
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The present manuscript proposes deep learning approach to automatically classify structures by 
crystal symmetry. The way to represent crystal system as an image and classify them using deep 
architecture as proposed is, however, not new (Please see IUCrJ recent issues). The scope of the 
present work is very limited, because it deals with the classification of a cubic system to only four 
space groups (Fm-3m, Fd-3m, Im-3m, and Pm-3m). The effort used to unravel the neural network 
internal operations in terms of attentive response maps is however, appreciable. In my opinion 
nature communication is not a good platform for this kind of study and therefore, the article 
should better be submitted to a journal close to its application domain. The usability of deep 
learning in the field of crystallography should be rated by crystallographers. I recommend the 
authors to submit this manuscript to either IUCrJ or Journal of applied crystallography. The 
existing rule-based academia generally has a negative impression of deep learning that might 
switch their routines. To overcome such skepticism, Google DeepMind also declared this year that 
they will focus on scientific issues by stopping the entertaining themes. This means that the deep 
learning is no longer a sort of just a broadly interesting new trend but a substantial technology 
that has to emulate with existing scientific routines and eventually defeat them. Neither Nature nor 
IEEE journals would be good media for this paper in this context. Although this manuscript could 
be accepted in crystallography journals, the authors should clearly describe that this paper at the 
current status seems far from complete in comparison to the conventional x-ray diffraction 
techniques. Some of recent success stories achieved by the deep learning were evaluated of high 
standard not because they were a novel approach but because they defeated existing routines, 
e.g., the accuracy of the deep learning-based picture classification was better than any other rule-
based approaches and DQN plays Atari games better than humans. Since such classification for 
four cubic space groups is an extremely simple routine in the field, no need to adopt the deep 
learning to deal with such simple issue.  
 
Some other issues which need to be addressed in the manuscript are:  
 
The term "crystals" used at many places in the manuscript, appears to be awkward and confusing 
with mineralogy rather than crystallography, for example "---introduce an automatic procedure to 
classify crystals...", "--- we introduce a new way to represent crystals---" , etc. It should be rather 
mentioned as classification of crystal symmetry or anything relevant to crystallography.  
 
How does the authors ensure that in creation of defect structure for data set by random (25%, 
50% and 75%) substitution with other atoms does not lead to any change and overall cubic 
symmetry? It doesn’t make any sense because such substitutions would definitely make a change 
in lattice parameters and in turn induce a phase transition or some different ordering.  
 
Classification of a cubic system is restricted to only four space groups such as Fm-3m, Fd-3m, Im-
3m, and Pm-3m using deep learning, which could be very easily done using x-ray diffraction 
techniques on the basis of systematic absence. How to deal with a defect structure which do not 
fall under these four space groups?  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
This work describes the use of a deep learning framework to classify crystal structures. First, the 
two-dimensional diffraction pattern fingerprints are generated for each crystal structure, and this 
representation forms the descriptor for the structure. Image recognition deep learning networks 
(specifically the convolutional neural network) are then trained on a set of cubic crystal structures 
(FCC, BCC, diamond, and simple cubic) extracted from the AFLOWLIB online database. The model 



is then tested by shifting or removing atoms at random from the structures, and the authors show 
that the model can still successfully identify the original parent structure.  
 
This work is a novel approach to the task of crystal structure identification, which is a very 
important problem in computational material science. Knowledge of the crystal structure is vital for 
reducing the size of the cells that need to be calculated, and for identifying the appropriate paths 
in reciprocal space to be used for calculating the electronic band structure. This approach has the 
advantage of being very robust, and can determine the underlying symmetry of highly disordered 
systems without the need for user-defined tolerances, which is particularly important for high-
throughput analysis of large data sets. It can also identify structures that are intermediate 
between two different crystal lattices as being such. Finally, this approach can identify the 
transition from ordered to amorphous structures, putting the transition in the same value range for 
the Lindemann parameter as that commonly accepted for this transition.  
 
The novelty and advantages offered by this approach make this work suitable for publication in 
Nature Communications. However, the authors should consider the following recommended 
changes, which should improve the quality and impact of the work:  
 
1. The main weakness of this work is that only cubic symmetry materials are investigated. If 
possible, including other structures, and demonstrating that the method can correctly identify the 
transitions from cubic to tetragonal to orthorhombic, etc., would increase the impact of this work. 
Comparisons to conventional symmetry analysis packages, such as FINDSYM or spglib, would also 
be useful, particularly details such as the differences in computational cost for analyzing 
structures, or comparisons of the robustness of the different approaches. This would put the 
strengths of the approach described here into perspective. The relevant citations for these two 
packages should be included in the article, to properly reflect the current state of the art in crystal 
structure analysis.  
 
2. In addition, more details should be given on how the initial training set was selected and 
characterized. Are these materials based on structures taken from experimental databases such as 
the ICSD, or are they hypothetical structures generated by decorating prototypes? Were these 
initially selected based on the symmetry labels provided by the AFLOWLIB database? Were 
additional checks on the symmetry performed by the authors? If so, then details such as the 
tolerances used should be provided to give an accurate picture of how the training set was 
constructed. If the AFLOWLIB REST-API or AFLOW code were used to retrieve or characterize 
these structures, then the relevant papers should also be cited.  
 
3. Finally, although the paper is generally well-written, there are some typos and grammatical 
errors that should be corrected prior to publication. These include “loose” instead of “lose” in the 
introduction, “raise” instead of “rise” in first subsection in the results, using “such” when “this” 
would be more correct (e.g. “Such descriptor compactly encodes” should be “This descriptor 
compactly encodes”). In the Discussion section, “possess” should be “possesses”, “crystals” should 
be “crystal” and “required” should be “require”.  
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The ability to determine crystal structures from diffraction data is of such great importance that it's 
difficult to overstate. Twenty-one Nobel prizes have been awarded for such work, the most recent 
being in 2016. The artificial-intelligence community now promise to turn the field on its head 
extracting crystal-structure information directly from diffraction patterns without directly tackling 
the inverse problem of phase extraction. The present manuscript accomplishes this via a deep-
learning technique based on a convolutional neural network.  



 
This manuscript has notable similarities to another recent paper by Park et al. [IUCrJ 4, 486-494, 
2017], though it was not cited, possibly because it was published only a month ago. Because both 
papers employ convolutional neural networks in order to classify crystal-structure information from 
diffraction data, it is worth briefly comparing the two.  
 
Park’s training data was experimental powder-diffraction patterns from a wide variety of materials, 
obtained from a 3rd-party database. Their scope was broad and synthetic-chemistry relevant, 
though their classification was fairly course (only crystal symmetry info).  
 
The present manuscript's training data was simulated 110-oriented single-crystal diffraction 
images from displacively and occupationally defective computer models from a handful of fairly 
simple cubic materials. Their scope was narrow and materials-simulation relevant, though the 
classification was very fine (actual crystal structure).  
 
Thus, judged by scope, audience, and classification type, the two papers are very different.  
 
I am not a machine-learning expert and so can't comment on the novelty or importance of the 
specific machine-learning approach used by the authors. But I do wish that the present abstract 
were more clear about the training scope and classification type. My only meany criticism of the 
paper is that the scope so narrow (110-oriented images from un-complicated cubic crystals) as to 
prove only the concept rather than demonstrating a real materials breakthrough. But I feel that 
idea presented has great potential. Because crystal defects exist in such variety, and have such a 
detrimental affect on traditional structure-determination methods, this aspect of the present 
manuscript is particularly interesting.  



Manuscript: "The face of crystals: insightful classification using deep learning"
Reply to the Reviewers' comments

Reviewer #1 (Remarks to the Author):

The present manuscript proposes deep learning approach to automatically classify structures by crystal
symmetry. The way to represent crystal system as an image and classify them using deep architecture
as proposed is, however, not new (Please see IUCrJ recent issues). The scope of the present work is
very limited, because it deals with the classification of a cubic system to only four space groups (Fm-
3m, Fd-3m, Im-3m, and Pm-3m). The effort used to unravel the neural network internal operations in
terms of attentive response maps is however, appreciable. 
In my opinion nature communication is not a good platform for this kind of study and therefore, the
article should better be submitted to a journal close to its application domain. The usability of deep
learning in the field of crystallography should be rated by crystallographers. I recommend the authors
to submit this manuscript to either IUCrJ or Journal of applied crystallography. 

