x should not include 0), the final discretized distribution Hg is

P [X = x0] = exp{QT1
(
α0
α

)
− φ1(α0, α)} [5]

where φ1(·) is the new normalization factor. The probability at 0 is simply exp(α0 − φ1(α0, α)), and thus can be an arbitrary
value regardless of the shape of the positive part. In practice the points x0 are chosen as equally spaced points between 0 and
some quanitle (say 98%) of the scaled observed counts.

Now, consider the case where covariates are present, and the goal is to conduct inference on the effect of the covariates
and, perhaps, also examine the covariate adjusted distribution, as defined in the Materials and Method section of the main
manuscript. The covariates here are at the cell level, such as cell size and cell cycle. We allow the covariates Uc to affect
both the zero fraction of the distribution and the mean of the positive part (the nonzero mean). We model these two effects
separately, using the logit link for the former and the log link for the latter:

logit(P [λcg = 0]) = Ucβ̃g + β̃0g, [6]

log(λcg)
∣∣
λcg>0

= Ucβg + εcg, [7]

where βg, β̃g and β̃0g are parameters to be estimated from the counts for each gene across cells. The random variable exp(εcg) is
assumed to have the distribution of Eq. (4). Interpretation of the deconvolution result under covariate adjustment is discussed
in the Methods section of the main manuscript.

Model Estimation.
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Estimating the technical noise. First, consider the Poisson-alpha model under the constant / linear form. With the presence of
ERCC spike-ins, the cell specific efficiency constants can be estimated using ERCC spike-ins as

α̂cg ≡ α̂c =
∑

g is spike-in

Ycg/
∑

g is spike-in

λg

where λg = E [λcg] is the known expected input molecule count of the spike-ins computed from dilution ratios. For the constant
form, we have E [α̂cg] = αc = αcg. For the linear form, we have

E [α̂cg] = αc

∑
g′ is a spike-in λg′γg′∑
g′ is a spike-in λg′

= αcg
1
γg

∑
g′ is a spike-in λg′γg′∑
g′ is a spike-in λg′

which is proportional to the true αcg. Subsequently, we simply plug-in these estimated α̂cg as true values for next steps in
calculating the likelihood of observed counts. As mentioned, this approach leads to the interpretation of λcg being absolute
gene expression counts.

When there are no ERCC spike-ins, we are unable to estimate cell-specific efficiency values. However, letting Nc be the
total RNA count in each cell, we can still estimate the product of Nc and the efficiencies under the constant / linear form
Poisson-alpha model to estimate our generalized definition of αcg in the previous section. We estimate αcg by simply using the
library size

α̂cg ≡Mc =
∑
g

Ycg.

This is enough for deconvolution of the distribution of relative expression levels since

Ycg ∼ Poisson(efficiency of cell c gene g ×Nc × concentration of g in cell c).

following the noise model Eq. (2).
For the batch-correction form of the Poisson-alpha model where αcg = αc exp(Ubcβbg), we can estimate the αc part the same

as described above. The ratio between E [α̂c] and the true αc is then batch-specific. Both the effect of the difference of such
ratio between batches the batch-specific coefficient βcg can be corrected by adding Ubc as a covariate in DESCEND.

For the “NB-alpha model”, the cell-specific efficiencies can be estimated in the same way as in the Poisson-alpha model.
The over-dispersion parameter θ can be estimated only with spike-ins, although the spike-ins do not need to be added to every
cell. For example, in droplet-based sequencing protocols, a common approach is to create droplets containing only spike-ins,
which can be used to estimate the over-dispersion associated with purely technical noise. The estimation of the dispersion
parameter is as follows: First, the Poisson-alpha model is used to deconvolve the distribution of λcg for spike-ins; then, the
coefficient of variation of the deconvolved distribution is computed. The parameter θ can be estimated by the squared limiting
CV values of the spike-in genes whose λg are large. This is based on the fact that when

Ycg ∼ Negative Binomial(αcgλcg, θ) ∼ Poisson(αcgZcg),

Zcg ∼ Gamma distributed,E [Zcg | λcg] = λcg,Var [Zcg | λcg] = θλ2
cg,

using the “Poisson-alpha” model for deconvolution recovers the distribution of Zcg, and the squared CV of Zcg equals

CV2 = Var [Zcg]
λ2
g

=
λg + θ(λ2

g + λg)
λ2
g

λg→∞−→ θ.

