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Additional methods: Detailed preprocessing methods for the 

transcriptomic datasets 

 

RNA-Seq data from purified cell types (GSE52564 and GSE67835) 

As initial validation, we used our method to predict sample cell type identity in two RNA-Seq 

datasets derived from purified cell types: one derived from from purified cortical cell types in mice 

(n=17: two samples per cell type and 3 whole brain samples: GSE52564) [18], and one derived from 466 

single-cells dissociated from freshly-resected human cortex (GSE67835) [2]. The RNA-Seq data that we 

downloaded from GEO was already in the format of FPKM values (Fragments Per Kilobase of exon 

model per million mapped fragments) [18] or counts per gene [2]. To stabilize the variance in the data, we 

used a log(2) transformation (after adding 1), and then filtered out the data for any genes that completely 

lacked variation across samples (sd=0; final gene count: GSE52564: 17148, GSE67835: 21627). Then we 

applied the methods now found in the BrainInABlender package, and examined the correlation between 

each of the cell type indices and sample cell type identity (excluding the fetal, whole brain, and “hybrid” 

cells). The code for these analyses can be found at 

https://github.com/hagenaue/CellTypeAnalyses_Darmanis and 

https://github.com/hagenaue/CellTypeAnalyses_Zhang.  

 

Microarray data from artificial cell mixtures (GSE19380) 

As further validation, we determined whether relative cell type balance could be accurately 

deciphered from microarray data for samples containing artificially-generated mixtures of cultured cells 

from the cerebral cortices of rat P1 pups (GSE19380, [12]). The microarray profiling was performed 

using a Affymetrix Rat Genome 230 2.0 Array. According to the methods on GEO, this data had already 
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undergone probeset summarization and normalization using robust multi-array averaging (RMA, affy 

package [87]), including background subtraction, summarization by median polish, log(2) transformation, 

and quantile normalization. We then predicted the cell content of each sample from the microarray data 

using BrainInABlender, and correlated these predictions with the actual percent of each cell type found in 

the mixtures (Fig 5 in main text). The code for these analyses can be found at: 

https://github.com/hagenaue/CellTypeAnalyses_KuhnMixtures/tree/master. 

	
Pritzker dorsolateral prefrontal cortex microarray dataset 

(GSE92538) 

The original dataset included tissue from 172 high-quality human post-mortem brains donated to 

the Brain Donor Program at the University of California, Irvine with the consent of the next of kin. 

Frozen coronal slabs were macro-dissected to obtain dorsolateral prefrontal cortex samples. Clinical 

information was obtained from medical examiners, coroners’ medical records, and a family member. 

Patients were diagnosed with either Major Depressive Disorder, Bipolar Disorder, or Schizophrenia by 

consensus based on criteria from the Diagnostic and Statistical Manual of Mental Disorders [88]. Due to 

the extended nature of this study, this sample collection occurred in waves (“cohorts”) over a period of 

many years.  

As described previously [28,62], total RNA from these samples was then distributed to 

laboratories at three different institutions (University of Michigan (UM), University of California-Davis 

(UCD), University of California-Irvine (UCI)) for hybridization to either Affymetrix HT-U133A or HT-

U133Plus-v2 chips (1-5 replicates per sample, n=367). Before conducting the current analysis, the subset 

of probes found on both the Affymetrix HT-U133A and HT-U133Plus-v2 chips was extracted, 

reannotated for probe-to-transcript correspondance [89], summarized using RMA [87], log(2)-

transformed, quantile normalized, and gender-checked. Then, 15 batches of highly-correlated samples 

were identified that were defined by a combination of cohort, chip, and laboratory (Fig A).  
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Fig A. The number of microarray chips run in each batch, defined by processing site, Affymetrix 
chip type, and sample collection cohort. Samples from the four diagnostic categories (Control, Bipolar 
Disorder, Major Depressive Disorder, Schizophrenia) were unevenly distributed across batches.  

Samples that exhibited markedly low average sample-sample correlation coefficients (<0.85: 

outliers) were removed from the dataset, including data from one batch that exhibited overall low sample-

sample correlation coefficients with other batches and duplicate microarrays. The batch effects were then 

subtracted out using median-centering (detailed procedure: [62]) and the replicate samples were averaged 

for each subject. Our current analyses began with this sample-level summary gene expression data 

(GSE92538). We further removed data from any subjects lacking information regarding critical pre- or 

post-mortem variables necessary for our analysis (final sample size: n=157). The code for these analyses 

can be found at https://github.com/hagenaue/CellTypeAnalyses_PritzkerAffyDLPFC.  

  

Allen Brain Atlas cross-regional microarray dataset 

The Allen Brain Atlas microarray data was downloaded from http://human.brain-

map.org/microarray/search in December 2015. This microarray survey was performed in brain-specific 

batches, with multiple batches per subject. To remove technical variation across batches, a variety of 

normalization procedures had been performed by the original authors both within and across batches 

using internal controls, as well as across subjects [90]. The dataset available for download had already 

Batch# Site Chip Cohort Control BP MDD SCHIZ
1 UCD U133A Dep	Cohort	1	&	2 20 9 11 0
2 UCD U133A Dep	Cohort	3 11 6 5 0
3 UCD U133A Dep	Cohort	4 16 4 7 0
4 UCD U133Plus2 Dep	Cohort	5 13 5 10 0
5 UCD U133A Schiz	Cohort	1 9 0 0 9
6 UCD U133Plus2 Schiz	Cohort	1 8 0 0 8
7 UCD U133Plus2 Schiz	Cohort	2 8 0 0 10
8 UCI U133A Schiz	Cohort	1 9 0 0 9
9 UM U133A Dep	Cohort	1 16 10 9 0
10 UM U133A Dep	Cohort	2 3 2 5 0
11 UM U133A Dep	Cohort	3	&	4 27 11 11 0
12 UM U133Plus2 Dep	Cohort	5 13 5 10 0
13 UM U133Plus2 Dep	Cohort	6 7 2 9 3
14 UM U133A Schiz	Cohort	1 9 0 0 9
15 UM U133Plus2 Schiz	Cohort	2 9 0 0 10
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been log(2)-transformed and converted to z-scores using the average and standard deviation for each 

probe. These normalization procedures were designed to remove technical artifacts while best preserving 

cross-regional effects in the data, but the full information about relative levels of expression within an 

individual sample were unavailable and the effects of subject-level variables (such as age and pH) were 

likely to be de-emphasized due to the inability to fully separate out subject and batch during the 

normalization process. The 30,000 probes mapped onto 18,787 unique genes (as determined by gene 

symbol). The code for these analyses can be found at 

https://github.com/hagenaue/CellTypeAnalyses_AllenBrainAtlas.  

 

Human cortical microarray dataset GSE53987 (described in Lanz et 

al. [30]) 

The full publicly-available dataset GSE53987 [30] contained Affymetrix U133Plus2 microarray 

data from 205 post-mortem human brain samples from three brain regions: the DLPFC (Brodmann Area 

46, focusing on gray matter only (Lanz T.A., personal communication)), the hippocampus, and the 

striatum. These samples were collected by the University of Pittsburgh brain bank. For the purposes of 

our current analysis, we only downloaded the microarray .CEL files for the dorsolateral prefrontal cortex 

samples. We summarized these data with RMA [87] using a custom up-to-date chip definition file (.cdf) 

to define probe-to-transcript correspondence (“hgu133plus2hsentrezgcdf_19.0.0.tar.gz” from http://nmg-

r.bioinformatics.nl/NuGO_R.html [89]). This process included background subtraction, log(2)-

transformation, and quantile normalization. Gene Symbol annotation for probeset Entrez gene ids were 

provided by the R package org.Hs.eg.db. To control for technical variation, the sample processing batches 

were estimated using the microarray chip scan dates extracted from the .CEL files (using the function 

protocolData in the GEOquery package [91]), but all chips for the DLPFC were scanned on the same 

date. RNA degradation was estimated using the R package AffyRNADegradation [33]. During quality 

control, two samples were removed - GSM1304979 had a range of sample-sample correlations that was 



Running	Head:	Predicting	Cell	Type	Balance	

	 49	

unusually low compared (median=0.978) compared to the range for the dataset as a whole (median: 

0.993) and GSM1304953 appeared to be falsely identified as female (signal for XIST<7). The code for 

these analyses can be found at: 

https://github.com/hagenaue/CellTypeAnalyses_LanzHumanDLPFC/tree/master 

 

Human cortical microarray dataset GSE21138 (described in 

Narayan et al. [32]) 

 The publicly-available dataset GSE21138 [32]) contained Affymetrix U133Plus2 microarray data 

from 59 post-mortem human brain samples from the DLPFC (Brodmann Area 46, gray matter only 

(Thomas E.A., personal communication)) collected by the Mental Health Research Institute in Victoria, 

Australia. The procedures for data download and pre-processing were identical to those used above for 

GSE53987 with a few minor exceptions. In particular, there were six separate scan dates associated with 

the microarray .CEL files, but one of these scan dates was not included as a co-variate in our analyses 

because it had an n=1 (“06/14/06”). During quality control, the data for two subjects were removed 

because they appeared to be falsely-identified as male (XIST>7, GSM528839 & GSM528840) or falsely-

identified as female (XIST<7, GSM528880). Data for two more subjects were removed as outliers due to 

having an unsually low range of sample-sample correlations (GSM528866, GSM528873) as compared to 

the dataset as a whole. The code for these analyses can be found at: 

https://github.com/hagenaue/CellTypeAnalyses_NarayanHumanDLPFC. 

 

Human cortical microarray dataset GSE21935 (described in Barnes 

et al. [31]) 

The publicly-available dataset GSE21935 [31] contained Affymetrix U133Plus2 microarray data 

from 42 post-mortem human brain samples from the temporal cortex (Brodmann Area 22) collected at the 
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Charing Cross campus of the Imperial College of London. The procedures for data download and pre-

processing were identical to those used above for GSE53987 with a few minor exceptions. In particular, 

there were two separate scan dates associated with the microarray .CEL files, but they were closely 

spaced (6/25/04 vs. 6/29/04) and we did not find any strong association between scan date and the top 

principal components of variation in the data, so we opted to not include scan date as a co-variate in our 

statistical models. Quality control did not identify any problematic samples. The code for these analyses 

can be found at: 

https://github.com/hagenaue/CellTypeAnalyses_BarnesHumanCortex/tree/master. 

 

CommonMind Consortium human cortical RNA-Seq dataset 

(described in Fromer et al. [34]) 

The CommonMind Consortium (CMC) RNA-seq dataset profiled prefrontal cortex samples from 603 

individuals [34] collected at three brain banks: Mount Sinai School of Medicine, University of Pittsburgh, 

and University of Pennsylvania. This dataset was downloaded as GRCh37-aligned bam files from the 

CommonMind Consortium Knowledge Portal (https://www.synapse.org/CMC). Tophat-aligned bam files 

were converted back to fastq format and mapped to GRCh38 using HISAT2 [92] with default settings. 

Reads mapping uniquely to exons were then counted using subread featureCounts with ensembl transcript 

models. Cell type indices were calculated using logCPM values, and analysis of differential gene 

expression was performed using using the limma/voom method [93] with observed precision weights in a 

weighted least squares linear regression. Prior to upload, poor quality samples from the original dataset 

[34] had already been removed (<50 million reads, RIN<5.5) and replaced with higher quality samples. 

