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I. Fluid-structure model of posts 

To model the fluid-post interaction, we used the low Reynolds number approximation of the 

Navier-Stokes equations. For a primer on solutions to Navier-Stokes applicable to the flow 

generated by cilia, we refer the reader to PhD theses on our prior ASAP development that 

cover the topic in depth [1, 2]. 

For the model developed in this paper, we focused on the Oseen Tensor and slender body 

theory for force on a rod, which we used to model the hydrodynamic interaction between the 

post and the fluid. We started with the Navier-Stokes equation as originally derived by Navier 

in 1827 for an incompressible Newtonian viscous fluid: 

ߩ ቀడ௨ሬሬԦడ௧ + ሬሬԦݑ ⋅ ߘ ሬሬԦቁݑ = ݌ߘ− + ଶߘߟ ሬሬԦݑ +  ሬሬԦ                           (S1)ܨ

where ߩ is the density of the fluid, ݑሬሬԦ is the velocity of an infinitesimal fluid unit, ݌ is the 

pressure, ߟ is the viscosity, and ܨሬሬԦ is the applied force per unit volume. 

We made two assumptions to simplify the problem. The first assumption was that the 

instantaneous flow is approximately steady state, removing the డ௨ሬሬԦడ௧  term. Additionally, 

because we are in the low Reynolds number regime, ܴ݁ = ߟ/݈ݒߩ << 1, inertial 

effects are not significant so we removed the nonlinear inertial term, ݑሬሬԦ ⋅ ߘ  ሬሬԦ. We areݑ

now left with the simplified linear Navier-Stokes equation and the conservation of 

mass equation:  
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(ሬԦݎ)݌ߘ− + ଶߘߟ ሬሬԦݑ (ሬԦݎ) = −  ሬሬԦ                                    (S2)ܨ

ߘ ∙ ሬሬԦݑ = 0                                                      (S3) 

It is important to note that these equations are now linear, which means that if two solutions 

ଵ݂ and ଶ݂ exist then ଵ݂ + ଶ݂ is also a solution. This enabled us to model a slender beam, such 

as our posts, as a series of point forces known as Stokeslets. A Stokeslet is the solution to Eq. 

S2 for a point force within the fluid, and boundary conditions that vanish at infinity (for more 

thorough explanation on how to derive flow and pressure fields for a Stokeslet see [3]). 

Pressure and velocity terms are expressed as: 

(ሬԦݎ)݌ = ிሬሬԦ⋅௥ሬԦସగ௥య                                                 (S4) 

(ሬԦݎ)ሬԦݑ = ிሬሬԦ଼గఎ௥ ∙ ቀॴ + ௥ሬԦ௥ሬԦ௥మቁ                                                       (S5) 

where ܨ is the magnitude of the point force, ॴ is the identity tensor and ݎሬԦ is the vector from 

the origin. ݑሬԦ(ݎሬԦ) is conventionally known as the Oseen Tensor. 

To calculate the force from the fluid on a slender rod, we integrated a series of Stokeslets 

along the centerline of the body. The Stokeslet force values were chosen so that the fluid 

velocity at the boundary of the rod equals the velocity of the boundary, i.e. no slip boundary 

conditions. The force of the Stokeslets was integrated to calculate the force per unit length on 

the rod ( for a detailed derivation of this term, see Nguyen et al. [4]). The end result is that for 

a slender body, such as our ASAP posts, the force along the posts is modeled as: 

 

Oseen Drag = ସగఎ௩୪୬ ( ಽమವ)                                             (S6) 
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where ߟ is the fluid viscosity, ݒ is the velocity of the post, ܮ is the total length of the rod, and ܦ is the post diameter.  We will call this the “drag term” which represents the force of the 

fluid per unit length on the rod. 

II. Determining ࢽ૚,૛,૜,૝ 

To calculate the drag terms, we used the same Oseen drag force for a slender rod, and the 

displacement of the nickel portion of the rod (Fig. 2). Applying these two terms we obtained 

the following equation for the drag force per unit length on the nickel rod:  
(ݏ)௡௜ܦ = ௜ସగఠఎ୪୬(௅೟೚೟/ଶ஽) ቀݓ(ܮ௉஽ெௌ) + ݏ) − (௉஽ெௌܮ డ௪(௅ುವಾೄ)డ௦ ቁ             (S7) 

(ߙ)௡௜ܦ = ௜ସగఠఎ୪୬(௅೟೚೟/ଶ஽) ቀ(1)ݓ + ߙ) − 1) డ௪(ଵ)డఈ ቁ                    (S8) 

where ܦ௡௜  is the drag per unit length along the nickel potion of the rod, and the substitution 