Estimating the parameters of the underlying biological distribution. We only show here how the covariate-adjusted (including batch
effect adjusted) DESCEND model can be fit. The no covariates scenario is easier and can be derived from the results here in a
straightforward way. The estimation procedure for technical covariates (such as batches) and biological covariates (such as cell
sizes) are the same. For notation simplicity, we use Uc to denote covariates, either technical or biological or both, and assume
λcg follows Eq. (6) and Eq. (7). Note that λcg here may contain the technical covariates, thus is no longer the true absolute
/relative expression levels. We still use λcg for notation simplification.

Let Tcg = λcg/ exp(Ucβg), then Tcg has density

P [Tcg = x0] ∆= hc(α̃g) = exp{QTc α̃g − φ̃c(α̃g)} [8]

where each Qc =

( 1 0
UTc 0
0 Q

)
is the cell specific covariate adjusted matrix. To see that Eq. (8) is consistent with Eq. (6), let

α̃ =

(
α0
αU
α

)
then

logit (P [Tcg = 0]) = log
(
P [Tcg = 0]
P [Tcg 6= 0]

)
= α0 − log

[(
exp
(
QTα

))T 1
]

+ UcαU
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which is equivalent to Eq. (6) with β̃g = αU and β̃0 = α0 − log
[(

exp
(
QTα

))T 1
]
. For notation simplicity, we use α to denote

the whole parameter vector α̃ in later formulas.
Now we focus on a single gene g and omit the subscript g for notation simplification in ensuing formulas. Let the probability

of observing read count Yc be fc. Denote pc(β) = P [Yc | Tc = x0], then we have
fc(α, β) = pc(β)Thc(α)

The log-likelihood of the data is l(α, β) =
∑

c
log fc(α, β).

As suggested in (19), we maximize a penalized log-likelihood
l̃(α, β) = l(α, β)− s(α), s(α) = c0‖α‖2,

where the penalty term s(α) reduces the variance of the estimates by sacrificing some unbiasness. Let the Fisher information
matrix of α be I(α), which can be estimated from the unpenalized likelihood. The regularization constant c0 is selected
iteratively and adaptively such that the approximate ratio of artificial to genuine information

R(α̂) = tr{s̈(α̂)}
tr{Î(α̂)}

is less than 1%, to avoid over shrinkage bias, but more than 0.05%, to reduce estimation variation. As shown in (19), there
are relatively simple formulas for ˙̃l(α, β) and ¨̃l(α, β) due to the exponential family framework. The optimization of l̃(α, β) is
conducted by a Newton-type algorithm using the nlm function in R.

Statistical inference. (19) showed that second-order approximation formulas provide useful inference on α̂ and β̂. By second-order
approximation uses Taylor expansion around the true value α∗ and β∗,

0 = ˙̃l(α̂, β̂) ≈ ˙̃l(α∗, β∗) + ¨̃l(α∗, β∗)
{(

α̂

β̂

)
−
(
α∗
β∗

)}
,

which yields (
α̂

β̂

)
−
(
α∗
β∗

)
= ¨̃l(α∗, β∗)−1 ˙̃l(α∗, β∗).

Considering possible model mis-specification, we use the sandwich estimator. Define

A = −¨̃l(α̂, β̂), B =
∑
c

l̇c(α̂, β̂)l̇c(α̂, β̂)T ,

where lc(α, β) = log fc(α, β). Then, approximately,(
α̂− α∗
β̂ − γ∗

)
·∼
(
−A−1ṡ(α̂), A−1BA−1) .

Often we are interested in conducting inference on quantities that are functions of α, such as the population mean µ, the
nonzero fraction 1− p0, CV and Gini coefficients, we use second order approximations again, in that for any function f(·),
Taylor expansion yields f(α̂) ≈ f(α) + ḟ(α)(α̂− α). As a consequence, we get

Var [f(α̂)] ≈ ḟ(α̂)2 Var [α̂] , Bias(f(α̂)) ≈ ḟ(α̂)Bias(α̂).
The second order approximation may not be accurate because of regularization. In practice, this approximation tends to

underestimate the bias of the estimates (see (19)). However, we find that ,empirically, the mean squared error: M̂SE(θ̂i) =
B̂ias

2
(θ̂i) + Ŝd

2
(θ̂i) obtained by combining the variance and bias gives meaningful quantification of the estimation uncertainty.