We further excluded data from 10 replicates and 89 individuals with incomplete demographic data 

(missing pH; final sample size: n=514). The dataset was further filtered using an expression threshold 

(CPM>1 in at least 50 individuals) which reduced the dataset to data from around 17,000 genes. The code 

for these analyses can be found at https://github.com/aschulmann/CMC_celltype_index.	
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Additional validation for the BrainInABlender method 

	
BrainInABlender can predict relative cell content in datasets from 

purified cells and In Silico mixtures 

As initial validation, we used the BrainInABlender method to predict the relative balance of cell 

types in samples with known cell content (purified cells and artificial cell mixtures). To do this analysis, 

we used two RNA-Seq datasets: one derived from from purified cortical cell types in mice (GSE52564) 

[18], and one derived from human single-cell RNA-Seq (GSE67835) [2].  In general, we found that the 

statistical cell type indices easily predicted the cell type identities of the original samples (Fig B). The 

correlation between each of the cell type indices and their respective cell type was very strong within the 

mouse purified, pooled cell type dataset (R2 between 0.41-0.90) and moderate in the noisier human 

single-cell dataset (R2 between 0.14-0.67), but typically still much higher than the correlation with other 

cell types. This was true regardless of the publication from which the cell type specific genes were 

derived: cell type specific gene lists derived from publications using different species (human vs. mouse), 

platforms (microarray vs. RNA-Seq), methodologies (florescent cell sorting vs. suspension), or statistical 

stringency all performed fairly equivalently, with some minor exception. Notably, the cell type indices 

derived from the cell type specific gene lists in Doyle et al. ([15], originally identified using TRAP 

methodology) tended to perform poorly. In both validation datasets, the cell type index 

Oligodendrocyte_All_Doyle_Cell_2008 did not properly predict the cell identity of the samples, and 

Neuron_Neuron_CCK_Doyle_Cell_2008 and Neuron_Interneuron_CORT_Doyle_Cell_2008 were 

elevated in non-neuronal cell types. Later, we found that other cell type specific gene lists from the Doyle 

et al. study [15] included a high percentage of genes that appeared non-specific to their respective cell 

type (Fig C; Neuron_CorticoSpinal_Doyle_Cell_2008, Neuron_CorticoStriatal_Doyle_Cell_2008), 
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leading us to remove all cell type specific gene lists derived from this publication from later versions of 

BrainInABlender, although we found that it did not dramatically alter our results. In general, the cell type 

indices associated with immature oligodendrocytes were also somewhat inconsistent. For example, 

neither of the immature oligodendrocyte cell type indices derived from gene lists in Zhang et al. [18] 

could predict OPC sample cell identity in the human single cell dataset [2] (R2<0.02), perhaps due to 

differences in developmental stage and culture conditions. As would be expected, the cell type indices 

derived from cell type specific genes identified by the same publication that produced the test datasets 

[2,18] were (by definition) superb predictors of the sample cell identity in their own dataset, and were 

thus excluded from later validation analyses. 
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Fig	B. Cell type indices successfully predict sample cell type in purified cell type RNA-Seq data. Cell 
type indices derived from cell type specific transcripts originating from publications using different 
species, methodologies, and platforms could successfully predict the sample cell types within two RNA-
Seq datasets (mouse purified cells (Zhang et al. [18]) and human single cells (Darmanis et al. [2]). 
Depicted in the table are the R2 values indicating how much of the variance within any particular cell type 
index (row) is explained by a particular sample cell type (column, NFO: “newly-formed 
oligodendrocyte”). The cell type indices are named after their origin (primary cell type, subtype, and 
publication), and the primary cell type category is further identified by color (lavender: astrocytes, 
orange: endothelial, green: microglia, yellow: mural, purple: neuron_all, blue: neuron_projection, red: 
neuron_interneuron, pink: oligodendrocyte, white: oligodendrocyte progenitor cell (OPC)). 
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Astrocyte_All_Cahoy_JNeuro_2008 0.84 0.09 0.04 0.00 0.05 0.09 0.03 0.67 0.01 0.04 0.08 0.08 0.01
Astrocyte_All_Darmanis_PNAS_2015 0.67 0.12 0.04 0.02 0.12 0.10 0.07 0.87 0.02 0.02 0.17 0.05 0.02
Astrocyte_All_Doyle_Cell_2008 0.77 0.10 0.02 0.01 0.10 0.07 0.07 0.48 0.04 0.01 0.09 0.02 0.01
Astrocyte_All_Zeisel_Science_2015 0.74 0.09 0.09 0.01 0.12 0.01 0.09 0.25 0.04 0.11 0.00 0.04 0.02
Astrocyte_All_Zhang_JNeuro_2014 0.90 0.08 0.06 0.00 0.05 0.07 0.00 0.28 0.01 0.05 0.00 0.10 0.02
Endothelial_All_Daneman_PLOS_2010 0.02 0.99 0.02 0.02 0.05 0.04 0.02 0.01 0.27 0.01 0.00 0.02 0.01
Endothelial_All_Darmanis_PNAS_2015 0.01 0.90 0.00 0.09 0.08 0.09 0.00 0.01 0.84 0.00 0.05 0.01 0.00
Endothelial_All_Zeisel_Science_2015 0.00 0.90 0.02 0.01 0.19 0.04 0.00 0.00 0.14 0.03 0.01 0.02 0.03
Endothelial_All_Zhang_JNeuro_2014 0.02 0.99 0.03 0.02 0.05 0.04 0.02 0.03 0.25 0.02 0.00 0.00 0.01
Microglia_All_Darmanis_PNAS_2015 0.08 0.03 0.88 0.05 0.02 0.06 0.02 0.02 0.01 0.70 0.06 0.01 0.04
Microglia_All_Zeisel_Science_2015 0.03 0.01 0.87 0.05 0.13 0.05 0.02 0.02 0.00 0.30 0.00 0.04 0.01
Microglia_All_Zhang_JNeuro_2014 0.05 0.02 0.95 0.05 0.04 0.05 0.00 0.01 0.00 0.48 0.04 0.02 0.01
Neuron_All_Cahoy_JNeuro_2008 0.06 0.06 0.05 0.87 0.03 0.05 0.03 0.06 0.07 0.09 0.64 0.10 0.04
Neuron_All_Darmanis_PNAS_2015 0.03 0.14 0.06 0.74 0.03 0.04 0.10 0.18 0.05 0.08 0.79 0.08 0.03
Neuron_All_Zhang_JNeuro_2014 0.02 0.04 0.03 0.99 0.03 0.04 0.01 0.08 0.03 0.06 0.37 0.02 0.04
Neuron_CorticoSpinal_Doyle_Cell_2008 0.01 0.01 0.23 0.61 0.20 0.01 0.07 0.02 0.01 0.06 0.17 0.03 0.01
Neuron_CorticoStriatal_Doyle_Cell_2008 0.00 0.01 0.11 0.40 0.14 0.29 0.00 0.01 0.00 0.00 0.03 0.01 0.00
Neuron_CorticoThalamic_Doyle_Cell_2008 0.01 0.12 0.02 0.62 0.25 0.11 0.03 0.03 0.01 0.00 0.20 0.10 0.00
Neuron_Glutamate_Sugino_NatNeuro_2006 0.06 0.03 0.07 0.38 0.07 0.03 0.26 0.04 0.01 0.07 0.25 0.02 0.02
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 0.02 0.06 0.04 0.70 0.14 0.03 0.12 0.04 0.04 0.06 0.39 0.06 0.03
Neuron_GABA_Sugino_NatNeuro_2006 0.01 0.01 0.27 0.49 0.23 0.01 0.13 0.04 0.05 0.09 0.40 0.04 0.02
Neuron_Interneuron_CORT_Doyle_Cell_2008 0.02 0.01 0.12 0.49 0.40 0.01 0.09 0.02 0.02 0.05 0.17 0.01 0.02
Neuron_Interneuron_Zeisel_Science_2015 0.00 0.10 0.11 0.68 0.15 0.00 0.11 0.06 0.06 0.09 0.49 0.04 0.04
Neuron_Neuron_CCK_Doyle_Cell_2008 0.02 0.54 0.05 0.00 0.12 0.19 0.11 0.04 0.01 0.01 0.09 0.00 0.01
Neuron_Neuron_PNOC_Doyle_Cell_2008 0.05 0.03 0.01 0.97 0.04 0.07 0.00 0.07 0.04 0.05 0.41 0.03 0.05
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.17 0.08 0.03 0.12 0.41 0.36 0.00 0.04 0.00 0.01 0.11 0.60 0.00
Oligodendrocyte_All_Doyle_Cell_2008 0.02 0.00 0.22 0.09 0.15 0.05 0.61 0.00 0.01 0.05 0.06 0.01 0.01
Oligodendrocyte_All_Zeisel_Science_2015 0.05 0.07 0.18 0.10 0.41 0.34 0.00 0.01 0.03 0.10 0.00 0.21 0.03
Oligodendrocyte_Mature_Darmanis_PNAS_2015 0.02 0.17 0.09 0.12 0.48 0.26 0.00 0.04 0.00 0.00 0.13 0.77 0.00
Oligodendrocyte_Mature_Doyle_Cell_2008 0.13 0.05 0.16 0.07 0.52 0.23 0.00 0.04 0.02 0.02 0.05 0.29 0.00
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.13 0.04 0.06 0.06 0.67 0.17 0.03 0.02 0.00 0.01 0.07 0.48 0.01
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 0.05 0.08 0.28 0.00 0.02 0.70 0.02 0.05 0.02 0.08 0.26 0.01 0.02
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.01 0.10 0.05 0.01 0.22 0.14 0.63 0.03 0.00 0.00 0.03 0.01 0.68
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 0.02 0.12 0.15 0.02 0.14 0.08 0.64 0.05 0.02 0.08 0.21 0.04 0.01
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 For further analyses, individual cell type indices were averaged within each of the primary cell 

type categories to produce ten consolidated primary cell-type indices for each sample. To perform this 

consolidation, we also removed any transcripts that were identified as “cell type specific” to multiple 

primary cell type categories (Fig C). 

A. 

 
B. 

Reference	Publications:	Cell	Type	Specific	Gene	Lists
#	

Genes
Genes	

(Specific)
%	

Specific
Astrocyte_All_Cahoy_JNeuro_2008 73 64 88%
Astrocyte_All_Darmanis_PNAS_2015 21 20 95%
Astrocyte_All_Doyle_Cell_2008 25 25 100%
Astrocyte_All_Zeisel_Science_2015 240 216 90%
Astrocyte_All_Zhang_JNeuro_2014 40 32 80%
Endothelial_All_Daneman_PLOS_2010 49 43 88%
Endothelial_All_Darmanis_PNAS_2015 21 19 90%
Endothelial_All_Zeisel_Science_2015 353 319 90%
Endothelial_All_Zhang_JNeuro_2014 40 30 75%
Microglia_All_Darmanis_PNAS_2015 21 19 90%
Microglia_All_Zeisel_Science_2015 436 396 91%
Microglia_All_Zhang_JNeuro_2014 40 37 93%
Mural_All_Zeisel_Science_2015 155 146 94%
Mural_Pericyte_Zhang_JNeuro_2014 40 28 70%
Mural_Vascular_Daneman_PLOS_2010 50 33 66%
Neuron_All_Cahoy_JNeuro_2008 80 57 71%
Neuron_All_Darmanis_PNAS_2015 21 16 76%
Neuron_All_Zhang_JNeuro_2014 40 27 68%
Neuron_CorticoSpinal_Doyle_Cell_2008 25 16 64%
Neuron_CorticoStriatal_Doyle_Cell_2008 25 9 36%
Neuron_CorticoThalamic_Doyle_Cell_2008 25 15 60%
Neuron_Glutamate_Sugino_NatNeuro_2006 67 59 88%
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 294 258 88%
Neuron_GABA_Sugino_NatNeuro_2006 32 28 88%
Neuron_Interneuron_CORT_Doyle_Cell_2008 25 20 80%
Neuron_Interneuron_Zeisel_Science_2015 365 328 90%
Neuron_Neuron_CCK_Doyle_Cell_2008 25 18 72%
Neuron_Neuron_PNOC_Doyle_Cell_2008 24 17 71%
Oligodendrocyte_All_Cahoy_JNeuro_2008 50 48 96%
Oligodendrocyte_All_Doyle_Cell_2008 25 20 80%
Oligodendrocyte_All_Zeisel_Science_2015 453 421 93%
Oligodendrocyte_Mature_Darmanis_PNAS_2015 21 20 95%
Oligodendrocyte_Mature_Doyle_Cell_2008 25 19 76%
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 40 40 100%
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 39 25 64%
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 21 12 57%
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 40 26 65%
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 17 10 59%
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Fig C. Identifying non-specific “cell-type specific genes”. Within BrainInABlender, the data from 
genes that were identifed as being specific to more than one category of cell type (e.g., a gene previously-
identified as being “specifically expressed” in both microglia and endothelial cells) were removed before 
averaging the individual cell type indices within each of the ten primary categories to create the 
consolidated cell-type indices used throughout our paper. In both figure panels, the primary categories of 
cell type are color-coded similar to Fig A. A) The number of genes identified as cell type specific in each 
publication in our database vs. the percentage that were actually found to be truly specific to that cell type 
(i.e., not identified as "specific" to another category of cell type in a different publication). B) The 
percentage overlap between each list of cell type specific genes (row) and all other lists of cell type 
specific genes (columns). The matrix is color-coded with a gradient from blue (indicating 0% overlap) to 
red (indicating 100% overlap). The denominator in the percentage overlap equation was the cell type 
category specified by the row. Note that many of the genes identified as “non-specific” are shared by 
similar cell type categories (e.g., Oligodendrocytes vs. Oligodendrocyte_Immature), but two gene lists 
derived from Doyle et al.[15] appeared to include non-specific genes from highly divergent categories: 
Neuron_CorticoSpinal_Doyle_Cell_2008 strongly overlaps with genes identified as specific to 
endothelial cells, Neuron_CorticoStriatal_Doyle_Cell_2008 strongly overlaps with genes identified as 
specific to microglia. In later versions of BrainInABlender, we have removed gene lists derived from 
Doyle et al.[15] for this reason. 