1.1) We assume that the article the referee is referring to is Park et al. [IUCrJ 4, 486-494, 2017, Ref.17
in the revised version of the manuscript]; if this is the case, then the sentence “The way to represent
crystal system as an image and classify them using deep architecture as proposed is, however, not
new” is both simplistic, and inaccurate.
In Ref. 17, Park et al. use as input powder X-ray diffraction (XRD) data calculated from entries in the
ICSD database. These XRD data are 1D data, since they describe the intensity I as a function of the
scattering angle, I(2θ). It is however well-known that small changes in the lattice parameters can cause
large changes in the scattering angle and therefore in the powder XRD pattern, as also pointed out by
the  authors  of  Ref.  17  themselves  (just  below  Eq.  1  in  Ref.  17).  This  could  explain  the  poor
performance of their model, and its inability to generalize to novel structures, despite the very large
neural network employed (~106-107 parameters). Moreover, we expect this to be very problematic for
also defective structures, which however are not considered in Ref. 17.
In our work, we propose a robust and compact representation to capture average long-range order in
crystal structures. Being an image, it is a 2D object  (and not 1D as in Ref.17). To the best of our
knowledge, this is the first time that an accurate, automatic classification of heavily defective crystal
structures is accomplished.

1.2)  The  applicability  domain  of  our  work  is  most  certainly  not  limited  to  crystallographers,  but
encompasses  both  the  computational  and  experimental  materials  science  communities  (e.g.  high-
throughput  computations  and  atom  probe  tomography  experiments),  but  also  researchers  at  the
intersection between applied machine learning and materials science. 

1.3) We have generalized our method in order to describe systems beyond cubic symmetry. The crystal
structures  considered in  the revised version of the manuscript  accounts  for  more than 80% of  the
structures adapted by elemental solids under standard conditions. Please see the revised version of the
manuscript, and point 1.6) below. 

The existing rule-based academia generally  has  a  negative impression of deep learning that  might
switch their routines. To overcome such skepticism, Google DeepMind also declared this year that they
will focus on scientific issues by stopping the entertaining themes. This means that the deep learning is
no longer a sort of just a broadly interesting new trend but a substantial technology that has to emulate



with existing scientific routines and eventually defeat them. Neither Nature nor IEEE journals would be
good  media  for  this  paper  in  this  context.  Although  this  manuscript  could  be  accepted  in
crystallography journals, the authors should clearly describe that this paper at the current status seems
far from complete in comparison to the conventional x-ray diffraction techniques. 
Some of recent success stories achieved by the deep learning were evaluated of high standard not
because they were a novel approach but because they defeated existing routines, e.g., the accuracy of
the deep learning-based picture classification was better  than any other  rule-based approaches  and
DQN plays Atari games better than humans.
 
1.4)  We definitely  agree  with  the  referee's  statement  “the  deep learning […] has  to  emulate  with
existing scientific routines and eventually defeat them.” 
As  it  is  clear  from Table  1,  S1  and  S2,  we have  accomplished  exactly  this:  defeat  conventional
techniques from obtaining the most similar crystal-structure prototype for defective systems. Our work
is  most  certainly  not  “an  entertaining  theme”,  but  solves  a  relevant  scientific  issue,  as  also
acknowledged by Reviewer 2 and Reviewer 3.

Since such classification for four cubic space groups is an extremely simple routine in the field, no
need to adopt the deep learning to deal with such simple issue.
1.5)  We  point  out  that  our  goal  is  not  to  classify  experimental  x-ray  diffraction  images,  but  to
automatically classify – possible noisy and incomplete – three-dimensional structural data, for which
no experimental x-ray measurements are present nor possible.
To clarify  this  even further,  we have  added the  following paragraph to  the revised  version of  the
manuscript:
“Here,  we  propose  a  novel  procedure  to  efficiently  represent  and  classify  potentially  noisy  and
incomplete three-dimensional materials science structural data according to their crystal symmetry
(and not to classify x-ray diffraction images,  or  powder x-ray diffraction data[17]).  These three-
dimensional  structural  data could  be for  example  atomic  structures  from computational  materials
science databases, or elemental mappings from atom-probe tomography experiments.”
Tables 1, S1 and S2 present a comparison between a current state-of-the-art method (Spglib) for crystal
structure analysis and our proposed approach. The results clearly demonstrate that automatic crystal-
structure classification of defected structures is anything but “extremely simple routine in the field”, and
that our method is far superior with respect to the current state-of-the-art for defective systems. 

1.6) Regarding the limitation of cubic systems, in the revised manuscript we present a generalization of
our method to non-cubic structures. Our dataset now comprises structures belonging to the following
space  groups:  139  (body-centered-tetragonal),  141  (body-centered-tetragonal),  166  (rhombohedral),
194  (hexagonal),  221  (simple  cubic),  225  (face-centered-cubic),  227  (diamond),  and  229  (body-
centered-cubic). The scientific relevance of this dataset is proved by the fact that more than 80% of
elemental solids under standard conditions adopt one of the crystal structures considered in this work.

Some other issues which need to be addressed in the manuscript are: 

The term "crystals" used at many places in the manuscript, appears to be awkward and confusing with
mineralogy rather than crystallography, for example "---introduce an automatic procedure to classify
crystals...", "--- we introduce a new way to represent crystals---" , etc. It should be rather mentioned as
classification of crystal symmetry or anything relevant to crystallography. 

1.7) We do not see how the term “crystals” could confuse the reader, given that our article is clearly on



materials science, and has nothing to do with mineralogy. This was already stated repeatedly in the
abstract and in the manuscript itself. Just a few examples: in the abstract, “A reliable identification of
lattice  symmetry”;  “Here,  we  propose  a  new  machine-learning-based  approach  to  automatically
classify structures by crystal symmetry”.  Already in the first sentence of the manuscript, the scope of
the article is clearly defined: “Crystals play a crucial role in material science”.
However, since we want to be absolutely sure that every reader of Nature Communications clearly
understand the scope of the paper, we have followed the referee's suggestions and made the appropriate
changes in the manuscript.

How does the authors ensure that in creation of defect structure for data set by random (25%, 50% and
75%) substitution with other atoms does not lead to any change and overall cubic symmetry? It doesn’t
make any sense because such substitutions would definitely make a change in lattice parameters and in
turn induce a phase transition or some different ordering.

1.8) The  defective structures considered in our work are obtained from the pristine (parental)  one,
without  optimizing  the  structures.  In  fact,  we  are  only  interested  in  testing  if  our  approach  can
successfully  identify  the  original  parent  crystal  structure. The  same  reasoning  applies  to  random
displacements and vacancies.

Classification of a cubic system is restricted to only four space groups such as Fm-3m, Fd-3m, Im-3m,
and Pm-3m using deep learning, which could be very easily done using x-ray diffraction techniques on
the basis of systematic absence. How to deal with a defect structure which do not fall under these four
space groups?

1.9) This is true if one wants to classify experiment x-ray diffraction data. However, as discussed in
detail at point 1.5), our purpose is to automatically classify three-dimensional structural data (without
performing x-ray experiments). As also stated above (Point 1.6), a generalized version of our method
beyond the cubic crystal systems is presented in the revised version of the manuscript.

Reviewer #2 (Remarks to the Author):

This work describes the use of a deep learning framework to classify crystal structures. First, the two-
dimensional  diffraction  pattern  fingerprints  are  generated  for  each  crystal  structure,  and  this
representation  forms  the  descriptor  for  the  structure.  Image  recognition  deep  learning  networks
(specifically the convolutional neural network) are then trained on a set  of cubic crystal  structures
(FCC, BCC, diamond, and simple cubic) extracted from the AFLOWLIB online database. The model is
then tested by shifting or removing atoms at random from the structures, and the authors show that the
model can still successfully identify the original parent structure. 

This work is a novel approach to the task of crystal structure identification, which is a very important
problem in computational material science. Knowledge of the crystal structure is vital for reducing the
size of the cells that need to be calculated, and for identifying the appropriate paths in reciprocal space
to be used for calculating the electronic band structure. This approach has the advantage of being very
robust, and can determine the underlying symmetry of highly disordered systems without the need for
user-defined tolerances, which is particularly important for high-throughput analysis of large data sets.
It can also identify structures that are intermediate between two different crystal lattices as being such.
Finally,  this approach can identify the transition from ordered to amorphous structures, putting the



transition in the same value range for the Lindemann parameter as that commonly accepted for this
transition.  

The novelty and advantages offered by this approach make this work suitable for publication in Nature
Communications. However, the authors should consider the following recommended changes, which
should improve the quality and impact of the work:
1. The main weakness of this work is that only cubic symmetry materials are investigated. If possible,
including other structures, and demonstrating that the method can correctly identify the transitions from
cubic to tetragonal  to orthorhombic,  etc.,  would increase the impact of this  work.  Comparisons to
conventional  symmetry  analysis  packages,  such  as  FINDSYM  or  spglib,  would  also  be  useful,
particularly  details  such  as  the  differences  in  computational  cost  for  analyzing  structures,  or
comparisons of the robustness of the different approaches. This would put the strengths of the approach
described here into perspective. The relevant citations for these two packages should be included in the
article, to properly reflect the current state of the art in crystal structure analysis.