We further use the mean squared error for differential testing of p0, CV and Gini Coefficients between two populations of
cells. More specifically, to test H0 : θ1 = θ2 where θi (i = 1, 2) is some parameter expressed as a function f(α) as above, we
compute the following Z-score:

Z = θ̂1 − θ̂2√
M̂SE(θ̂1) + M̂SE(θ̂2)

We run a permutation of the cell labels of the two populations to compute p-values for the Z-scores. Let Y1 and Y2 be
two count matrices of two cell populations. We randomly re-assign the cells to each population to get new shuffled count
matrices Y ?1 and Y ?2 which have the same dimensions as Y1 and Y2 respectively. We compute the Z-scores Z? comparing the
two permuted data matrices Y ?1 and Y ?2 for all the genes and use the distribution of Z? across genes as the null distribution of
the z-score. The p-values are then computed by calculating the quantiles of the z-scores with respect to this null distribution.

Again, as the second order approximations may not be accurate, we use likelihood ratio tests to test for specific values of
the parameters in a single population, e.g. H01g : P [λcg 6= 0] = 1, the test for nonzero fraction in the true distribution of gene
g. We calcuate the maximized unpenalized likelihoods l̂0g and l̂1g under the null and alternative hypotheses, respectively. The
likelihood ratio test for gene g is T̂g = 2[l̂1g − l̂0g]. The same applies to the test of whether cell size has an effect on nonzero
mean (H02g : βg = 1), or on nonzero fraction (H03g : β̃g = 0). Under the null hypothesis, these test statistics approximately
follow the chi-squared distribution with one degree of freedom.
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Fig. S1. More figures for validation of DESCEND. (a) For the parametric simulation: comparison between the estimated nonzero fraction, CV and Gini coefficients and the true
values. For the down-sampling simulation, boxplots for values across genes where for each gene, the value is the difference between the estimated parameter value and the
true value. (b)Batch effect removal: the DESCEND estimated CV coefficients are compared between the two artificial groups before (left) and after (middle) adding batches
as covariates. Each dot is a gene. The estimated CV after adding batches as covariates are also compared between two individuals (right). The red dots are significantly
differentially expressed genes (of CV) when FDR in controlled at level 5%.
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Fig. S2. Supplementary figures for the case study of Zeisel et al. (6). (a)Bar plot of the mean cell size (calculated as the ratio of library size and cell efficiency) of each cell type.
Neuron cells are much larger than non-neuron cells. (b)Venn Diagram of the number of significantly differentially expressed genes based on nonzero fraction before and after
cell size adjustment. (c)The coefficients of cell size on nonzero fraction and nonzero mean for the RNA FISH data. The black bars are one standard error bars. (d)Change of
nonzero fraction versus the change of nonzero mean of genes between two cell types: Endothelial-Mural and CA1 Pyramidal. (e)A consistent sub-linear effect of cell size on
nonzero mean across all cell types. (f)A consistent positive effect of cell size on nonzero fraction across all cell types.
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Fig. S3. Over-representation analysis for (a)genes whose nonzero fraction is significant differentially expressed but not the nonzero mean and (b)genes whose both nonzero
fraction and nonzero mean are differentially expressed genes based on nonzero fraction between the non-neuron cell type Endothelial-Mural and the neuron cell type CA1
Pyramidal. The plot shows the 15 categories with the smallest p-values using Fisher’s exact test.
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number of differentially expressed genes based on mean relative expresion and Gini coefficient, one for the case where the change are tested using DESeq2 and DESCEND,
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significant known marker genes for the various cell types that appear during differentiation. The colored bars are one standard error bars. (e)Change of the mean relative
expression and Gini coefficients for 5 significant genes that are promising marker genes for the differentiated cell type.
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Fig. S5. Feature plots of the tSNE plots for the cells at day 4 and day 7. (a)The colored circles represents the differentiated cells (red), not fully differentiated cells (orange)
and undifferentiated cells (purple). There are also three other cell clusters at Day 4 (yellow, green and blue circles). (b) The orange circled cells are those that have not fully
differentiated at Day 7.
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