  

Next, to estimate the limitations and noise inherant in our technique, we also constructed in silico 

mixtures of 100 cells with known percentages of each cell type by randomly sampling from each purified 

cell dataset (with replacement). We found that the consolidated cell type indices strongly predicted the 
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Astrocyte_All_Cahoy_JNeuro_2008 100% 10% 8% 21% 23% 0% 0% 3% 0% 0% 3% 1% 0% 1% 4% 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0%
Astrocyte_All_Darmanis_PNAS_2015 33% 100% 0% 14% 5% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Astrocyte_All_Doyle_Cell_2008 24% 0% 100% 12% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Astrocyte_All_Zeisel_Science_2015 6% 1% 1% 100% 3% 0% 0% 1% 0% 0% 3% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 1% 0% 0% 0% 0% 3% 0% 1% 0% 0% 0% 0% 0%
Astrocyte_All_Zhang_JNeuro_2014 43% 3% 0% 18% 100% 0% 0% 0% 0% 0% 0% 0% 0% 3% 10% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3% 0% 0%
Endothelial_All_Daneman_PLOS_2010 0% 0% 0% 0% 0% 100% 2% 59% 10% 0% 2% 0% 2% 0% 0% 0% 0% 0% 6% 2% 0% 0% 0% 0% 2% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Endothelial_All_Darmanis_PNAS_2015 0% 0% 0% 0% 0% 5% 100% 5% 5% 0% 0% 0% 5% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Endothelial_All_Zeisel_Science_2015 1% 0% 0% 1% 0% 8% 0% 100% 8% 0% 2% 0% 0% 0% 1% 0% 0% 0% 3% 0% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0%
Endothelial_All_Zhang_JNeuro_2014 0% 0% 0% 0% 0% 13% 3% 70% 100% 0% 0% 3% 0% 0% 0% 3% 0% 0% 18% 0% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Microglia_All_Darmanis_PNAS_2015 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 62% 19% 0% 5% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Microglia_All_Zeisel_Science_2015 1% 0% 0% 2% 0% 0% 0% 2% 0% 3% 100% 7% 0% 1% 1% 0% 0% 0% 0% 3% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0%
Microglia_All_Zhang_JNeuro_2014 3% 0% 0% 0% 0% 0% 0% 3% 3% 10% 68% 100% 0% 3% 0% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Mural_All_Zeisel_Science_2015 0% 0% 0% 1% 0% 1% 1% 1% 0% 0% 1% 0% 100% 3% 2% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 1% 0% 1% 0% 0% 1% 0% 1% 0% 0% 1% 1% 0%
Mural_Pericyte_Zhang_JNeuro_2014 3% 3% 0% 15% 3% 0% 0% 3% 0% 3% 3% 3% 10% 100% 10% 0% 0% 0% 0% 3% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 13% 0%
Mural_Vascular_Daneman_PLOS_2010 6% 0% 0% 2% 8% 0% 2% 2% 0% 0% 6% 0% 6% 8% 100% 2% 0% 0% 0% 4% 0% 0% 6% 0% 0% 0% 0% 0% 0% 2% 2% 0% 2% 0% 0% 2% 2% 0%
Neuron_All_Cahoy_JNeuro_2008 0% 0% 0% 0% 0% 0% 0% 1% 1% 0% 1% 0% 0% 0% 1% 100% 13% 9% 1% 0% 3% 3% 9% 0% 0% 6% 1% 5% 0% 0% 3% 0% 0% 0% 1% 0% 0% 0%
Neuron_All_Darmanis_PNAS_2015 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 43% 100% 10% 0% 0% 0% 0% 0% 0% 0% 19% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Neuron_All_Zhang_JNeuro_2014 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 18% 5% 100% 0% 0% 0% 0% 8% 3% 3% 25% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Neuron_CorticoSpinal_Doyle_Cell_2008 0% 0% 0% 0% 0% 12% 0% 28% 20% 0% 0% 0% 0% 0% 0% 8% 0% 0% 100% 0% 4% 0% 16% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Neuron_CorticoStriatal_Doyle_Cell_2008 0% 0% 0% 0% 0% 4% 0% 4% 0% 4% 52% 4% 4% 8% 12% 0% 0% 0% 0% 100% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Neuron_CorticoThalamic_Doyle_Cell_2008 0% 0% 0% 0% 0% 0% 0% 8% 0% 0% 0% 0% 0% 0% 0% 16% 0% 0% 4% 0% 100% 0% 16% 0% 0% 0% 20% 0% 0% 0% 4% 0% 0% 0% 0% 4% 0% 0%
Neuron_Glutamate_Sugino_NatNeuro_2006 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 1% 0% 0% 0% 0% 3% 0% 0% 0% 1% 0% 100% 4% 0% 0% 0% 1% 0% 0% 0% 3% 0% 0% 0% 3% 0% 0% 0%
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 1% 0% 0% 1% 1% 0% 0% 1% 0% 0% 1% 0% 0% 0% 1% 2% 0% 1% 1% 0% 1% 1% 100% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 1% 1%
Neuron_GABA_Sugino_NatNeuro_2006 0% 0% 0% 3% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 0% 0% 3% 100% 0% 38% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Neuron_Interneuron_CORT_Doyle_Cell_2008 0% 0% 0% 0% 0% 4% 0% 0% 4% 0% 0% 0% 4% 0% 0% 0% 0% 4% 0% 0% 0% 0% 4% 0% 100% 12% 12% 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 0%
Neuron_Interneuron_Zeisel_Science_2015 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 1% 1% 3% 0% 0% 0% 0% 2% 4% 1% 100% 0% 3% 0% 0% 1% 0% 0% 0% 0% 0% 1% 0%
Neuron_Neuron_CCK_Doyle_Cell_2008 0% 0% 0% 0% 0% 4% 0% 4% 0% 0% 4% 0% 0% 0% 0% 4% 0% 0% 0% 0% 8% 4% 0% 0% 12% 0% 100% 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 0%
Neuron_Neuron_PNOC_Doyle_Cell_2008 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4% 0% 0% 17% 0% 8% 0% 0% 0% 0% 4% 0% 0% 46% 0% 100% 0% 0% 0% 0% 0% 0% 0% 4% 0% 0%
Oligodendrocyte_All_Cahoy_JNeuro_2008 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 4% 48% 12% 6% 20% 2% 0% 0% 0%
Oligodendrocyte_All_Doyle_Cell_2008 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 4% 0% 0% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8% 100% 4% 0% 0% 0% 4% 0% 8% 0%
Oligodendrocyte_All_Zeisel_Science_2015 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 100% 2% 2% 4% 2% 0% 0% 0%
Oligodendrocyte_Mature_Darmanis_PNAS_2015 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29% 0% 48% 100% 5% 24% 0% 0% 0% 0%
Oligodendrocyte_Mature_Doyle_Cell_2008 0% 0% 0% 8% 0% 0% 0% 4% 0% 0% 8% 0% 4% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 12% 0% 40% 4% 100% 8% 0% 0% 4% 0%
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 25% 0% 48% 13% 5% 100% 0% 0% 0% 0%
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 0% 0% 0% 3% 0% 0% 0% 3% 0% 0% 3% 0% 0% 0% 0% 3% 0% 0% 0% 0% 0% 5% 3% 0% 0% 0% 0% 0% 3% 3% 23% 0% 0% 0% 100% 3% 0% 0%
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 5% 0% 0% 5% 5% 0% 0% 5% 0% 0% 0% 0% 10% 0% 5% 0% 0% 0% 0% 0% 5% 0% 10% 0% 0% 5% 0% 5% 0% 0% 5% 0% 0% 0% 5% 100% 19% 0%
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 0% 0% 0% 3% 0% 0% 0% 5% 0% 0% 0% 0% 3% 5% 3% 0% 0% 0% 0% 0% 0% 0% 5% 0% 0% 13% 0% 0% 0% 5% 0% 0% 3% 0% 0% 10% 100% 0%
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 0% 0% 0% 6% 0% 0% 0% 18% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 12% 0% 0% 6% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%
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percentage of their respective cell type included in our artificial mixtures in a linear manner across a 

range of values likely to encompass the true proportion of these cells in our cortical samples. The amount 

of noise present in these predictions varied by data type, with the predictions generated from single-cell 

data having substantially more noise than those generated from pooled, purified cells, but most of the data 

(+/- 1 stdev) still fell within +/- 5% of the prediction (Fig D). Therefore, we concluded that cell type 

indices are a relatively easy manner to predict relative cell type balance across samples. 

 

Fig D. Cell type indices successfully predict the percentage of cells of a particular type in artificial 
mixtures of 100 cells created using single-cell RNA-Seq data. Depicted are the cell type indices (y-
axis) calculated for mixed cell samples generated in silico using random sampling (with replacement) 
from a human single cell RNA-Seq dataset [2]. Each sample contains 100 cells total, with a designated 
percentage of the cell type of interest (x-axis), with the percentages designed to roughly span what might 
be found in cortical tissue samples. The black best fit line is accompanied by the standard error of the 
regression (gray), and the green and red lines are visual guides to help illustrate a 5% increase in the cell 
type of interest. The results from a similar analysis using the smaller mouse purified, pooled cell type 
RNA-Seq dataset [18] showed the same trends but with half as much variability.  
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Comparison of our method vs. PSEA: Predicting cell identity in a 

single-cell RNA-Seq dataset  

Although we generated our method independently to address microarray analysis questions that arose 

within the Pritzker Neuropsychiatric Consortium, we later discovered that it was quite similar to the 

technique of population-specific expression analysis (PSEA, [12]) with several notable differences. 

Similar to our method, PSEA is a carefully-validated analysis method which aims to estimate cell type-

differentiated disease effects from microarray data derived from brain tissue of heterogeneous 

composition and approaches this problem by including the averaged, normalized expression of cell type 

specific markers within a larger linear model that is used to estimate differential expression in microarray 

data [10–12]. Analyses using PSEA similarly indicated that individual variability in neuronal, astrocytic, 

oligodendrocytic, and microglial cell content was sufficient to account for substantial variability in the 

vast majority of probesets in microarray data from human brain samples, even within non-diseased 

samples [12]. The differences between our techniques are mostly due to the recent growth of the literature 

documenting cell type specific expression in brain cell types. PSEA uses a very small set of markers (4-7) 

to represent each cell type, and screens these markers for tight co-expression within the dataset of interest, 

since co-expression networks have been previously demonstrated to often represent cell type signatures in 

the data [94]. This is essential for the analysis of microarray data for brain regions that have not been well 

characterized for cell type specific expression (e.g., the substantia nigra), but risks the possibility of 

closely tracking variability in a particular cell function instead of cell content (as described in our results 

related to aging). Our analysis focused on the well-studied cortex, thus enabling us to utilize hundreds of 

cell type specific markers derived from a variety of experimental techniques.  

Our manner of normalizing data also differs: PSEA normalizes the expression values for each gene by 

dividing by the average expression of that gene across samples, whereas we use z-score normalization, 

both at the level of the individual transcript and later at the level of the gene level summary data. Due to 
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the dependence of PSEA on ratios, genes that have average expression values that are close to zero can 

end up with normalized values that are extremely high for a handful of samples. For microarray data, this 

form of normalization should function well because log2 expression values rarely drop below 5. 