We thank the referee for his/her constructive criticisms. Following the referee useful suggestions, we
have applied the following modifications.

2.1) We have generalized our procedure to systems beyond the cubic symmetry. We now include the
following  space  groups:  139  (body-centered-tetragonal),  141  (body-centered-tetragonal),  166
(rhombohedral), 194 (hexagonal), 221 (simple cubic), 225 (face-centered-cubic), 227 (diamond), and
229  (body-centered-cubic).   These  are  all  systems  belonging  to  centrosymmetric  space  groups
represented with more than 50 calculations in the AFLOWLIB elemental solids database. This dataset
covers the large majority (more than 80%) of the crystal structures adopted by elemental solids under
standard conditions.

2.2) We have included a detailed comparison with the symmetry package Spglib using three different
thresholds setting (tight, medium, loose) in Table 1, S1 and S2. We have also added the citation to the
Spglib website (https://atztogo.github.io/spglib/) since we could not find any publications on the Spglib
code itself (and we had already included the citations to the “Specific algorithms” listed in the Spglib
web page in the previous version of our manuscript).
To reflect the current state-of-the-art in crystal structure analysis, we have also included the following
sentence in the introduction:
“this is implemented in existing symmetry packages such as FINDSYM[7], Platon[8], Spglib[9-11],
and most recently the self-consistent, threshold-adaptive AFLOW-SYM[12].” 

2.3) As suggested by the referee, in the revised version of the manuscript we show that our approach
correctly identifies structural transitions also beyond the cubic crystal system. In particular, we show
that we are able to correctly identify the following structural transitions: i)  body-centered-cubic to
rhombohedral, ii) rhombohedral to simple-centered-cubic iii) rhombohedral to face-centered-cubic.
These new results are presented in Fig. 4b of the revised version of the manuscript, and described in
subsection  “The  model  performance”,  from:  “We  conclude  our  model  exploration  applying  our
classification procedure on a structural transition path ...”  till  “as being rhombohedral for all other
values of q.”
We underline that, as in the previous example within the cubic crystal system, the training of the model
os  performed  solely  on  pristine  structures.  The  combination  of  the  physical/geometrical  aspects
captured by the the descriptor and the smoothness of the metric induced by the model allows for a
error-free  identification  of  the  transitions  among  crystal  strucutres,  without  any  training  with
intermediate structures.



2.  In  addition,  more  details  should  be  given  on  how  the  initial  training  set  was  selected  and
characterized. Are these materials based on structures taken from experimental databases such as the
ICSD, or  are  they hypothetical  structures  generated by decorating  prototypes? Were these  initially
selected based on the symmetry labels provided by the AFLOWLIB database? Were additional checks
on the symmetry performed by the authors? If so, then details such as the tolerances used should be
provided to give an accurate picture of how the training set was constructed. If the AFLOWLIB REST-
API or AFLOW code were used to retrieve or characterize these structures, then the relevant papers
should also be cited.

2.4) The construction of the training set was described in subsection “Dataset” of the section “Method”.
Quoting the earlier version of the manuscript: “Our pristine dataset consists of materials from the
AFLOWLIB elemental solid database […] as determined by a symmetry-based approach.”
However, we certainly agree with the referee that it is useful to provide additional details regarding the
training set construction. Therefore, we have implemented the following changes.

a) We explicitly mention in the text the use of AFLOWLIB calculated data and Spglib in the training
set construction: 
“For every calculation in the AFLOWLIB elemental solid database[49,50], we determine its space
group using a symmetry-based approach as implemented by the Spglib code”.
The details regarding the exact Spglib tolerance used for the training set construction are included in
the subsection “Dataset” of the section “Method”: 
“The space group is determined using the Python Materials Genomics (pymatgen)[62] wrapper around
the Spglib[11] library with symprec=10-3  Å and angle_tolerance=1° ”

b) Previously, we did not include the citation to the AFLOWLIB REST-API because we retrieved the
data from the NOMAD Archive. However, now that we are using the AFLOW code to generate the
prototypes used in the structural transition presented in Fig. 4b, we now include the citations to the
AFLOWLIB  REST-API  (Taylor  2014,  Ref.  50)  and  to  the  AFLOW Library  of  Crystallographic
Prototypes (Mehl 2016, Ref. 51). The AFLOW code was already cited in the previous version of the
manuscript.

3. Finally, although the paper is generally well-written, there are some typos and grammatical errors
that  should  be  corrected  prior  to  publication.  These  include  “loose”  instead  of  “lose”  in  the
introduction, “raise” instead of “rise” in first subsection in the results, using “such” when “this” would
be  more  correct  (e.g.  “Such  descriptor  compactly  encodes”  should  be  “This  descriptor  compactly
encodes”). In the Discussion section, “possess” should be “possesses”, “crystals” should be “crystal”
and “required” should be “require”.

2.5) We thank the referee for pointing this out. His/her suggested corrections have been implemented in
the current version of the manuscript.

Reviewer #3 (Remarks to the Author):

The ability to determine crystal structures from diffraction data is of such great importance that it's
difficult to overstate. Twenty-one Nobel prizes have been awarded for such work, the most recent being
in 2016. The artificial-intelligence community now promise to turn the field on its head extracting
crystal-structure information directly  from diffraction patterns  without  directly  tackling  the inverse



problem of phase extraction. The present manuscript accomplishes this via a deep-learning technique
based on a convolutional neural network. 

This manuscript has notable similarities  to another  recent  paper by Park et  al.  [IUCrJ 4,  486-494,
2017], though it was not cited, possibly because it was published only a month ago. Because both
papers employ convolutional neural networks in order to classify crystal-structure information from
diffraction data, it is worth briefly comparing the two.

Park’s training data was experimental powder-diffraction patterns from a wide variety of materials,
obtained from a 3rd-party database. Their scope was broad and synthetic-chemistry relevant, though
their classification was fairly course (only crystal symmetry info).

The present manuscript's  training data was simulated 110-oriented single-crystal  diffraction images
from displacively and occupationally defective computer models from a handful of fairly simple cubic
materials. Their scope was narrow and materials-simulation relevant, though the classification was very
fine (actual crystal structure).

Thus, judged by scope, audience, and classification type, the two papers are very different. 

I am not a machine-learning expert and so can't comment on the novelty or importance of the specific
machine-learning approach used by the authors. But I do wish that the present abstract were more clear
about the training scope and classification type. My only meany criticism of the paper is that the scope
so narrow (110-oriented images from un-complicated cubic crystals) as to prove only the concept rather
than demonstrating a real materials breakthrough. But I feel that idea presented has great potential.
Because crystal defects exist in such variety, and have such a detrimental affect on traditional structure-
determination methods, this aspect of the present manuscript is particularly interesting.

3.1) As pointed out by the referee, the relation between our work and Park et al. [IUCrJ 4, 486-494,
2017, Ref.17 in the revised version of the manuscript] is indeed only superficial, the only similarities
being the use of convolutional neural networks (albeit 1D for Park  et al., and 2D for our work) to
classify crystal structures. Nevertheless, we would like to clarify this matter further in order to put our
work into perspective. 
We feel that the referee statement:
“[...]  both  papers  employ  convolutional  neural  networks  in  order  to  classify  crystal-structure
information from diffraction data, [...]”
could be somewhat misleading. 
If it is indeed true that both works use diffraction data to classify crystal structures, the type and origin
of these “diffraction data” are very different. Park et al. represent crystal structures using powder X-ray
diffraction (XRD) patterns while we represent crystal structures by our two-dimensional diffraction
fingerprint (see revised text). This is clearly a important difference, considering that the problem of
representing three-dimensional materials science data for machine learning is indeed challenging, and
the quality of the representation greatly influences model performance. 
For example, it is well-known that small changes in the lattice parameters can cause large changes in
the scattering angle and therefore in the powder XRD pattern, as also pointed out by the authors of Ref.
17. This raises serious doubts regarding the suitability and robustness of the powder XRD of Ref. 17 as
descriptor for representing crystal structures; it also might explain the relatively poor performance of
their model and why their approach fails when tested on novel structures. 
A significant contribution of our work is to propose a representation that, starting from complicated and
noisy three-dimensional structural data, compactly encodes detailed structural informations, while at



the same time be very robust to defect. The robustness to defects is indeed one of the main strengths of
our work, as also recognized by the referee.