 =    .௣ௗ௠௦ is used in Eq. S8ܮ/ݏ

Substituting the drag term into the equation for the moment boundary condition (Eq. 11 in 

main text), we obtained the following equations.  
ெ೏ೝೌ೒௅ುವಾೄమாூ = ௜ସగఠఎ௅ುವಾೄమாூ୪୬(௅೟೚೟/ଶ஽) ׬ (௅೟೚೟௅ುವಾೄ ݏ − (௉஽ெௌܮ ቂݓ(ܮ௉஽ெௌ) ݏ) + −

(௉஽ெௌܮ డ௪(௅ುವಾೄ)డ௦ ቃ  (S9)                        ݏ݀

= ݅݇ସ(1)ݓ ׬ (௅ೝଵ ߙ − ߙ݀(1 + ݅݇ସ డ௪(ଵ)డఈ ׬ (௅ೝଵ ߙ − 1)ଶ݀ߙ          (S10) 

Using Eq. 12 (in main text) we obtain ߛଵ,  :ଶ asߛ

ଵߛ = ݅݇ସ ׬ (௅ೝଵ ߙ −  (S11)                               ߙ݀(1

ଶߛ = ݅݇ସ ׬ (௅ೝଵ ߙ − 1)ଶ݀ߙ                              (S12) 

Performing the same analysis on the shear boundary conditions (see Eq. 13 in main text): 
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ௌ೏ೝೌ೒௅೛యாூ = ௜ସగఠఎ௅ುವಾೄయாூ୪୬(௅೟೚೟/ଶ஽) ׬ ௅೟೚೟௅ುವಾೄݓ (ݏ) + ݏ) − (௉஽ெௌܮ డ௪(௅ುವಾೄ)డ௦  (S13)       ݏ݀

= ݅݇ସ(1)ݓ ׬ ݀௅ೝଵ ߙ + ݅݇ସ డ௪(ଵ)డఈ ׬ (௅ೝଵ ߙ −  (S14)               ߙ݀(1

Leading to expressions for ߛଷ,   :ସߛ 
ଷߛ = ݅݇ସ ׬ ݀௅ೝଵ  (S15)                                         ߙ

ସߛ = ݅݇ସ ׬ (௅ೝଵ ߙ −  (S16)                                    ߙ݀(1

Now all that is left is to solve the system of four equations for the four unknowns. This is a 

trivial task but quite messy. Some general comments about the solution: the term ܯ௠௔௚ 

factors out of the solution fully, implying that the beat shape is the same regardless of the 

magnetic field at a given Sp, and the amplitude of motion is linearly dependent on the applied 

field. The solutions have a wavelength along the PDMS portion of the rod proportional to 1/k.  

As k gets large (large Sp) there will be more and more nodes along the PDMS portion of the 

rod (Fig. S1).  

III. PDMS Calibration 

PDMS calibration was done in water where the influence of the viscoelastic properties of the 

PDMS on the driven ASAP motion are orders of magnitude larger than that of the water 

viscosity for the frequency range measured. The complex elastic modulus of PDMS was 

calculated by solving for the elastic modulus in Eq. 4, using the phase and amplitude of the 

posts in water. The first derivative of the solution of the post motion can be related to the post 

amplitude using the small angle approximation:  

 ߲w(ݏ, ߬(߱), ݏ߲(݌ܵ ≈  (S17) (߱)ߠ
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where w (s; τ(), Sp), the post deflection, is the solution to Eq. 4 which depends on the 

position along the rod s, the applied torque τ , and Sp. Sp depends on the viscosity η, the 

frequency f, the elastic modulus of the posts E, and the second moment of inertia I. The 

experimental results gave us θ() and τ(), and I, f, η are all known. We solved for Sp using 

Eq. S17 for the post arrays in water. PDMS is a partially cross-linked polymer, and therefore 

has complex viscoelastic properties and is represented as a complex number. Because the 

viscosity and frequency are determined, we were able to solve for the complex elastic 

modulus of the PDMS. 

The real elastic modulus of the PDMS ranged between 5-10 MPa, while the imaginary 

component, ranges between 1-3 MPa (Fig. S5). The PDMS properties were not consistent 

across arrays and therefore each array needed to be calibrated for each experiment. While the 

PDMS properties measured are reasonable for PDMS [5, 6], they are on the high end of the 

expected range and are nearly a factor of 10 higher than the PDMS properties measured in 

previous studies using the DC tilt tests (for tilt test, see [7]) . It is likely that there are post-

post interactions, and post-wall interactions that occur between the posts that are being 

included in the PDMS calibration. The phase lag due to the visco-elastic nature of the PDMS 

determined for each post array, is subtracted from phase data for viscous samples. 
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