However, within RNA-Seq, counts of zero are common and therefore we suspected that the ratio-form of 

normalization used by PSEA might not function optimally for this data type.  

Therefore, we decided to run a head-to-head comparison of our method and PSEA using the human 

single-cell RNA-Seq dataset [2]. To make the comparison as interpretable as possible, we used the same 

list of cell type specific genes for both methods (the genes in our database used to construct 

BrainInABlender’s consolidated cell type indices). In order to avoid circular reasoning, we also excluded 

any cell type specific genes that had originally been identified by the publication currently used as the test 

dataset [2]. Then we used the marker() function from the PSEA package to calculate the “Reference 

Signal” for the most common primary categories of cell types (astrocytes, endothelial cells, microglia, 

mature oligodendrocytes, and neurons). For our method, we used a procedure similar to BrainInABlender. 

We applied a z-score transformation to the data for each gene (mean=0, sd=1), and then either averaged 

by the primary cell type category (to conduct an analysis paralleling PSEA), or averaged the data from the 

cell type specific genes identified by each publication, followed by averaging by primary cell type 

category (to create consolidated cell type indices like BrainInABlender).  

To compare the efficacy of each method, we ran a linear model to determine the percentage of 

variation in the population “reference signal” (PSEA) or “cell type index” (our method) accounted for by 

the cell type identities assigned to each cell in the original publication [2]. We found that both the 

population reference signals (PSEA) and cell type indices (our method) for each cell were strongly related 

to their previously-assigned cell type identity, but in general the relationship was stronger when using our 

method: on average, 34% of the variation in the PSEA reference signal for each cell type was accounted 

for by cell identity, whereas an average of either 45% or 49% of the variation in our cell type indices was 

accounted for by cell identity using either the simplified or consolidated versions of our method, 

respectively (Fig E part A). An illustration of this improvement can be found in Fig E part B: note the 
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presence of extreme outliers in the PSEA population reference signal. We conclude that the simple use of 

a different normalization method is sufficient to make our method  more effective  at predicting cell type 

balance in some datasets. We also find that averaging the predictions drawn from the cell type specific 

genes identified by multiple publications into a consolidated index produces some additional 

improvement.  
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A.

B.

Sample	Cell	Type

The$method$for$deriving$a$statistical$cell$type$signal$determines$the$strength$of$the$relationship$with$cell$identity
The$percentage$of$the$variation$in$a$statistically3derived$cell$type$signal$accounted$for$by$cell$identity
(Darmanis)Data)Set)

Method$of$deriving$a$statistical$cell$type$signal:

Signal$from$cell$type$
specific$genes$for:

PSEA$(mean$
signal$ratio$
average)

Our$Cell$Type$
Indices$(z3score$
average)

Our$Cell$Type$
Indices:$After$$
first$averaging$
by$Publication

Astrocytes 34% 52% 57%
Oligodendrocytes 38% 45% 50%
Microglia 36% 42% 51%
Endothelial 30% 28% 33%
Neurons 33% 57% 53%

The$same$cell$ type$specific$genes$were$used$in$all$methods
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Fig E. The method for deriving predicted relative cell content determines the strength of the 
relationship with sample cell type. Depicted is a comparison of the efficacy of three different manners 
of predicting the relative cell content of samples in a human single-cell RNA-seq dataset [2]: 1) the 
“population reference signal” generated by PSEA, 2) a simplified version of our method that is meant to 
be relatively analogous to PSEA (a simple average of the z-score-transformed data for all genes specific 
to a particular cell type in our database), 3) the version of our method used in this manuscript, which 
consolidates the predictions derived from the cell type specific genes identified in different publications. 
A. For each of these methods of predicting relative cell content (columns) the table provides the 
percentage of variation (R2) that is accounted for by the original cell type identities of the samples 
provided by the publication [2]  for predictions for each of the major cell types (rows). Overall, there is a 
strong relationship between the predictions generated by all methods and sample cell type identity, but the 
method used in this manuscript produces predictions that best fit sample cell type. B. As an example, 
boxplots illustrate the distribution of each of the predictions for neuronal content across samples 
identified as different cell types in the original publication([2], x-axis). Note the presence of several 
extreme outliers (red arrows) in the predictions produced by PSEA– a similar pattern was seen for all 
other cell types.  

 

Using similar methodology, we also calculated the population “reference signal” with PSEA for 

microarray data from artificially-created mixtures of cultured cells (GSE19380). The results strongly 

tracked the actual cell content of the mixed samples (Fig F) in a manner that was not strikingly better or 

worse than the predictions made using BrainInABlender (Fig 6). This again drives home the fact that the 

ratio-based normalization methods used in PSEA are particularly incompatible with low count data in 

RNA-Seq – results derived from microarray data are fine. 
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Fig F. Relative cell content predictions made using PSEA and our cell type specific gene lists. Using 
a microarray dataset derived from samples that contained artificially-generated mixtures of cultured cells 
(GSE19380; [12]), we found that the relative cell content predictions (“cell type reference signal”) 
produced by PSEA closely reflected actual known content, similar to the predictions made by 
BrainInABlender (Fig 6). 

 

Does the reference dataset matter?  There is a strong convergence of 

cell content predictions derived from cell type specific transcripts 

identified by different publications  

Similar to what we observed during our validation analyses using data from purified cell types, 

we found that the predicted cell content for the post-mortem human cortical samples (“cell type indices”) 

was similar regardless of the methodology used to generate the cell type specific gene lists used in the 

predictions. Within all five of the human cortical transcriptomic datasets, there was a strong positive 

correlation between cell type indices representing the same cell type, even when the predictions were 
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derived using cell type specific gene lists from different species, cell type purification strategies, and 

platforms. Clustering within broad cell type categories was clear using visual inspection of the correlation 

matrices (Fig G), hierarchical clustering, or consensus clustering (ConsensusClusterPlus: [95]) and 

persisted even after removing data from genes identified as cell type specific in multiple publications 

(e.g., gene expression identified as astrocyte-expression in both Cahoy_Astrocyte and Zhang_Astrocyte; 

Fig H). In some datasets, the cell type indices for support cell subcategories were nicely clustered and in 

others they were difficult to fully differentiate (Fig G). Clustering was not able to reliably discern 

neuronal subcategories (interneurons, projection neurons) in any dataset. Similar to our previous 

validation analyses, oligodendrocyte progenitor cell indices derived from different publications did not 

strongly correlate with each other, perhaps due to heterogeneity in the progenitor cell types sampled by 

the original publications.  

A. 

 