3.2) We disagree with the referee on the fact that crystal cubic structures are uncomplicated. As already
clearly stated above (point 1.5), the starting point of our procedure are three-dimensional real-space
crystal  structures  from  which  it  is  highly  not  trivial  to  automatically  (and  without  having  any
experimental diffraction data) obtain the correct class, especially in presence of defects. This is clear
from the comparison provided with a state-of-the-art method (Spglib) in Table 1, S1 and S2.
The fact that we are able to correctly classify heavily defective structures just from a single (RGB)
image is actually not a drawback of our approach, but a strength: a compact, physically motivated, and
easily  interpretable  descriptor  to  represent  “average”  long-range  order  in  crystal  structures,  which
allows  to  obtain  perfect  classification  even in  the  presence  of  highly  defective  structures.  This  is
possible because we combine diffraction patterns from different directions and use a short wavelength
(~5.0x1012  m) to fully exploit the systematic absences and have a large Ewald sphere, so that we can
classify structure only with a single RGB image for each system. 
A detailed accuracy comparison with one of the most commonly used packages for the symmetry
determination  (Spglib)  is  shown in  Table  1,  S1  and  S2  for  a  total  of  more  than  100,000  crystal
structures.  Our approach has an accuracy of 100% even with 25% vacancies, while Spglib has an
accuracy  of  ~0% already  at  1% vacancy  concentration.  The  situation  is  similar  also  for  random
displacements. Such a large improvement is what could be defined in our opinion as a real material-
science breakthrough. 
We would also like to point out that our work is not only “materials-simulation relevant”, but it is also
relevant for all experimental techniques which produce real-space three-dimensional structural data, the
most notable example being atom-probe tomography. 

3.3) We have generalized our procedure to systems beyond the cubic symmetry, which now include the
following  space  groups:  139  (body-centered-tetragonal),  141  (body-centered-tetragonal),  166
(rhombohedral), 194 (hexagonal), 221 (simple cubic), 225 (face-centered-cubic), 227 (diamond), and
229 (body-centered-cubic). These space groups cover more than 80% of the crystal structures formed
in nature by elemental solids under standard conditions.

3.4) Following the referee's suggestions, we have clarified in the abstract that our goal is to classify
three-dimensional structural data (and not x-ray images):
“Our study paves the way for crystal-structure recognition of – possibly noisy and incomplete - three-
dimensional structural data in computational and experimental big-data materials science.”

We have also explicitly stated this in “Introduction”:
“Here,  we  propose  a  novel  procedure  to  efficiently  represent  and  classify  potentially  noisy  and
incomplete three-dimensional materials science structural data according to their crystal symmetry
(and not  to  classify  x-ray  diffraction  images,  or  powder  x-ray  diffraction  data[17]).  These  three-
dimensional  structural  data could  be for  example  atomic  structures  from computational  materials
science databases, or elemental mappings from atom-probe tomography experiments.”



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
I don’t see any novel interesting point even in the revised manuscript, except for the use of CNN in 
the structure classification for the defect structures obtained from the database of computational 
materials science. I would really appreciate if the CNN was used for practical data analyses such as 
selected area electron diffraction (SAED) pattern, single crystal diffraction patterns, powder 
patterns, and so forth. The two-dimensional diffraction fingerprint obtained in this work is nothing 
but an arbitrary-defined feature that has no general applicability in the field. In addition, only a 
limited clock wise and counterclockwise rotation of 45o about the x-, y-, and z- axis would not 
make a representative finger print for a certain structures. What if the rotation about the [111] 
direction was is included as training data set ? The authors should provide readers with a rationale 
elucidating how the two-dimensional diffraction fingerprint could be related with some actual 
experimental data that is easily available in the field of materials science. My personal opinion is 
that the two-dimensional diffraction fingerprint may be well linked to the actual single crystal 
diffraction pattern or SAED pattern. I recommend the authors to reinforce the paper by including a 
discussion part about a real practical application for their approach.  
 
The CNN classification achieved by the authors for simple elemental solids belonging to specific 
space groups exhibiting relatively high symmetries can't be treated as robust as claimed. I 
recommend the authors to change the tile, since it awkwardly exaggerate real contents of the 
paper. The present work is limitedly concerned with simple, virtual crystals that are not frequently 
faced with in the real functional materials world. This is in a sharp contrast to the conventional 
CNN-involved deep learning field, wherein a lot of CNN’s applications are emulating with existing 
rule-based tasks that has been known to be pretty tricky. Although the authors argued that their 
approach is robust since some defected structures were well identified as their parental class, it 
sounds irrational in terms of the general trend of deep learning. The authors’ strategy to sort out 
the defected structure treatment seems to me like just a well-known data augmentation. It is well 
known that the data augmentation could be adopted inevitably only when the size of training data 
set was far below than actually required. 
 
The authors approach for defected structures appears to be irrational also in terms of practical 
application. For example, in case of a simple perovskite structure, a small displacement (defect) of 
cations at the center of cubic perovskite structure deformed to a non-centrosymmetric tetragonal 
structure belonging to a different class, that is in contrast to the authors claim that " it is not 
possible to obtain any long-range re-organization of the crystal, necessary to change the 
materials’ class;" This non-centrosymmetric perovskite, however, is a highly useful as a 
ferroelectric (piezoelectric) material, while cubic perovskite never gives any functionality but 
useless for the industrial application. Would it be a benefit to recognize the piezoelectric material 
as a cubic? Also, I’ve never seen any practical material having 20% vacancy and maintaining its 
parental structure.  
 
The rebuttals are full of just a repetition of their own crooked arguments by disregarding the 
reviewer’s comments. This paper could be acceptable if the authors include some discussions 
regarding the limitation of their work by referring to the reviewers' comments. There is a small 
typo in the method section "we are free choose" should be "we are free to choose"  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The principle criticism of the original version of this work was that the data set investigated was 
restricted to only cubic structures. The authors have responded to this criticism by adding several 
additional crystal types, including tetragonal, hexagonal, and rhombohedral, which along with the 



cubic systems from the original version cover the most important crystal lattice types. The model 
is still able to classify these structures with 100% accuracy for a hold-out set comprising 10% of 
the original data set, indicating that the approach is robust and generalizable to different lattice 
types. However, the authors should probably note that the spglib package used to create this 
training and test set gives different results for the space group numbers from those listed in the 
AFLOWLIB database where these structures are retrieved from: in fact, a quick search on 
aflowlib.org reveals that there are no elemental solids (i.e. materials composed of just one 
elemental species) that are listed as having the space group 142, for example. This is important to 
understand for readers who might want to try to reproduce this work by retrieving the same data 
set from the AFLOWLIB database.  
 
This discrepancy in the space groups given by conventional symmetry analysis methods also raises 
an additional concern: how important is the accuracy of the classification of the initial training 
data, particularly in terms of which diffraction pattern corresponds to which space group, to the 
development of the model?  
 
In addition to expanding the training and test sets, the authors have used the beta-Po prototype 
structure to demonstrate that the model is capable of identifying the transition between different 
types of lattices. This structure changes from rhombohedral to BCC, FCC and simple cubic for 
different lattice parameter ratios, and the model is able to correctly identify these transitions. The 
only question that remains is how sensitive are the classifications of model to these parameters: 
e.g. if the angle between the lattice vectors is very close to, but not exactly, 90 degrees, would it 
identify the structure as simple cubic or rhombohedral? I.e., is there an intermediate region similar 
to what was observed in the tests shown in Fig. 4a?  
 
One remaining issue raised in the original report that the authors should still address is the 
computational demands comparison. They mention that their model takes 70ms on a specific 
machine to classify a structure, but they should also mention the time taken by, for example, 
spglib, for the same task. This would allow readers to directly compare the relative computational 
cost for the different methods.  
 
Finally, there remain some typos that should be fixed, e.g. “thermodinamically” (at the start of 
page 5) should be “thermodynamically”.  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
I am still favorable towards the publication of this work in Nature Communications. The recent 
revisions are a significant improvement. But I firmly insist that the abstract make it clear that the 
trial data consists of “calculated diffraction images from simulated crystal structures” rather than 
experimental diffraction images. They are welcome to speculate about the broader potential 
implications of their present work, but MUST be clear about what they have actually done to date. 
These details can be found in the body of the manuscript, but should be crystal clear in the 
abstract.  



Manuscript: "The face of crystals: insightful classification using
deep learning"

Reply to the Reviewers' comments

Reviewers' comments:

Reviewer #1 (Remarks to the Author):

I don’t see any novel interesting point even in the revised manuscript, except for the use of CNN in the
 structure classification for the defect structures obtained from the database of 

computational materials science. I would really appreciate if the CNN was used for practical data 
analyses such as selected area electron diffraction (SAED) pattern, single crystal diffraction patterns, 
powder patterns, and so forth. The two-dimensional diffraction fingerprint obtained in this work is 
nothing but an arbitrary-defined feature that has no general applicability in the field. In addition, only a 
limited clock wise and counterclockwise rotation of 45o about the x-, y-, and z- axis would not make a 
representative finger print for a certain structures. What if the rotation about the [111] direction was is 
included as training data set ? The authors should provide readers with a rationale elucidating how the 
two-dimensional diffraction fingerprint could be related with some actual experimental data that is 
easily available in the field of materials science. My personal opinion is that the two-dimensional 
diffraction fingerprint may be well linked to the actual single crystal diffraction pattern or SAED 
pattern. I recommend the authors to reinforce the paper by including a discussion part about a real 
practical application for their approach.

We thank the referee for the careful reading of the revised version of the manuscript. Below we address
the remaining criticisms. 
The connection between two-dimensional diffraction fingerprint and experimental diffraction 
techniques was already mentioned in the manuscript. For example, in the section Results:
“Following the successful application of scattering concepts in determining atomic structures (using 
for example x-rays30, electrons31 or neutrons32, we propose the diffraction pattern intensity as central 
quantity to describe crystal structures:”
 
However, to stress this link between the two-dimensional diffraction fingerprint and experimentally 
available techniques, we have added the following sentence in the section Methods (in blue the 
sentence added):

“ […] Therefore, we use a wavelength of λ =5.0x10-12m for the incident plane wave , a wavelength 
typically used in electron diffraction experiments. Indeed, the two-dimensional diffraction fingerprint 
bears resemblance to experimental scattering techniques such as single-crystal or zone axis selected-
area electron diffraction; from this perspective, the angle of rotation could be chosen based on specific 
crystal orientations61,62.”
[61] H. J. Bunge, Texture analysis in materials science: mathematical methods. Butterworths, 1982. 
[62] T. Britton et al., Materials Characterization, 117, 113 (2016) 

Regarding including different axis of rotations, one simply needs to generate a consistent set of training
images, which will be then passed to the neural network. The important point here is that diffraction 
patterns corresponding to different classes must not accidentally became degenerate, as already stated 
in the section Results of the manuscript: 



“Any other choice of rotation angle is in principle valid, provided that the diffraction patterns 
corresponding to different crystal classes do not accidentally become degenerate”

Since the neural network filters are learned directly from the data, and do not assume any prior 
knowledge on the type of images, the classification procedure would be exactly the same: one would 
just need to retrain the network with the new images obtained from the chosen rotation. 

We most certainly agree that the two-dimensional diffraction fingerprint is not able to discriminate 
between certain structures, as already stated at point 7 in Results section. This is due to Friedel’s law 
and that the diffraction fingerprint is a 2D projection of a 3D diffraction pattern. This fact is highlighted
even further in the new paragraph regarding the limitation of the proposed method (see below, at the 
end of the reply to Reviewer #1, highlighted in blue). Nevertheless, in our work we showed that we can
correctly identify space groups which cover more than 80% of the crystal structures formed in nature 
by elemental solids under standard conditions.

Regarding the application to experimental data, we stress that our goal is to automatically classify - 
possible noisy and incomplete - three-dimensional structural data, for which no experimental x-ray or 
electron diffraction measurements are present nor possible, and not to classify x-ray diffraction images,
or powder x-ray diffraction data, or electron diffraction patterns. 
Experimental data that could be classified by our procedure are elemental mappings from atom-probe 
tomography experiment, as stated in the Introduction:
“These three-dimensional structural data could be for example atomic structures from computational 
materials science databases, or elemental mappings from atom-probe tomography experiments.”

The CNN classification achieved by the authors for simple elemental solids belonging to specific space
groups exhibiting relatively high symmetries can't be treated as robust as claimed. I recommend the 
authors to change the tile, since it awkwardly exaggerate real contents of the paper. The present work is
limitedly concerned with simple, virtual crystals that are not frequently faced with in the real functional
materials world. This is in a sharp contrast to the conventional CNN-involved deep learning field, 
wherein a lot of CNN’s applications are emulating with existing rule-based tasks that has been known 
to be pretty tricky. Although the authors argued that their approach is robust since some defected 
structures were well identified as their parental class, it sounds irrational in terms of the general trend 
of deep learning. The authors’ strategy to sort out the defected structure treatment seems to me like just 
a well-known data augmentation. It is well known that the data augmentation could be adopted 
inevitably only when the size of training data set was far below than actually required. 

While the referee labels the structures considered as “simple”, the comparison provided with a state-of-
the-art method (Spglib) in Table 1, S1 and S2 shows otherwise: our approach has an accuracy of 100% 
even with 25% vacancies, while Spglib has an accuracy of ~0% already at 1% vacancy concentration.
 
The other referee’s claim 
“The authors’ strategy to sort out the defected structure treatment seems to me like just a well-known 
data augmentation.” 
is clearly wrong. 
In fact, our training set consists only of pristine structures, and thus no defective structure was included
in the training set.  This is the exactly the opposite as data augmentation. 
This fact was repeatedly stated in the manuscript, e.g. in the “The model performance” section: 
“Since no defective structure was included at training”.



The authors approach for defected structures appears to be irrational also in terms of practical 
application. For example, in case of a simple perovskite structure, a small displacement (defect) of 
cations at the center of cubic perovskite structure deformed to a non-centrosymmetric tetragonal 
structure belonging to a different class, that is in contrast to the authors claim that " it is not possible to 
obtain any long-range re-organization of the crystal, necessary to change the materials’ class;" This 
non-centrosymmetric perovskite, however, is a highly useful as a ferroelectric (piezoelectric) material, 
while cubic perovskite never gives any functionality but useless for the industrial application. Would it 
be a benefit to recognize the piezoelectric material as a cubic? 

We have to note here that Reviewer #1 quotes only a portion of our statement regarding the long-range 
reorganization of the crystal, unfortunately altering in this way its meaning. The complete quote is 
(from Dataset subsection in section Methods):
“Finally, in the case of displacements, atoms are randomly moved about their original positions, and - 
due to this randomness - it is not possible to obtain any long-range re-organization of the crystal.”
Thus, all atoms are randomly displaced, hence the impossibility to obtain a long-range re-organization 
of the crystal.  

The transformation described by the referee (displacing only the cation at the center of a cubic 
perovskite structure) is most certainly different than displacing all atoms at random.
An example of transformation that change the crystal class is shown in Fig. 4A: there, we demonstrate 
that removing all central atoms indeed leads to a different crystal class, and that this transition is 
correctly predicted by the model.
In the model performance (from the Dataset subsection in section Methods):
“If random changes will unlikely modify a crystal class, it is however possible to apply targeted 
transformations in order to change a given crystal from one class to another.”

We also already clearly stated (point 7 in Results) that the diffraction fingerprint is not unique across 
space groups; we also mentioned that “if anomalous dispersion is neglected - a diffraction pattern is 
centrosymmetric, irrespective of whether or not the crystal itself has a centre of symmetry.”
Thus, by construction the diffraction fingerprint cannot distinguish between centrosymmetric and not 
centrosymmetric structures. This is also explicitly stated in the new paragraph regarding the limitation 
of the proposed method (see below, highlighted in blue).

Also, I’ve never seen any practical material having 20% vacancy and maintaining its parental structure.
The rebuttals are full of just a repetition of their own crooked arguments by disregarding the reviewer’s
comments. This paper could be acceptable if the authors include some discussions regarding the 
limitation of their work by referring to the reviewers' comments. There is a small typo in the method 
section "we are free choose" should be "we are free to choose"

From Table 1, S1 and S2, one can see that the Spglib accuracy is ~0.0%, already at 1% of vacancies, 
well before the 20% concentration quoted by the referee.

We agree with the referee that arguably no material with 20% of vacancies will maintain its parental 
structure. However, we would like to point out that “vacancies” in a given atomic structure could also 
just be missing data, due for example to technical constraints in experimental measurements. In this 
sense, 20% of missing atoms is indeed realistic. For example, in atom-probe tomography (arguably the 
most important source of local atomic structure information in bulk systems) the maximum detector 



efficiency is 80%, which means that at least 20% of the atoms – even though present in the actual 
experimental sample - are not experimentally detected, and therefore they are missing data. 

As suggested by the referee, a paragraph discussing the limitation of our work has been added in the 
Discussion section:
“Further work is needed to make the approach proposed here unique across space groups and to 
widen its domain of applicability to non-centrosymmetric crystals, which can exhibit technologically 
relevant ferroelectric, piezoelectric or nonlinear optical effects.”

The typo regarding “we are free to choose” is now corrected.

Reviewer #2 (Remarks to the Author):

The principle criticism of the original version of this work was that the data set investigated was 
restricted to only cubic structures. The authors have responded to this criticism by adding several 
additional crystal types, including tetragonal, hexagonal, and rhombohedral, which along with the cubic
systems from the original version cover the most important crystal lattice types. The model is still able 
to classify these structures with 100% accuracy for a hold-out set comprising 10% of the original data 
set, indicating that the approach is robust and generalizable to different lattice types. However, the 
authors should probably note that the spglib package used to create this training and test set gives 
different results for the space group numbers from those listed in the AFLOWLIB database where these
structures are retrieved from: in fact, a quick search on aflowlib.org reveals that there are no elemental 
solids (i.e. materials composed of just one elemental species) that are listed as having the space group 
142, for example. This is important to understand for readers who might want to try to reproduce this 
work by retrieving the same data set from the AFLOWLIB database. 