Neurons

Astrocytes

Pia/&/
Neurovasculature

Mature/Oligodendrocytes

D.	
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Astrocyte_All_Cahoy_JNeuro_2008 1.0 0.9 1.0 0.9 0.8 -0.1 0.2 0.2 0.0 0.2 0.4 0.1 0.3 0.2 0.1 -0.6 -0.8 -0.1 -0.1 -0.1 0.1 -0.6 -0.6 -0.5 -0.2 -0.5 -0.5 -0.3 0.0 -0.2 0.2 -0.1 0.1 0.2 -0.5 0.5 -0.2 -0.1
Astrocyte_All_Darmanis_PNAS_2015 0.9 1.0 0.9 0.9 0.7 -0.1 0.2 0.1 0.0 0.2 0.4 0.1 0.2 0.1 0.1 -0.7 -0.8 -0.2 -0.1 -0.2 0.0 -0.6 -0.7 -0.5 -0.2 -0.6 -0.6 -0.4 0.1 -0.2 0.3 0.0 0.1 0.2 -0.5 0.4 -0.3 -0.2
Astrocyte_All_Doyle_Cell_2008 1.0 0.9 1.0 0.9 0.7 -0.1 0.2 0.2 0.0 0.2 0.4 0.1 0.3 0.1 0.1 -0.6 -0.8 -0.1 -0.1 -0.1 0.1 -0.6 -0.6 -0.6 -0.3 -0.5 -0.5 -0.3 0.1 -0.1 0.2 0.0 0.1 0.2 -0.5 0.4 -0.1 -0.1
Astrocyte_All_Zeisel_Science_2015 0.9 0.9 0.9 1.0 0.6 -0.2 0.1 0.0 0.1 0.3 0.6 0.2 0.3 0.3 0.2 -0.6 -0.7 0.0 0.1 -0.1 0.3 -0.4 -0.5 -0.5 -0.3 -0.4 -0.6 -0.4 0.1 -0.1 0.3 -0.1 0.2 0.3 -0.4 0.4 -0.1 -0.2
Astrocyte_All_Zhang_JNeuro_2014 0.8 0.7 0.7 0.6 1.0 0.1 0.4 0.4 0.2 0.4 0.5 0.3 0.4 0.3 0.2 -0.6 -0.7 -0.1 0.0 0.1 0.2 -0.5 -0.4 -0.6 -0.2 -0.5 -0.3 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 0.1 -0.5 0.7 0.0 0.3
Microglia_All_Darmanis_PNAS_2015 -0.1 -0.1 -0.1 -0.2 0.1 1.0 0.8 0.6 0.3 0.2 0.1 0.3 0.0 -0.1 0.0 -0.2 -0.1 -0.4 -0.1 0.1 -0.2 -0.2 -0.2 0.0 0.1 -0.3 0.3 0.3 0.2 0.1 -0.1 0.2 0.0 0.1 -0.4 0.1 -0.2 0.0
Microglia_All_Zeisel_Science_2015 0.2 0.2 0.2 0.1 0.4 0.8 1.0 0.7 0.5 0.5 0.5 0.6 0.4 0.2 0.1 -0.5 -0.5 -0.3 -0.1 0.1 0.0 -0.4 -0.2 -0.4 -0.1 -0.4 0.1 0.1 0.3 0.0 0.0 0.1 0.1 0.2 -0.4 0.4 -0.1 0.2
Microglia_All_Zhang_JNeuro_2014 0.2 0.1 0.2 0.0 0.4 0.6 0.7 1.0 0.2 0.3 0.2 0.3 0.1 0.2 -0.1 -0.3 -0.3 -0.2 -0.2 0.0 -0.2 -0.3 -0.2 -0.4 -0.1 -0.4 0.1 0.0 0.1 0.0 -0.1 0.0 0.0 0.1 -0.3 0.2 -0.1 0.4
Endothelial_All_Daneman_PLOS_2010 0.0 0.0 0.0 0.1 0.2 0.3 0.5 0.2 1.0 0.7 0.7 0.6 0.7 0.4 0.3 -0.2 -0.2 0.0 0.2 0.3 0.5 0.0 0.2 -0.3 -0.2 0.1 0.1 0.3 0.0 0.0 -0.1 -0.2 0.0 0.0 -0.1 0.3 0.3 0.2
Endothelial_All_Darmanis_PNAS_2015 0.2 0.2 0.2 0.3 0.4 0.2 0.5 0.3 0.7 1.0 0.8 0.8 0.7 0.7 0.4 -0.4 -0.4 -0.1 0.1 0.1 0.5 -0.1 0.0 -0.4 -0.4 -0.2 -0.1 0.0 0.1 0.1 0.1 -0.1 0.2 0.2 -0.1 0.4 0.1 0.1
Endothelial_All_Zeisel_Science_2015 0.4 0.4 0.4 0.6 0.5 0.1 0.5 0.2 0.7 0.8 1.0 0.8 0.8 0.6 0.5 -0.6 -0.6 -0.1 0.1 0.1 0.5 -0.3 -0.2 -0.5 -0.4 -0.2 -0.3 -0.2 0.2 0.0 0.2 0.0 0.2 0.3 -0.2 0.5 0.1 0.1
Endothelial_All_Zhang_JNeuro_2014 0.1 0.1 0.1 0.2 0.3 0.3 0.6 0.3 0.6 0.8 0.8 1.0 0.7 0.6 0.3 -0.4 -0.5 -0.1 0.0 -0.1 0.3 -0.3 0.0 -0.5 -0.3 -0.2 -0.1 0.0 0.2 0.1 0.1 0.0 0.2 0.2 -0.1 0.5 0.1 0.2
Mural_All_Zeisel_Science_2015 0.3 0.2 0.3 0.3 0.4 0.0 0.4 0.1 0.7 0.7 0.8 0.7 1.0 0.6 0.5 -0.3 -0.3 0.1 0.0 0.2 0.5 -0.1 0.1 -0.5 -0.4 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.3 0.0 0.1 -0.1 0.4 0.2 0.2
Mural_Pericyte_Zhang_JNeuro_2014 0.2 0.1 0.1 0.3 0.3 -0.1 0.2 0.2 0.4 0.7 0.6 0.6 0.6 1.0 0.3 -0.2 -0.3 0.1 0.1 -0.1 0.3 0.0 0.1 -0.3 -0.3 0.0 -0.1 -0.2 0.0 0.1 0.1 -0.1 0.3 0.2 0.0 0.3 0.1 0.2
Mural_Vascular_Daneman_PLOS_2010 0.1 0.1 0.1 0.2 0.2 0.0 0.1 -0.1 0.3 0.4 0.5 0.3 0.5 0.3 1.0 -0.3 -0.2 -0.3 -0.2 0.2 0.1 -0.2 -0.2 -0.1 -0.2 -0.1 -0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 -0.1
Neuron_All_Cahoy_JNeuro_2008 -0.6 -0.7 -0.6 -0.6 -0.6 -0.2 -0.5 -0.3 -0.2 -0.4 -0.6 -0.4 -0.3 -0.2 -0.3 1.0 0.9 0.6 0.2 0.2 0.1 0.8 0.7 0.6 0.2 0.8 0.4 0.3 -0.5 0.2 -0.4 -0.3 -0.2 -0.5 0.6 -0.3 0.5 0.1
Neuron_All_Darmanis_PNAS_2015 -0.8 -0.8 -0.8 -0.7 -0.7 -0.1 -0.5 -0.3 -0.2 -0.4 -0.6 -0.5 -0.3 -0.3 -0.2 0.9 1.0 0.3 0.1 0.1 -0.1 0.7 0.6 0.7 0.3 0.7 0.3 0.3 -0.3 0.0 -0.4 -0.2 -0.3 -0.4 0.6 -0.4 0.2 0.1
Neuron_All_Zhang_JNeuro_2014 -0.1 -0.2 -0.1 0.0 -0.1 -0.4 -0.3 -0.2 0.0 -0.1 -0.1 -0.1 0.1 0.1 -0.3 0.6 0.3 1.0 0.3 0.1 0.4 0.5 0.6 -0.1 -0.1 0.6 0.1 0.0 -0.3 0.3 -0.2 -0.4 -0.1 -0.1 0.5 0.1 0.6 0.3
Neuron_CorticoSpinal_Doyle_Cell_2008 -0.1 -0.1 -0.1 0.1 0.0 -0.1 -0.1 -0.2 0.2 0.1 0.1 0.0 0.0 0.1 -0.2 0.2 0.1 0.3 1.0 0.0 0.4 0.3 0.4 0.0 0.0 0.3 0.1 0.0 -0.1 0.2 0.1 -0.1 0.0 0.0 0.2 0.1 0.3 0.1
Neuron_CorticoStriatal_Doyle_Cell_2008 -0.1 -0.2 -0.1 -0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1 -0.1 0.2 -0.1 0.2 0.2 0.1 0.1 0.0 1.0 0.3 0.4 0.2 0.1 0.0 0.3 0.2 0.4 -0.5 0.0 -0.5 -0.5 -0.4 -0.5 0.1 0.1 0.5 0.0
Neuron_CorticoThalamic_Doyle_Cell_2008 0.1 0.0 0.1 0.3 0.2 -0.2 0.0 -0.2 0.5 0.5 0.5 0.3 0.5 0.3 0.1 0.1 -0.1 0.4 0.4 0.3 1.0 0.3 0.4 -0.2 -0.3 0.3 -0.2 0.1 -0.2 0.2 -0.1 -0.3 -0.1 -0.1 0.1 0.3 0.5 0.1
Neuron_Glutamate_Sugino_NatNeuro_2006 -0.6 -0.6 -0.6 -0.4 -0.5 -0.2 -0.4 -0.3 0.0 -0.1 -0.3 -0.3 -0.1 0.0 -0.2 0.8 0.7 0.5 0.3 0.4 0.3 1.0 0.8 0.4 0.1 0.8 0.4 0.3 -0.4 0.3 -0.2 -0.3 -0.1 -0.3 0.6 -0.3 0.6 0.0
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 -0.6 -0.7 -0.6 -0.5 -0.4 -0.2 -0.2 -0.2 0.2 0.0 -0.2 0.0 0.1 0.1 -0.2 0.7 0.6 0.6 0.4 0.2 0.4 0.8 1.0 0.2 0.1 0.8 0.4 0.3 -0.4 0.2 -0.4 -0.4 -0.2 -0.3 0.6 -0.1 0.5 0.4
Neuron_GABA_Sugino_NatNeuro_2006 -0.5 -0.5 -0.6 -0.5 -0.6 0.0 -0.4 -0.4 -0.3 -0.4 -0.5 -0.5 -0.5 -0.3 -0.1 0.6 0.7 -0.1 0.0 0.1 -0.2 0.4 0.2 1.0 0.2 0.5 0.2 0.3 -0.1 0.0 0.0 0.1 -0.1 -0.2 0.2 -0.5 -0.1 -0.3
Neuron_Interneuron_CORT_Doyle_Cell_2008 -0.2 -0.2 -0.3 -0.3 -0.2 0.1 -0.1 -0.1 -0.2 -0.4 -0.4 -0.3 -0.4 -0.3 -0.2 0.2 0.3 -0.1 0.0 0.0 -0.3 0.1 0.1 0.2 1.0 0.1 0.3 0.1 0.1 -0.1 0.1 0.2 0.0 0.1 0.0 -0.3 -0.2 0.2
Neuron_Interneuron_Zeisel_Science_2015 -0.5 -0.6 -0.5 -0.4 -0.5 -0.3 -0.4 -0.4 0.1 -0.2 -0.2 -0.2 0.0 0.0 -0.1 0.8 0.7 0.6 0.3 0.3 0.3 0.8 0.8 0.5 0.1 1.0 0.4 0.4 -0.5 0.2 -0.2 -0.4 -0.2 -0.4 0.6 -0.2 0.5 0.1
Neuron_Neuron_CCK_Doyle_Cell_2008 -0.5 -0.6 -0.5 -0.6 -0.3 0.3 0.1 0.1 0.1 -0.1 -0.3 -0.1 -0.1 -0.1 -0.2 0.4 0.3 0.1 0.1 0.2 -0.2 0.4 0.4 0.2 0.3 0.4 1.0 0.5 -0.2 0.1 -0.2 0.0 -0.1 -0.3 0.1 -0.3 0.2 0.2
Neuron_Neuron_PNOC_Doyle_Cell_2008 -0.3 -0.4 -0.3 -0.4 -0.1 0.3 0.1 0.0 0.3 0.0 -0.2 0.0 -0.1 -0.2 0.0 0.3 0.3 0.0 0.0 0.4 0.1 0.3 0.3 0.3 0.1 0.4 0.5 1.0 -0.1 0.0 -0.3 0.0 -0.1 -0.3 0.1 0.0 0.3 0.1
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.0 0.1 0.1 0.1 -0.1 0.2 0.3 0.1 0.0 0.1 0.2 0.2 -0.1 0.0 0.0 -0.5 -0.3 -0.3 -0.1 -0.5 -0.2 -0.4 -0.4 -0.1 0.1 -0.5 -0.2 -0.1 1.0 0.1 0.8 0.9 0.7 0.9 -0.2 0.0 -0.4 -0.1
Oligodendrocyte_All_Doyle_Cell_2008 -0.2 -0.2 -0.1 -0.1 -0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.3 0.2 0.0 0.2 0.3 0.2 0.0 -0.1 0.2 0.1 0.0 0.1 1.0 0.1 0.1 0.2 0.1 0.1 -0.1 0.4 -0.1
Oligodendrocyte_All_Zeisel_Science_2015 0.2 0.3 0.2 0.3 -0.1 -0.1 0.0 -0.1 -0.1 0.1 0.2 0.1 -0.1 0.1 0.1 -0.4 -0.4 -0.2 0.1 -0.5 -0.1 -0.2 -0.4 0.0 0.1 -0.2 -0.2 -0.3 0.8 0.1 1.0 0.8 0.7 0.9 -0.1 -0.1 -0.3 -0.3
Oligodendrocyte_Mature_Darmanis_PNAS_2015 -0.1 0.0 0.0 -0.1 -0.2 0.2 0.1 0.0 -0.2 -0.1 0.0 0.0 -0.3 -0.1 0.0 -0.3 -0.2 -0.4 -0.1 -0.5 -0.3 -0.3 -0.4 0.1 0.2 -0.4 0.0 0.0 0.9 0.1 0.8 1.0 0.7 0.8 -0.2 -0.2 -0.4 -0.2
Oligodendrocyte_Mature_Doyle_Cell_2008 0.1 0.1 0.1 0.2 -0.1 0.0 0.1 0.0 0.0 0.2 0.2 0.2 0.0 0.3 0.0 -0.2 -0.3 -0.1 0.0 -0.4 -0.1 -0.1 -0.2 -0.1 0.0 -0.2 -0.1 -0.1 0.7 0.2 0.7 0.7 1.0 0.7 -0.1 0.0 -0.1 -0.1
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.0 0.2 0.3 0.2 0.1 0.2 0.1 -0.5 -0.4 -0.1 0.0 -0.5 -0.1 -0.3 -0.3 -0.2 0.1 -0.4 -0.3 -0.3 0.9 0.1 0.9 0.8 0.7 1.0 -0.2 0.1 -0.3 0.0
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 -0.5 -0.5 -0.5 -0.4 -0.5 -0.4 -0.4 -0.3 -0.1 -0.1 -0.2 -0.1 -0.1 0.0 0.0 0.6 0.6 0.5 0.2 0.1 0.1 0.6 0.6 0.2 0.0 0.6 0.1 0.1 -0.2 0.1 -0.1 -0.2 -0.1 -0.2 1.0 -0.2 0.4 0.1
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.5 0.4 0.4 0.4 0.7 0.1 0.4 0.2 0.3 0.4 0.5 0.5 0.4 0.3 0.1 -0.3 -0.4 0.1 0.1 0.1 0.3 -0.3 -0.1 -0.5 -0.3 -0.2 -0.3 0.0 0.0 -0.1 -0.1 -0.2 0.0 0.1 -0.2 1.0 0.2 0.3
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 -0.2 -0.3 -0.1 -0.1 0.0 -0.2 -0.1 -0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.0 0.5 0.2 0.6 0.3 0.5 0.5 0.6 0.5 -0.1 -0.2 0.5 0.2 0.3 -0.4 0.4 -0.3 -0.4 -0.1 -0.3 0.4 0.2 1.0 0.1
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific -0.1 -0.2 -0.1 -0.2 0.3 0.0 0.2 0.4 0.2 0.1 0.1 0.2 0.2 0.2 -0.1 0.1 0.1 0.3 0.1 0.0 0.1 0.0 0.4 -0.3 0.2 0.1 0.2 0.1 -0.1 -0.1 -0.3 -0.2 -0.1 0.0 0.1 0.3 0.1 1.0
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Microglia_All_Darmanis_PNAS_2015 1.0 0.9 0.9 0.2 0.2 0.3 0.1 0.3 0.4 0.5 0.4 0.4 0.2 0.2 -0.1 -0.2 -0.1 0.1 0.0 0.0 -0.1 0.5 0.5 0.5 0.5 0.1 0.1 0.0 0.1
Microglia_All_Zeisel_Science_2015 0.9 1.0 0.9 0.4 0.3 0.6 0.3 0.6 0.6 0.8 0.7 0.6 0.5 0.4 0.0 -0.2 0.0 0.2 0.2 0.1 0.1 0.5 0.6 0.4 0.5 0.2 0.2 0.2 0.2
Microglia_All_Zhang_JNeuro_2014 0.9 0.9 1.0 0.4 0.3 0.4 0.3 0.5 0.6 0.7 0.6 0.6 0.4 0.3 -0.2 -0.3 0.0 0.0 0.1 0.0 0.0 0.5 0.5 0.3 0.6 0.0 0.0 0.1 0.3
Astrocyte_All_Cahoy_JNeuro_2008 0.2 0.4 0.4 1.0 0.8 0.8 0.8 0.6 0.5 0.7 0.6 0.6 0.6 0.6 0.1 -0.1 0.2 0.2 0.3 0.3 0.2 0.2 0.4 0.1 0.4 0.1 0.3 0.5 0.2
Astrocyte_All_Darmanis_PNAS_2015 0.2 0.3 0.3 0.8 1.0 0.7 0.5 0.4 0.4 0.5 0.5 0.4 0.4 0.4 -0.2 -0.3 -0.2 0.1 0.0 0.0 -0.1 0.3 0.4 0.2 0.3 -0.1 0.2 0.2 0.1
Astrocyte_All_Zeisel_Science_2015 0.3 0.6 0.4 0.8 0.7 1.0 0.7 0.7 0.5 0.8 0.8 0.7 0.6 0.8 0.3 0.1 0.3 0.5 0.6 0.5 0.5 0.3 0.7 0.2 0.5 0.4 0.3 0.7 0.2
Astrocyte_All_Zhang_JNeuro_2014 0.1 0.3 0.3 0.8 0.5 0.7 1.0 0.6 0.5 0.6 0.6 0.7 0.7 0.7 0.2 0.1 0.4 0.3 0.4 0.4 0.4 0.0 0.3 -0.2 0.2 0.2 0.3 0.6 0.2
Endothelial_All_Daneman_PLOS_2010 0.3 0.6 0.5 0.6 0.4 0.7 0.6 1.0 0.8 0.9 0.9 0.8 0.7 0.7 0.1 0.0 0.2 0.3 0.4 0.4 0.3 0.2 0.5 0.0 0.3 0.3 0.2 0.6 0.3
Endothelial_All_Darmanis_PNAS_2015 0.4 0.6 0.6 0.5 0.4 0.5 0.5 0.8 1.0 0.8 0.8 0.7 0.8 0.6 -0.2 -0.3 -0.1 0.0 0.0 0.1 0.0 0.3 0.4 0.1 0.3 0.1 0.3 0.3 0.3
Endothelial_All_Zeisel_Science_2015 0.5 0.8 0.7 0.7 0.5 0.8 0.6 0.9 0.8 1.0 0.9 0.8 0.7 0.7 0.1 -0.1 0.2 0.4 0.4 0.4 0.3 0.4 0.7 0.2 0.5 0.3 0.3 0.6 0.2
Endothelial_All_Zhang_JNeuro_2014 0.4 0.7 0.6 0.6 0.5 0.8 0.6 0.9 0.8 0.9 1.0 0.8 0.7 0.7 0.1 0.0 0.2 0.4 0.4 0.4 0.4 0.4 0.7 0.2 0.5 0.3 0.1 0.6 0.3
Mural_All_Zeisel_Science_2015 0.4 0.6 0.6 0.6 0.4 0.7 0.7 0.8 0.7 0.8 0.8 1.0 0.8 0.8 0.2 0.0 0.3 0.3 0.4 0.4 0.4 0.2 0.5 0.0 0.4 0.3 0.3 0.6 0.3
Mural_Pericyte_Zhang_JNeuro_2014 0.2 0.5 0.4 0.6 0.4 0.6 0.7 0.7 0.8 0.7 0.7 0.8 1.0 0.7 0.1 -0.1 0.2 0.2 0.3 0.3 0.3 0.1 0.3 -0.1 0.3 0.2 0.3 0.5 0.3
Mural_Vascular_Daneman_PLOS_2010 0.2 0.4 0.3 0.6 0.4 0.8 0.7 0.7 0.6 0.7 0.7 0.8 0.7 1.0 0.5 0.3 0.5 0.6 0.7 0.6 0.6 0.0 0.5 -0.1 0.1 0.6 0.3 0.8 0.2
Neuron_All_Cahoy_JNeuro_2008 -0.1 0.0 -0.2 0.1 -0.2 0.3 0.2 0.1 -0.2 0.1 0.1 0.2 0.1 0.5 1.0 1.0 0.8 0.9 0.9 0.9 0.9 -0.3 0.3 -0.2 -0.2 0.9 0.0 0.7 -0.1
Neuron_All_Darmanis_PNAS_2015 -0.2 -0.2 -0.3 -0.1 -0.3 0.1 0.1 0.0 -0.3 -0.1 0.0 0.0 -0.1 0.3 1.0 1.0 0.8 0.8 0.8 0.8 0.8 -0.3 0.2 -0.2 -0.3 0.8 -0.1 0.5 -0.1
Neuron_All_Zhang_JNeuro_2014 -0.1 0.0 0.0 0.2 -0.2 0.3 0.4 0.2 -0.1 0.2 0.2 0.3 0.2 0.5 0.8 0.8 1.0 0.6 0.9 0.8 0.9 -0.1 0.3 -0.2 0.1 0.7 -0.1 0.7 0.2
Neuron_GABA_Sugino_NatNeuro_2006 0.1 0.2 0.0 0.2 0.1 0.5 0.3 0.3 0.0 0.4 0.4 0.3 0.2 0.6 0.9 0.8 0.6 1.0 0.9 0.9 0.8 -0.1 0.6 0.0 -0.1 0.9 0.1 0.8 -0.1
Neuron_Interneuron_Zeisel_Science_2015 0.0 0.2 0.1 0.3 0.0 0.6 0.4 0.4 0.0 0.4 0.4 0.4 0.3 0.7 0.9 0.8 0.9 0.9 1.0 1.0 1.0 -0.1 0.5 -0.1 0.0 0.9 0.0 0.9 0.1
Neuron_Glutamate_Sugino_NatNeuro_2006 0.0 0.1 0.0 0.3 0.0 0.5 0.4 0.4 0.1 0.4 0.4 0.4 0.3 0.6 0.9 0.8 0.8 0.9 1.0 1.0 1.0 -0.2 0.5 -0.2 0.0 0.9 0.0 0.8 0.1
Neuron_Pyramidal_Cortical_Zeisel_Science_2015 -0.1 0.1 0.0 0.2 -0.1 0.5 0.4 0.3 0.0 0.3 0.4 0.4 0.3 0.6 0.9 0.8 0.9 0.8 1.0 1.0 1.0 -0.2 0.3 -0.3 -0.1 0.8 0.0 0.8 0.1
Oligodendrocyte_All_Cahoy_JNeuro_2008 0.5 0.5 0.5 0.2 0.3 0.3 0.0 0.2 0.3 0.4 0.4 0.2 0.1 0.0 -0.3 -0.3 -0.1 -0.1 -0.1 -0.2 -0.2 1.0 0.7 0.9 0.9 -0.1 0.0 0.0 0.2
Oligodendrocyte_All_Zeisel_Science_2015 0.5 0.6 0.5 0.4 0.4 0.7 0.3 0.5 0.4 0.7 0.7 0.5 0.3 0.5 0.3 0.2 0.3 0.6 0.5 0.5 0.3 0.7 1.0 0.7 0.7 0.5 0.1 0.5 0.1
Oligodendrocyte_Mature_Darmanis_PNAS_2015 0.5 0.4 0.3 0.1 0.2 0.2 -0.2 0.0 0.1 0.2 0.2 0.0 -0.1 -0.1 -0.2 -0.2 -0.2 0.0 -0.1 -0.2 -0.3 0.9 0.7 1.0 0.8 0.0 0.0 -0.1 0.1
Oligodendrocyte_Myelinating_Zhang_JNeuro_2014 0.5 0.5 0.6 0.4 0.3 0.5 0.2 0.3 0.3 0.5 0.5 0.4 0.3 0.1 -0.2 -0.3 0.1 -0.1 0.0 0.0 -0.1 0.9 0.7 0.8 1.0 0.0 0.0 0.1 0.3
Oligodendrocyte_Newly-Formed_Zhang_JNeuro_2014 0.1 0.2 0.0 0.1 -0.1 0.4 0.2 0.3 0.1 0.3 0.3 0.3 0.2 0.6 0.9 0.8 0.7 0.9 0.9 0.9 0.8 -0.1 0.5 0.0 0.0 1.0 0.1 0.7 -0.1
Oligodendrocyte_Progenitor	Cell_Darmanis_PNAS_2015 0.1 0.2 0.0 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.1 0.3 0.3 0.3 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 1.0 0.3 -0.1
Oligodendrocyte_Progenitor	Cell_Zhang_JNeuro_2014 0.0 0.2 0.1 0.5 0.2 0.7 0.6 0.6 0.3 0.6 0.6 0.6 0.5 0.8 0.7 0.5 0.7 0.8 0.9 0.8 0.8 0.0 0.5 -0.1 0.1 0.7 0.3 1.0 0.1
RBC_All_GeneCardSearch_Hemoglobin_ErythrocyteSpecific 0.1 0.2 0.3 0.2 0.1 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.2 -0.1 -0.1 0.2 -0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.3 -0.1 -0.1 0.1 1.0
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Fig G. There is a convergence of cell content predictions derived from cell type specific transcripts 
identified by different publications. A. The similarity of different cell type indices in the Pritzker 
cortical dataset can be visualized using a correlation matrix. Within this matrix, correlations can range 
from a strong negative correlation (-1, blue) to a strong positive correlation (1, red), therefore a large 
block of pink/red correlations is indicative of cell type indices that tend to be enriched in the same 
samples. The axis labels for cell type indices representing the same category of cell are color-coded 
similar to Fig B. The number of probes included in each index is present in the far left column (also 
color-coded, with green indicating few probes and red indicating many probes). B-C. Examples of the cell 
type index correlation matrices from the replication cortical datasets: B. Lanz et al. (GSE53987), C. CMC 
RNA-Seq. 