This discrepancy in the space groups given by conventional symmetry analysis methods also raises an 
additional concern: how important is the accuracy of the classification of the initial training data, 
particularly in terms of which diffraction pattern corresponds to which space group, to the development
of the model? 

We thank the referee for its in-depth reading of the revised version of the manuscript, and for providing
constructive criticisms. Below we address the remaining points that were raised. 

Calculations with space group 141 (and not 142) were considered in our work. 
Unfortunately, there was a typo in the manuscript, and 142 was reported instead of 141 (Fig. 2 and the 
previous reply to the referees’ correctly quoted 141). This is the reason for the mismatch found by the 
referee, which we thank for spotting this. A search on the AFLOWLIB database for structures having 
space group 141 (the correct one) will indeed return results, as expected.

Having a correct training set is of paramount importance for model prediction reliability. To this end, 
we checked that the training (pristine) dataset classification provided by Spglib is stable with respect to 
changes in threshold parameters. In particular,  the following combination of Spglib parameters:
- symprec=1x10-3Å,  angle_tolerance=1° 

- symprec=1x10-6Å,  angle_tolerance=1°

- symprec=1x10-3Å,  angle_tolerance=0.1°

- symprec=1x10-6Å,  angle_tolerance=0.1°



always gave the same classification and therefore we are confident that – for pristine structures – 
Spglib provides the correct “true labels” as training set for the machine learning model.

Regarding the reproducibility of our results, we provide both the raw data and the processed data. 

The raw data, used as starting point for our analysis, can be freely downloaded from the NOMAD 
Archive; we have added a section “Links to the pristine dataset” to the Supplemental materials with the
corresponding uniform resource locators (URLs).
  
Moreover, we have uploaded a dataset to the Harvard Dataverse 
(https://dataverse.harvard.edu/privateurl.xhtml?token=a3d3282f-3541-4787-b506-9bc231dded5b) 
which contains, for each structure considered:

1) a file with the xyz coordinates
2) a file with additional details such as NOMAD unique identifier, space group classification 

according to Spglib and simulation cell
3) the corresponding two-dimensional diffraction fingerprint as png image

In addition to expanding the training and test sets, the authors have used the beta-Po prototype structure
to demonstrate that the model is capable of identifying the transition between different types of lattices.
This structure changes from rhombohedral to BCC, FCC and simple cubic for different lattice 
parameter ratios, and the model is able to correctly identify these transitions. The only question that 
remains is how sensitive are the classifications of model to these parameters: e.g. if the angle between 
the lattice vectors is very close to, but not exactly, 90 degrees, would it identify the structure as simple 
cubic or rhombohedral? I.e., is there an intermediate region similar to what was observed in the tests 
shown in Fig. 4a?

To answer the referee’s question, we have generated a larger number of prototypes (160) with order 
parameter μ∈[√(3/2) ,5√(3 /2)] ; this  results in a resolution of Δμ ≈ 0.015.  The updated result is 
shown in Fig4b.  
In particular, regarding the transition from simple cubic to rhombohedral, from Fig.4b we can see that 
structures having the following values for the order parameters:
μ = sqrt(3/2) ± 0.075  or α = (90± 2.4)°
are identified as simple cubic.
For example, β-Po has parameters: [R1, R2]
μ = 0.96814 or  α ≈ 98.2°
and thus it is identified as belonging to the hex/rh class. We do not observe any intermediate regions in 
this case.
[R1] Aflowlib.org:  http://www.aflowlib.org/CrystalDatabase/A_hR1_166_a.beta-Po.html, 
[R2] W. H. Beamer and C. R. Maxwell, J. Chem. Phys. 17, 1293 [2] 1298 (1949)

One remaining issue raised in the original report that the authors should still address is the 
computational demands comparison. They mention that their model takes 70ms on a specific machine 
to classify a structure, but they should also mention the time taken by, for example, spglib, for the same
task. This would allow readers to directly compare the relative computational cost for the different 
methods. 
 

https://dataverse.harvard.edu/privateurl.xhtml?token=a3d3282f-3541-4787-b506-9bc231dded5b
http://www.aflowlib.org/CrystalDatabase/A_hR1_166_a.beta-Po.html


According to our computational experiments, Spglib computational cost greatly varies with the number
of atoms of the simulation cell and, to a lesser extend, with the type of crystal structure. We found that 
prediction takes between 1ms and 10ms for simulation cells containing less than 20 atoms. For 
simulation cells containing ~500 atoms, prediction takes between 500ms and 700ms, depending on the 
crystal structure type. 

A detailed investigation of the Spglib computational cost is beyond the scope of the present work, and, 
given the variability with respect to simulation cell size, we would rather avoid to mention any speed 
comparison in the manuscript. The purpose of our work in fact is not to be faster than Spglib, but to be 
predictive on defective structures without having to guess (or find with trial and error thus effectively 
increasing the computational cost) a threshold.

Finally, there remain some typos that should be fixed, e.g. “thermodinamically” (at the start of page 5) 
should be “thermodynamically”.

The typo was corrected.

Reviewer #3 (Remarks to the Author):

I am still favorable towards the publication of this work in Nature Communications. The recent 
revisions are a significant improvement. But I firmly insist that the abstract make it clear that the trial 
data consists of “calculated diffraction images from simulated crystal structures” rather than 
experimental diffraction images. They are welcome to speculate about the broader potential 
implications of their present work, but MUST be clear about what they have actually done to date. 
These details can be found in the body of the manuscript, but should be crystal clear in the abstract.

We thank the referee for his/her comments. As requested, we have modified the abstract to make 
absolutely clear that “calculated diffraction images from simulated crystal structures” were used in our 
work.
Here we report the section of the abstract that was modified (in blue the modifications):
“First, we represent crystals by calculating a diffraction image, then construct a deep-learning neural-
network model for classification. Our approach is able to correctly classify a dataset comprising more 
than 100,000 simulated crystal structures, including heavily defective ones.”



Reviewers' comments:  
 
Reviewer #2 (Remarks to the Author):  
 
Since Reviewer #1 was unable to provide a report on the revised version, the editors requested 
that I (Reviewer #2) evaluate the response to the technical concerns raised by this reviewer, as 
well as to my own comments.  
 
Evaluation of reply to Reviewer #1:  
 
Reviewer #1 had several criticisms of the work. The first criticism is the reviewer’s claim that there 
do not appear to be any major applications of this method. This may stem from the Reviewer’s 
own unfamiliarity with computational methodology, where automatically identifying the correct 
symmetry properties of a set of atomic coordinates and lattice vectors is a major concern. 
Important computational applications of symmetry include constructing appropriate k-point grids 
and generating the correct path between the high-symmetry points for band structure 
calculations; and for identifying the appropriate distortions for finite-displacement phonon 
calculations. Due to tolerance issues with noisy experimental or computational data used as the 
starting point for first-principles calculations, the standard approach of identifying which symmetry 
operations are satisfied is non-trivial, making this machine-learning approach interesting. 
However, the authors should probably explicitly mention some of these specific applications in the 
manuscript, which will increase its accessibility and put the work into context for a more general 
audience.  
 
The second issue raised by Reviewer #1 regards the rotation angles used to produce and analyze 
the different diffraction patterns. Since the method is intended to be applied to crystal structures 
in the form of sets of atomic coordinates and lattice vectors, the users of the code can control 
rotation angles and crystal orientations, allowing them to choose these angles. Therefore, the fact 
that the method requires certain rotations should not be an issue. However, this does raise the 
question of how important the choice of a standard initial crystal orientation is for this method. The 
authors should clarify if they always pre-align the crystal in a certain orientation prior to 
generating the diffraction image, and confirm that the method is robust against randomization of 
the initial crystal orientations. In particular, the authors should provide some more detail on how 
they generate and orientate the conventional cell, since they claim to follow the approach of 
Setyawan and Curtarolo (Ref. 33 in their manuscript) to generate this cell. However, the version of 
this approach implemented in the AFLOW code depends on the AFLOW symmetry routines (see 
arXiv:1802.07977). If traditional symmetry analysis routines are required to prepare the input files 
for the neural network, then this would seem to defeat the purpose of the new machine-learning 
method, since its results would still be dependent on the reliability of the traditional symmetry 
approach. The authors need to address this point clearly, to clarify exactly what methods are used 
to generate the standard conventional cells, and demonstrate that their method is not dependent 
on, or is not affected by, the use of standard symmetry routines to prepare the input data.  
 
The third point raised by the Reviewer involves the fact that the method classifies structures with 
(small) random displacements as being of the “parent” crystal class, claiming that this would 
remove the distinction between, for example, the centrosymmetric cubic perovskite and the non-
centrosymmetric tetragonal perovskite. However, this cubic to tetragonal shift is not random; 
instead, the displacements of all of the atoms in the crystal sample would be highly correlated. The 
authors do acknowledge that there is a limitation of their model when it comes to distinguishing 
between centrosymmetric and non-centrosymmetric structures, and have added a comment to the 
manuscript to clarify this. However, it is strange that they seem to regard this as an advantage of 
the approach, since in item 7 on page 4 they list “not unique across space groups” as one of the 
“desirable properties” of the method; this would seem to be more of a limitation than an 
advantage.  
 



The fourth point raised by the Reviewer concerns the example where up to 20% of atoms are 
removed from the crystal structure, where the method is still able to identify the parent crystal 
class. The Reviewer is correct in that in reality, a structure missing 20% of its atoms would no 
longer be stable. However, the authors correctly respond that in practice, experimental structure 
characterization techniques regularly fail to detect a large proportion of atoms, thus rendering this 
feature useful.  
 
Another point raised by the Reviewer is that the generation of sample structures by applying 
various distortions or removing atoms could be considered as “data augmentation”. However, the 
authors correctly respond that since the training set only contains pristine structures, and that the 
defected structures are used purely for testing, then this should not be an issue.  
 
Finally, Reviewer #1 raises a concern about the title of this work, in that it could mislead readers 
into believing that the developed model is more general and powerful than it actually is. This 
concern appears to be also shared somewhat by Reviewer #3, who correctly insists on a rewording 
of the abstract. The authors should consider a more specific title for this work, which more 
accurately reflects its contents and the limitations of the model. In particular, they need to make 
clear they start from a crystal structure (i.e. lattice vectors and atomic coordinates), which they 
then used to generate a diffraction image that is analyzed using the neural network.  
 
 
Additional comments from Reviewer #2:  
 
The authors have corrected the issues with the space group mismatch with the AFLOWLIB 
database, and have verified the spglib characterization of the training set by using different 
tolerance parameters, which is important since the default spglib tolerances have been shown to 
be problematic (see, e.g., arXiv:1802.07977). They have also refined the investigation of the 
model’s performance at identifying the structure class of a material as it is continuously distorted, 
providing additional detail as to the effective tolerances and sensitivity of the model.  
 
For the computational cost issue, they explain that the time can vary for the traditional methods 
depending in the structure being investigated. I recommend that they add this information to the 
manuscript, as it will help readers to assess the relative strengths and weaknesses of the different 
approaches.  
 
Finally, as noted above, Reviewer #1’s questions about the rotation angles/axes used to generate 
the diffraction images highlighted an issue regarding the generation of the standard conventional 
cell used to create the diffraction patterns. The authors state that they are following the approach 
of Setyawan and Curtarolo (Ref. 33 in their paper) to find the correct conventional cell. However, 
this approach, as implemented in the AFLOW code, depends on standard symmetry routines based 
around applying rotation and translation operations to coordinates in order to find the correct 
transformations required to build the standard conventional cell and the supercells (see 
arXiv:1802.07977). Depending on exactly how they implement this approach, this could mean that 
the robustness or accuracy of any analysis they perform would still be dependent on the traditional 
symmetry routines. The authors need to provide more detail about the exact approach used to 
generate the standard conventional cells and supercells, such as whether these cells are generated 
prior to the introduction of the defects (i.e. removal or random displacement of atoms) so that the 
modifications are applied to an already generated supercell, or whether supercells are being 
generated for the defect cells. The authors need to demonstrate that the reliability of their method 
is independent of the use of standard symmetry approaches in formatting the input data, since this 
could be a major limiting factor for this approach.  



Manuscript: "Insightful classification of crystal structures using
deep learning"

Reply to the Reviewers' comments

We thank Referee #2 for taking the time to carefully read our revised manuscript, for his/her detailed 
and constructive criticisms which improved our work, and for evaluating also our reply to Referee #1. 
Below we address his/her last remaining points.

Reviewers' comments:

Evaluation of reply to Reviewer #1:

Reviewer #1 had several criticisms of the work. The first criticism is the reviewer’s claim that there do 
not appear to be any major applications of this method. This may stem from the Reviewer’s own 
unfamiliarity with computational methodology, where automatically identifying the correct symmetry 
properties of a set of atomic coordinates and lattice vectors is a major concern. Important 
computational applications of symmetry include constructing appropriate k-point grids and generating 
the correct path between the high-symmetry points for band structure calculations; and for identifying 
the appropriate distortions for finite-displacement phonon calculations. Due to tolerance issues with 
noisy experimental or computational data used as the starting point for first-principles calculations, the 
standard approach of identifying which symmetry operations are satisfied is non-trivial, making this 
machine-learning approach interesting. However, the authors should probably explicitly
mention some of these specific applications in the manuscript, which will increase its accessibility and 
put the work into context for a more general audience.

1) We thank Ref #2 for his/her pertinent suggestion; thus, we have added the following paragraph to 
the introduction:
“From the computational point of view, automatic identification of crystal symmetries allows for 
example to construct appropriate k-point grids for Brillouin zone sampling, to generate path between 
high-symmetry points in band structure calculations, or to identify distortions for finite-displacement 
phonon calculations.”
to highlight additional applications of our approach in computational methodologies.

The second issue raised by Reviewer #1 regards the rotation angles used to produce and analyze the 
different diffraction patterns. Since the method is intended to be applied to crystal structures in the form
of sets of atomic coordinates and lattice vectors, the users of the code can control rotation angles and 
crystal orientations, allowing them to choose these angles. Therefore, the fact that the method requires 
certain rotations should not be an issue. However, this does raise the question of how important the 
choice of a standard initial crystal orientation is for this method. The authors should clarify if they 
always pre-align the crystal in a certain orientation prior to generating the diffraction image, and 
confirm that the method is robust against randomization of the initial crystal orientations. In particular, 
the authors should provide some more detail on how they generate and orientate the conventional cell, 
since they claim to follow the approach of Setyawan and Curtarolo (Ref. 33 in their manuscript) to 



generate this cell. However, the version of this approach implemented in the AFLOW code depends on 
the AFLOW symmetry routines (see arXiv:1802.07977). If traditional symmetry analysis routines are 
required to prepare the input files for the neural network, then this would seem to defeat the purpose of 
the new machine-learning method, since its results would still be dependent on the reliability of the 
traditional symmetry approach. The authors need to address this point clearly, to clarify exactly what 
methods are used to generate the standard conventional cells, and demonstrate that their method is not 
dependent on, or is not affected by, the use of standard symmetry routines to prepare the input data.

2) We thank the referee for pointing this out. In the previous version of the manuscript, we generated 
the conventional cell using pymatgen 
(http://pymatgen.org/pymatgen.symmetry.analyzer.html#pymatgen.symmetry.analyzer.SpacegroupAnal
yzer.get_conventional_standard_structure)
The referee is indeed correct that symmetries are used in the pymatgen implementation of the 
conventional cell construction; we also agree that if this influences the results, it would definitely 
constitute a drawback of the proposed method.

To tackle this, we slightly modify our procedure in order to make it completely independent from 
traditional symmetry analysis routines. In particular, we use the convention for triclinic cells (the most 
general lattice) irrespectively of the actual lattice type of the crystal structure, and we do not apply any 
symmetry refinement of the atomic position. 
The actual snippet of Python code used to generate the standard conventional cell in our work is 
presented in the “Appendix: Conventional Standard Cell Python Implementation” at the end of this 
document.
This code is essentially the pymatgen implementation of the conventional cell for triclinic lattices 
(http://pymatgen.org/_modules/pymatgen/symmetry/analyzer.html#SpacegroupAnalyzer.get_conventio
nal_standard_structure), as specified in Setyawan and Curtarolo [Ref. 33 in the manuscript], but 
without using refinement of atomic positions. 

To prove the robustness with respect to initial crystal orientation, we concatenate three random 
rotations around the three crystal axes prior to the calculation of the conventional cell for each structure
in the dataset. Furthermore, we have also tested that application of these random rotations followed by 
the conventional cell determination on already generated (defective) supercells leads to the same result.