	

 

Fig H. The convergence of cell content predictions derived from cell type specific transcripts 
originating from different publications remains after removing overlapping transcripts. This figure 
follows the format of Fig G (Pritzker dataset), but uses cell type indices calculated following removal of 
any genes identified as present in more than one index. The similarity of different cell type indices are 
visualized using a correlation matrix, with color-coded labels for cell type indices representing the same 
category of cell. 

 

Neurons

Astrocytes

Pia/&/
Neurovasculature

Mature/Oligodendrocytes

Supplementary,Figure,3.
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Cell type indices predict other transcripts known to be enriched in 

specific cell types 

To identify other transcripts important to cell type specific functions in the human cortex, we ran 

a linear model on the signal from each gene probeset in the Pritzker microarray dataset that included each 

of the ten consolidated primary cell type indices as well as the six traditional co-variates (“Model 5”, Fig 

4). Shown in Fig I are the most significant 10 gene probe sets positively associated with each cell type 

within the model.  

 

Fig I. The top 10 transcripts associated with each cell type index include those previously-identified 
as cell type enriched in the literature. Transcripts are identified by official gene symbol. Yellow labels 
identify transcripts included in the original cell type index, orange transcripts were previously-identified 
as cell type enriched in the literature but were not included in the database used to create the index. Please 
note that not all of the genes listed in the top ten list associated with the Red Blood Cell index would 
survive a traditional threshold for false detection (q<0.05). 

 

Many of the top gene probesets that we found to be related to each of the cell type indices are 

already known to be associated with that cell type in previous publications, validating our methodology. 

Importantly, this is true even when the genes were not included in the original list of cell type specific 

genes used to generate the index. For example, we found that HLA-E and EPAS1 were both strongly 

associated with our endothelial index, and both are known to be involved in endothelial cell activation 

[96][97]. NOTCH2, one of the top astrocyte-related genes, promotes astrocytic cell lineage [98], and 
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APOE is primarily secreted by astrocytes in the central nervous system [99]. One of the top interneuron 

genes, LHX6, is specifically enriched in parvalbumin-containing interneurons [2]. Another top 

interneuron gene, ERBB4, controls the development of GABA circuitry in the cortex [100]. Many top 

neuron-related genes relate to synaptic function (SYT1, SYNGR3, NRXN1; http://www.genecards.org/). 

The top projection neuron-related gene, PDE2A, is preferentially expressed in cortical pyramidal neurons 

[101], and KIF21B is a kinesin found in the dendrites of pyramidal neurons [102]. We also rediscovered 

probesets representing genes that were listed as alternative orthologs to those included in our original cell 

type specific gene lists (oligodendrocytes: EVI2A vs.CTD-2370N5.3, microglia: LAIR1 vs. LAIR2, 

mural cells: COL18A1 vs. COL15A1, ACTA2 vs. ACTG1). Altogether, these results suggest that our cell 

type indices were associated with the variability of transcripts in the cortex that represented particular cell 

types and could re-identify known cell type specific markers.  

 

Additional figures and results   

	
Inferred cell type composition explains a large percentage of the 

sample-sample variability in microarray data from macro-dissected 

human cortical tissue 

Within the four non-Pritzker human cortical tissue datasets, the relationships between the top 

principal components of variation and the consolidated cell type indices were similarly strong (Fig J), 

even though these datasets had received less preprocessing to remove the effects of technical variation. 

Within the GSE21935 dataset [31] the first principal component of variation (PC1) accounted for 37% of 

the variation in the dataset and seemed to represent a gradient running from samples with high predicted 

support cell content (PC1 vs. endothelial index: R2=0.85, p<3.6e-18, PC1 vs. astrocyte index: R2=0.67, 

p<3.6e-11) to samples with high predicted neuronal content (PC1 vs. neuron_all index: R2=0.85, p<3.9e-
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18). Within GSE53987 [30], which had samples derived exclusively from gray-matter-only dissections, 

PC1 accounted for 13% of the variation in the dataset and was highly correlated with predicted astrocyte 

content (PC1 vs. astrocyte index: R2=0.80, p<4.6e-24). In GSE21138  (39), which also had samples 

derived exclusively from gray-matter-only dissections, PC1 accounted for 23% of the variation in the 

dataset and was strongly related to technical variation (batch), but PC2, which accounted for 14% of the 

variation in the dataset, again represented a gradient from samples with high predicted support cell 

content to high predicted neuronal content (PC2 vs. astrocyte: R2=0.56, p<8.3e-11, PC2 vs. neuron_all: 

R2=0.54, p<2.3e-10). Finally, within the CMC RNA-Seq dataset, PC1 accounted for 16% of the variation 

in the dataset and was highly correlated with predicted projection neuron content (PC1 vs. 

Neuron_Projection: R2=0.54, p=5.77e-104). 

 
 

Fig J. Replication: Cell content predictions explain a large percentage of the variability in 
microarray and RNA-Seq data derived from the human cortex. The results shown above illustrate the 
strongest relationship between the top principal components of variation (PC1 or PC2) and cell type in 

GSE21935:
Barnes	et	al.,	2011

GSE53987:
Lanz et	al.,	2015

GSE21138:	
Narayan	et	al.	2008

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

−1.0 −0.5 0.0 0.5 1.0

−4
0

−2
0

0
20

Endothelial Index

PC
1

r−squared: 0.85
p−value: 3.59e−18

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5

−2
0

−1
0

0
10

20

Astrocyte Index

PC
1

r−squared: 0.8
p−value: 4.6e−24

●

●

●
●

● ●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0

−6
0

−4
0

−2
0

0
20

Astrocyte Index

PC
2

r−squared: 0.56
p−value: 8.3e−11

●

●
●

●

●

●

●
●

●
●

●●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−1
00

0
10
0

20
0

Astrocyte

PC
1

r−squared = 0.15 
p−value = 6.21e−23

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

● ●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

● ●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●●
●

●
●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2
00

−1
00

0
10
0

Astrocyte

PC
2

r−squared = 0.12 
p−value = 4.54e−18

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●
● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●
●

●
●

●

●

●

●
● ●

● ●

● ● ●
●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●●

●

●
● ●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

● ●

●●
● ●

● ●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●●

●

●

●

●

● ●

●
●
● ●

●

●
●

● ●●

●

●

●

●

●

●●

●

● ●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●●

●
●

●

●●

●

●

● ●●
●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●●●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
● ● ●●

●
●

●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●● ●

●

●
●

●

●
●

●●● ●

●

● ●
●●

●

●
●

●

●

● ●●●
●

●

●

●

●

●●●●

●
●

●
●
●

●

●
●

●

●

●
●

●●

●

●

●● ●●

●

●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
● ●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●● ●

●
●●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●● ●●
●

●

● ●
●

●

●

●●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
● ●

●

●●

●●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2
00

0
10
0

20
0

30
0

Astrocyte

PC
3

r−squared = 0.0025 
p−value = 0.22

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●● ●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●● ●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●

●
●
● ●

●

●

●

●

● ●

●
●

●

●●

●

●●
●

●

●
●

●

●●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−1
00

0
50

10
0

15
0

Astrocyte

PC
4

r−squared = 0.2 
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r−squared = 0.24 
p−value = 2.33e−38
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r−squared = 0.16 
p−value = 6.68e−24
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r−squared = 0.017 
p−value = 0.00144
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r−squared = 0.25 
p−value = 2.65e−40
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r−squared = 0.35 
p−value = 7.6e−59
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r−squared = 0.0024 
p−value = 0.231
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r−squared = 0.00058 
p−value = 0.554
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r−squared = 0.41 
p−value = 6.48e−71
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r−squared = 0.54 
p−value = 5.77e−104
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r−squared = 0.08 
p−value = 1.44e−12
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r−squared = 0.01 
p−value = 0.0124
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r−squared = 0.23 
p−value = 8.52e−36
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each of the four human replication datasets discussed in the paper: A) GSE21935: Barnes et al. 2011; B) 
GSE53987: Lanz et al. 2015; C) GSE21138: Narayan et al. 2008; D) CommonMind Consortium. 

 

When digging deeper, we found that none of the original 38 publication-specific cell type indices 

were noticeably superior to the consolidated indices when predicting the principal components of 

variation in the datasets. Human-derived indices did not outperform mouse-derived indices, and indices 

derived from studies using stricter definitions of cell type specificity (fold enrichment cut-off in Fig 1) did 

not outperform less strict indices. 

 



Running	Head:	Predicting	Cell	Type	Balance	

	 69	

It is difficult to discriminate between changes in cell type balance 

and cell-type specific function 

 

Fig K. The predicted decrease in neuronal cell content in relationship to age is unlikely to be fully 
explained by synaptic atrophy. Within the list of neuron-specific genes, 240 functional clusters were 
identified using DAVID. A) The genes in 19 out of the top 20 functional clusters showed decreased 
expression with age on average, as determined within a linear model that controlled for traditional 
confounds (“Model 2”). Depicted is the average effect of age +/-SE for each cluster (asterisks: p<0.05, 
blue=down-regulation, red=up-regulation). Overall, 76% of all 240 functional clusters showed a negative 
relationship with age on average (S4 Table). B.) We blindly chose 29 functional clusters that were clearly 
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related to dendritic/axonal functions and 41 functional clusters that seemed distinctly unrelated to 
dendritic/axonal functions. Transcripts from both classifications showed an average decrease in 
expression with age (p=9.197e-05, p=0.008756, respectively), but the decrease was larger for transcripts 
associated with dendritic/axonal-related functions (p=0.02339). Depicted is the average effect of age +/-
SE for each classification of cluster. 

	
Previously-documented psychiatric effects on cortical gene 

expression within particular cortical cell types or within macro-

dissected prefrontal cortex 

 

Fig	L. Gene lists used to assess whether controlling for cell type while performing differential 
expression analyses enhances the detection of previously-documented psychiatric effects on cortical 
gene expression. These lists include genes with documented relationships to psychiatric illness within 
either 1) particular cortical cell types or 2) macro-dissected cortex. The full lists can be found in S7 
Table. Abbreviations: LCM: Laser Capture Microscopy, PVALB: Parvalbumin, BA: Brodmann’s Area, 
PMI: Post-mortem interval, FDR: False detection ratio (or q-value), Brain Banks: PITT (University of 
Pittsburgh), HBTRC (Harvard Brain Resource Tissue Center), CCHPC (Charing Cross Hospital 
Prospective Collection), MSSM (Mount Sinai Icahn School of Medicine), MHRI (Mental Health 
Research Institute Australia). 

 

Validation	
Datasets:

#	of	
Genes Method: Brain	Bank:

#	of	
Subjects Brain	Region

Co-Variates:	
Controlled? Co-Variates:	Balanced?

Statistical	
Stringency

Schizophrenia	Effects	In	Particular	Cortical	Cell	Types:
Reviewed	in	

Lewis	&	Sweet	

(2009) 7

ICC/in	situ	

hybridization Variable,	often	PITT Variable

Prefrontal	

cortex Variable Variable Variable

Arion	et	al.	

(2015) 41

LCM-Microarray:	

Pyramidal	Neurons	

(Layers	3	&5) PITT 72 BA9

Direction	of	effect	

evaluated,	but	

covariates	not	included	

in	final	model.

Sex,	Age,	PMI,	pH,	RIN,	

tissue	storage	time,	

race

Top	40	(FDR<0.1	in	

both	layers,	Table	

2A),	Top	2	in	Table	

2B,	FDR<10E-17	for	

Layer5)

Pietersen	et	al.	

(2014) 47

LCM-Microarray:	

PVALB	

Interneurons HBTRC	(MacLean) 16 BA42

Batch.	Considered	

effects	of	Sex,	Age,	

PMI	but	not	included	

in	final	model.

Sex,	Age,	PMI,	pH	not	

significantly	different

Top	47	(FDR<0.01,	

FC>2,	Table	3)

Mauney	et	al.	

(2015) 35

LCM-Microarray:	

Oligodendrocyte	

Precursors HBTRC	(MacLean) 18 BA9 None

Sex,	Age,	PMI,	pH	not	
reported

Top	35	(FDR<0.001,	

Table	S2)

Psychiatric	Effects	in	Macro-dissected	Prefrontal	Cortex:

Mistry	et	al.	

(2013) 126

Meta-analysis	of	

microarray	data:	

Schizophrenia	

effects

Stanley	Foundation,	

HBTRC	(MacLean),	

PITT,	CCHPC	,	

MSSM,	MHRI 306

BA9,	BA10,	

BA46

Model	selection	

procedure	included	

Batch,	Age,	pH,	Study Sex,	PMI FDR<0.1	(Table	S2)

Choi	et	al.	

(2011) 367

Meta-analysis	of	

microarray	data:	

Bipolar	effects Stanley	Foundation 83

BA46	(grey	

matter	only)

Batch	(Scan	Date),	pH,		

Psychosis,	Medication	

at	TOD

Age,	BMI,	PMI	not	
reported

FDR<0.05,	FC>1.3	

(Table	S1)
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The top diagnosis-related genes identified by models that include 

cell content predictions pinpoint known risk candidates 

 Although the inclusion of predicted cell type balance in our model occasionally improved our 

ability to detect previously-identified relationships with diagnosis, most relationships still went 

undetected in the Pritzker dataset and none of the diagnosis relationships survived standard p-value 

corrections for multiple comparisons. This could be due to a variety of factors, including microarray 

platform and probe sensitivity. Therefore, we decided to ask a complementary question: Of the top 

diagnosis relationships that we see in our dataset, how many have been previously observed in the 

literature? If including predicted cell type balance in our models improves the signal to noise ratio of our 

analyses, then we would expect that the top diagnosis-related genes in our dataset would be more likely to 

overlap with previous findings. To perform this comparison in an unbiased and efficient manner, we 

limited our search to PubMed, using as search terms only the respective human gene symbol and 

diagnosis (“Schizophrenia”, “Bipolar”, or “Depression”). For the genes related to MDD in our dataset, we 

also expanded the search to include two highly-correlated traits that are more quantifiable: “Anxiety” and 

“Suicide”. Then we narrowed our results only to studies using human subjects.  

Before controlling for cell type, when using a traditional model (“Model#2”) we found that only 

one of the top 10 genes related to diagnosis (FOS: [103,104]) or the presence or absence of psychiatric 

illness (ALDH1A1: [105]) had been previously noted in the human literature. In contrast, when we used a 

model that included the five most prevalent cortical cell types (Model#4), we found that five of the top 10 

genes associated with Schizophrenia had been previously identified in the literature (ARHGEF2: [106], 

DOC2A: [107], FBX09: [78], GRM1: [108,109]; CEBPA: [84]), and three of the top 10 genes associated 

with Bipolar Disorder (ALDH1A1: [105], SNAP25: [110], NRN1:[111]; Fig M). This was a significant 

enrichment in overlap with the literature when compared to 100 randomly-selected genes in the dataset 

subjected to the same protocol (Schizophrenia: 5/10 vs. 7/100, p=0.0012; Bipolar: 3/10 vs. 8/100, 

p=0.0610). Likewise, if we replaced diagnosis with a term representing the general presence or absence of 
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a psychiatric illness, we found that four of the top 10 genes had been previously identified in the literature 

(ALDH1A1: [105]; HBS1L: [4]; HIVEP2: [112], FBX09: [78], Fig N), and 9/10 of the top genes were 

actually significant with an FDR<0.05 when using permutation based methods (using the R function 

lmp{lmPerm}, iterations=9999). The top 10 genes associated with psychiatric illness in models selected 

using forward/backward stepwise model selection (criterion=BIC) similarly included five that had been 

previously identified in the literature (PRSS16: [113], GRM1: [108,109]; ALDH1A1: [105]; SNAP25: 

[110]; HIVEP2: [112], a significant improvement in overlap with the literature than what can be seen in 

100 randomly-selected genes in the dataset subjected to the same protocol (Fisher’s exact test: 5/10 

vs.15/100, p=0.0168).  
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Fig M. When analyzing the full Pritzker dataset, the top genes associated with diagnosis in models 
that include cell content predictions include genes previously identified in the literature. Depicted 
are the top 10 genes associated with diagnosis using three different models of increasing complexity, 
along with their b’s (magnitude and direction of effect within the model – blue=downregulation, 
pink=upregulation), nominal p-values, and p-values that have been corrected for false detection rate (FDR 
or q-value). Gene symbols that are bolded and highlighted yellow have been previously detected in the 
human literature in association with their respective diagnosis in papers identified using the PubMed 
search terms “Schizophrenia” (Row 1) and “Bipolar” (Row 2). None of the top genes associated with 
major depressive disorder in any of the three models were found to be associated with “Depression”, 
“Anxiety”, or “Suicide” on PubMed (Row 3).  

Top	Genes	Associated	with	Schizophrenia:

Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR
CTRC -0.13 1.00E-04 4.75E-01 ARHGEF2 -0.12 3.96E-05 2.66E-01 ID1 -0.54 3.68E-05 2.22E-01
DMP1 -0.06 1.37E-04 4.75E-01 DOC2A 0.18 4.55E-05 2.66E-01 DOC2A 0.17 6.26E-05 2.22E-01
HHLA1 -0.40 1.70E-04 4.75E-01 ID1 -0.53 6.69E-05 2.66E-01 ARHGEF2 -0.12 6.78E-05 2.22E-01
PITPNB -0.13 1.96E-04 4.75E-01 PITPNB -0.12 8.87E-05 2.66E-01 PITPNB -0.13 7.41E-05 2.22E-01
DHX32 -0.16 2.61E-04 4.75E-01 FBXO9 -0.16 2.53E-04 4.48E-01 PMP22 -0.24 1.67E-04 3.64E-01
ID1 -0.51 2.73E-04 4.75E-01 CTRC -0.10 3.12E-04 4.48E-01 CRYBB1 -0.10 2.34E-04 3.64E-01
CRYBB1 -0.12 3.04E-04 4.75E-01 GPR63 0.12 4.28E-04 4.48E-01 NPPA -0.14 2.65E-04 3.64E-01
ZNF91 -0.29 3.26E-04 4.75E-01 GRM1 0.07 4.71E-04 4.48E-01 CTRC -0.10 2.68E-04 3.64E-01
FAM127B 0.15 3.84E-04 4.75E-01 DHX32 -0.13 4.79E-04 4.48E-01 PHLDB1 -0.17 4.41E-04 3.64E-01
NPPA -0.17 3.98E-04 4.75E-01 CEBPA 0.15 5.70E-04 4.48E-01 FGFR2 -0.16 4.49E-04 3.64E-01

Top	Genes	Associated	with	Bipolar	Disorder:

Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR
NDUFS5 -0.15 7.77E-04 1.00E+00 ALDH1A1 -0.37 7.57E-05 9.06E-01 ALDH1A1 -0.40 3.05E-05 2.21E-01
ZNF593 0.16 1.20E-03 1.00E+00 SNAP25 -0.20 3.59E-04 1.00E+00 SNAP25 -0.17 3.69E-05 2.21E-01
LRRK1 0.10 1.64E-03 1.00E+00 G3BP1 0.14 7.61E-04 1.00E+00 CHST1 0.22 4.33E-04 9.98E-01
G3BP1 0.13 1.71E-03 1.00E+00 NDUFS5 -0.15 8.07E-04 1.00E+00 TRA2A -0.15 5.78E-04 9.98E-01
OR7C1 -0.08 1.85E-03 1.00E+00 ZNF593 0.16 1.05E-03 1.00E+00 G3BP1 0.14 6.58E-04 9.98E-01
NARS -0.08 1.89E-03 1.00E+00 NARS -0.08 1.07E-03 1.00E+00 ANGEL2 -0.09 7.27E-04 9.98E-01
FOS -0.63 2.00E-03 1.00E+00 CHST1 0.21 1.09E-03 1.00E+00 NARS -0.08 1.24E-03 9.98E-01
PITPNB -0.10 2.22E-03 1.00E+00 PITPNB -0.10 1.11E-03 1.00E+00 LRRK1 0.10 1.33E-03 9.98E-01
GIT2 -0.05 2.44E-03 1.00E+00 TXNDC5 0.14 1.33E-03 1.00E+00 KCTD2 0.10 1.34E-03 9.98E-01
UTY 0.04 2.87E-03 1.00E+00 NRN1 -0.13 1.42E-03 1.00E+00 TXNDC5 0.13 1.41E-03 9.98E-01

Top	Genes	Associated	with	MDD:

Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR
BRD4 0.12 7.10E-05 4.29E-01 PRPH2 0.21 6.96E-05 8.34E-01 BRD4 0.12 4.06E-05 4.86E-01
PRPH2 0.21 7.16E-05 4.29E-01 BRD4 0.11 2.12E-04 9.99E-01 PRPH2 0.20 1.20E-04 5.49E-01
MED24 0.15 2.08E-04 7.94E-01 BAP1 0.11 2.77E-04 9.99E-01 FZD2 0.08 1.37E-04 5.49E-01
SPRY2 -0.21 3.20E-04 7.94E-01 PRSS16 0.10 5.10E-04 9.99E-01 BAP1 0.11 4.30E-04 9.99E-01
PRSS16 0.11 3.31E-04 7.94E-01 ARL4D -0.13 7.57E-04 9.99E-01 REC8 0.13 5.80E-04 9.99E-01
HEY2 -0.15 6.04E-04 9.16E-01 MED24 0.14 7.86E-04 9.99E-01 ARL4D -0.13 9.74E-04 9.99E-01
NEURL 0.11 6.40E-04 9.16E-01 NKAIN1 0.11 7.97E-04 9.99E-01 MED24 0.13 1.06E-03 9.99E-01
NKAIN1 0.11 1.15E-03 9.16E-01 REC8 0.12 8.57E-04 9.99E-01 PRSS16 0.09 1.29E-03 9.99E-01
GGA3 0.09 1.59E-03 9.16E-01 FZD2 0.08 9.54E-04 9.99E-01 HBS1L -0.18 1.33E-03 9.99E-01
VENTXP1 -0.03 1.60E-03 9.16E-01 KCNN2 -0.14 1.19E-03 9.99E-01 NKAIN1 0.10 1.40E-03 9.99E-01

Model	2:	Diagnosis	+	Confounds Model	4: 	Diagnosis	+		5	Prevalent	Cell	
Types	&	Confounds

Model	5:	Diagnosis	+		All	Cell	Types	&	
Confounds

Model	2:	Diagnosis	+	Confounds Model	4: 	Diagnosis	+		5	Prevalent	Cell	
Types	&	Confounds

Model	5:	Diagnosis	+		All	Cell	Types	&	
Confounds

Model	2:	Diagnosis	+	Confounds Model	4: 	Diagnosis	+		5	Prevalent	Cell	
Types	&	Confounds

Model	5:	Diagnosis	+		All	Cell	Types	&	
Confounds
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Fig N. When analyzing the full dataset, the top genes associated with psychiatric illness in models 
that include cell content predictions include genes previously identified in the literature. Depicted 
are the top 10 genes associated with psychiatric illness using three different models of increasing 
complexity, or associated with psychiatric illness or suicide in models chosen using stepwise regression. 
Notably, the results from stepwise regression for the diagnosis term are not included in this figure because 
the term was only included in the model for eight genes total (DHX32, ID1, CSRP1, AKR1B10, TBPL1, 
HIST1H4F, SETD3, GAL). Formatting follows that of Fig M. Note that the p-values associated with 
stepwise regression are likely to be optimistic due to overfitting. Gene symbols that are bolded and 
highlighted yellow have been previously detected in the human literature using the PubMed search terms 
“Schizophrenia”, “Bipolar”, “Depression”, “Anxiety”, or “Suicide”. 

 

Together, we conclude that including cell content predictions in the analysis of macro-dissected 

microarray data can sometimes improve the sensitivity of the assay for detecting altered gene expression 

in relationship to psychiatric illness, especially if the dataset is confounded with dissection variation.   

Top	Genes	Associated	with	Psychiatric	Illness:

Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR Gene	Symbol Beta Pval FDR
CLIP2 0.16 2.18E-04 8.71E-01 ARL4D -0.12 1.26E-04 6.37E-01 ARL4D -0.12 9.91E-05 5.12E-01
FAM127B 0.11 2.29E-04 8.71E-01 ALDH1A1 -0.24 3.02E-04 6.37E-01 MICALL2 0.08 2.07E-04 5.12E-01
MED24 0.11 3.91E-04 8.71E-01 CLIP2 0.14 4.06E-04 6.37E-01 HIVEP2 -0.11 2.41E-04 5.12E-01
R3HDM2 -0.16 4.43E-04 8.71E-01 HBS1L -0.16 4.21E-04 6.37E-01 SNAP25 -0.10 3.72E-04 5.12E-01
MAP7D1 0.11 4.61E-04 8.71E-01 MICALL2 0.09 4.57E-04 6.37E-01 TRA2A -0.11 3.79E-04 5.12E-01
ALDH1A1 -0.30 5.34E-04 8.71E-01 PITPNB -0.08 4.69E-04 6.37E-01 CLIP2 0.14 3.79E-04 5.12E-01
PITPNB -0.08 6.38E-04 8.71E-01 DNAJB2 0.12 4.80E-04 6.37E-01 FZD2 0.06 4.06E-04 5.12E-01
FANCC -0.08 7.08E-04 8.71E-01 PPP6C -0.07 5.75E-04 6.37E-01 ALDH1A1 -0.22 4.33E-04 5.12E-01
TTC31 0.08 8.57E-04 8.71E-01 HIVEP2 -0.12 5.91E-04 6.37E-01 SMARCD3 0.12 4.46E-04 5.12E-01
BTG2 -0.16 8.87E-04 8.71E-01 FBXO9 -0.10 7.58E-04 6.37E-01 CHST1 0.16 4.47E-04 5.12E-01

Gene	Symbol Beta Pval Gene	Symbol Beta Pval
MED24 0.13 1.83E-05 DGKE 0.035 1.81E-05
CLIP2 0.17 4.74E-05 UNKL 0.106 2.40E-05
PRSS16 0.10 8.86E-05 C11orf95 0.17 6.56E-05
GRM1 0.05 1.11E-04 TUBB6 0.162 9.41E-05
ALDH1A1 -0.23 1.28E-04 NEK3 -0.08 1.72E-04
ARL4D -0.11 1.37E-04 ZNF592 0.158 2.27E-04
SNAP25 -0.11 1.39E-04 FAM98A -0.11 3.00E-04
CHST1 0.16 1.45E-04 SPSB1 0.087 3.01E-04
HIVEP2 -0.12 1.53E-04 CEBPB 0.249 4.04E-04
TTC31 0.08 1.67E-04 CHST11 0.069 4.18E-04

Stepwise	Regression:	Top	Genes	
Associated	with	Psychiatric	Illness

Stepwise	Regression: 	Top	Genes	
Associated	with	Suicide

Model	2:	 Psychiatric	+	Confounds Model	4: 	Psychiatric	+		5	Prevalent	Cell	
Types	&	Confounds

Model	5:	 Psychiatric	+		All	Cell	Types	&	
Confounds
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