This (updated) procedure is now completely independent from traditional symmetry analysis routines 
and proven to be robust with respect to randomization of the initial crystal orientation. This is 
explained in detail in the Methods/Two-dimensional diffraction fingerprint section of the revised 
manuscript:

“First, for each structure in the dataset (specified by a set of atomic coordinates and lattice vectors), 
we concatenate three random rotations around the three crystal axes to randomize the initial crystal 
orientation. Then, we construct the standard conventional cell according to Ref.33 using a customized 
implementation based on the Python Materials Genomics (pymatgen) package60; in particular, we use 
the convention for triclinic cells - irrespective of the actual lattice type - and no symmetry refinement of
the atomic position. This procedure is therefore completely independent from traditional symmetry 
approaches and robust against randomization of the initial crystal orientation. Finally, we replicate 

http://pymatgen.org/pymatgen.symmetry.analyzer.html#pymatgen.symmetry.analyzer.SpacegroupAnalyzer.get_conventional_standard_structure
http://pymatgen.org/pymatgen.symmetry.analyzer.html#pymatgen.symmetry.analyzer.SpacegroupAnalyzer.get_conventional_standard_structure
http://pymatgen.org/_modules/pymatgen/symmetry/analyzer.html#SpacegroupAnalyzer.get_conventional_standard_structure
http://pymatgen.org/_modules/pymatgen/symmetry/analyzer.html#SpacegroupAnalyzer.get_conventional_standard_structure


this standard cell in all three directions such that the resulting cluster contains a number of atoms 
which is as close as possible to a given target number (namely, 250). The size-invariance of the 
diffraction peak locations guarantees that the results are independent from this choice, only the peak 
widths will slightly change, in accordance with the indetermination principle (this was expressly 
checked for systems ranging from 32 to 1024 atoms). Defective structures are then generated from 
these supercells removing or randomly displacing atoms.  We have also tested that a random rotation 
followed by the conventional cell determination applied to already generated defective structures leads
to the same result, since this depends on the lattice vectors only.”

From the crystal structures generated from this (updated) procedure, we calculate diffraction images, 
and train a  neural network with these new images using the same architecture as before (see Section: 
Methods/Neural network architecture and training procedure). We then use this neural network to 
predict the quantities reported in the manuscript. The main results presented in the manuscript are not 
altered in any way by these modifications; in particular the only changes are:

2a) Fig. 2c  and Fig. 5b: The diffraction pattern for the rh/hex class is modified; we have updated 
accordingly the images for the hex/rh class in Fig. 2c (two-dimensional diffraction fingerprint ) and 
Fig. 5b (attentive response map).

2b) Fig.4a: The body-centered-cubic (bcc) to simple-cubic structural transition plot was recalculated 
with the neural network trained on the new images. The only difference is that the bcc classification 
probability (red line in Fig. 4a) starts decreasing at 75% instead of 70% obtained with the previous 
neural network; the number in the text was updated accordingly (in blue):
“However, at 75% of central atoms removed” 

2c) Fig. 4b: We show that our approach is again able to identify when the prototype reduces to the 
high-symmetry structures (bcc α=109.47˚, sc α=90˚, and fcc α=60˚) and also correctly classify the 
structure as belonging to the hex/rh class for all other values of α. 
The only difference is that now the rhombohedral structure is recognized as simple cubic exactly at 
α=90˚, while before structures within a small interval around α=90˚ (α ∈ (87.6°, 92.4°)) were also 
classified as simple cubic. The previous recognition of rhombohedral structure as simple cubic for α ∈ 
(87.6°, 92.4°) was due to the refinement of the atomic positions which is now removed. 

2d) 
The accuracy in identifying the correct crystal class in the presence of defects were recalculated with 
the neural network trained on the new images. We observe only very small changes (highlighted in 
blue) in the accuracy. We copy below the current Table S1 and S2:



For convenience, we copy here the previous version of the same tables:



Table 1 (which is a subset of Table S1 and S2), together with the values mentioned in the text have 
been updated accordingly (changes highlighted in blue in the manuscript).

We stress the fact that none of the conclusion of the manuscript have changed.

The third point raised by the Reviewer involves the fact that the method classifies structures with 
(small) random displacements as being of the “parent” crystal class, claiming that this would remove 
the distinction between, for example, the centrosymmetric cubic perovskite and the non-
centrosymmetric tetragonal perovskite. However, this cubic to tetragonal shift is not random; instead, 
the displacements of all of the atoms in the crystal sample would be highly correlated. The authors do 
acknowledge that there is a limitation of their model when it comes to distinguishing between 
centrosymmetric and non-centrosymmetric structures, and have added a comment to the manuscript to 
clarify this. However, it is strange that they seem to regard this as an advantage of the approach, since 
in item 7 on page 4 they list “not unique across space groups” as one of the “desirable properties” of 
the method; this would seem to be more of a limitation than an advantage.

3) We thank the referee for correctly pointing out this typo. Indeed, the non uniqueness is a 
disadvantage of our representation. We removed it from the list of “desirable properties” and added it 
just below the list, as a disadvantage (see modified text in blue):
“A disadvantage of the two-dimensional diffraction fingerprint is that it is not unique across space 
groups. [...]”

The fourth point raised by the Reviewer concerns the example where up to 20% of atoms are removed 
from the crystal structure, where the method is still able to identify the parent crystal class. The 
Reviewer is correct in that in reality, a structure missing 20% of its atoms would no longer be stable. 
However, the authors correctly respond that in practice, experimental structure characterization 
techniques regularly fail to detect a large proportion of atoms, thus rendering this feature useful. 

Another point raised by the Reviewer is that the generation of sample structures by applying various 
distortions or removing atoms could be considered as “data augmentation”. However, the authors 
correctly respond that since the training set only contains pristine structures, and that the defected 
structures are used purely for testing, then this should not be an issue.

Finally, Reviewer #1 raises a concern about the title of this work, in that it could mislead readers into 
believing that the developed model is more general and powerful than it actually is. This concern 
appears to be also shared somewhat by Reviewer #3, who correctly insists on a rewording of the 
abstract. The authors should consider a more specific title for this work, which more accurately reflects 
its contents and the limitations of the model. In particular, they need to make clear they start from a 
crystal structure (i.e. lattice vectors and atomic coordinates), which they then used to generate a 
diffraction image that is analyzed using the neural network.

4) The choice of the title “The face of crystals: insightful classification using deep learning” was 
motivated by the fact that we represent crystal structures by images, and use the same computational 



models (convolutional neural networks) used in computer vision to classify natural images (e.g. human 
faces). 
Nevertheless, to meet the referee’s request, we changed the title of the manuscript to:
“Insightful classification of crystal structures using deep learning” 
Moreover, as suggested by the Referee, we specify that we start from a set of coordinate and lattice 
vectors (see additions in blue) both in the Introduction  
“However, our goal here is to introduce an automatic procedure to classify crystal structures starting 
from a set of atomic coordinates and lattice vectors”
and in Section Methods/Two-dimensional diffraction fingerprint:
“First, for each structure in the dataset (specified by a set of atomic coordinates and lattice vectors) 
[...]”

This concern appears to be also shared somewhat by Reviewer #3, who correctly insists on a rewording
of the abstract. 
5) Regarding this sentence, we think that Ref #3 meant “insisted” and not “insists”, since we already 
addressed this in the previous revised manuscript (sent Feb 22nd, 2018).
For reference we copy here the last comment from Reviewer #3 in the previous round of review (Jan 
23rd, 2018), and our reply in the previous revision of the manuscript (sent Feb 22nd, 2018):

“[LAST COMMENT FOR REFEREE #3 (Jan 23rd, 2018)]
I am still favorable towards the publication of this work in Nature Communications. The recent
revisions are a significant improvement. But I firmly insist that the abstract make it clear that the trial
data consists of “calculated diffraction images from simulated crystal structures” rather than
experimental diffraction images. They are welcome to speculate about the broader potential
implications of their present work, but MUST be clear about what they have actually done to date.
These details can be found in the body of the manuscript, but should be crystal clear in the abstract.”
Thus, Referee #3 only asked to specify – also in the abstract – that we use calculated diffraction 
images, and not experimental diffraction images.

[AUTHORS’ REPLY ON FEB 22, 2018]
We thank the referee for his/her comments. As requested, we have modified the abstract to make
absolutely clear that “calculated diffraction images from simulated crystal structures” were used in our
work.
Here we report the section of the abstract that was modified (in blue the modifications):
“First, we represent crystals by calculating a diffraction image, then construct a deep-learning neural-
network model for classification. Our approach is able to correctly classify a dataset comprising more
than 100,000 simulated crystal structures, including heavily defective ones.”

Additional comments from Reviewer #2:

The authors have corrected the issues with the space group mismatch with the AFLOWLIB database, 
and have verified the spglib characterization of the training set by using different tolerance parameters, 
which is important since the default spglib tolerances have been shown to be problematic (see, e.g., 



arXiv:1802.07977). They have also refined the investigation of the model’s performance at identifying 
the structure class of a material as it is continuously distorted, providing additional detail as to the 
effective tolerances and sensitivity of the model. For the computational cost issue, they explain that the 
time can vary for the traditional methods depending in the structure being investigated. I recommend 
that they add this information to the manuscript, as it will help readers to assess the relative strengths 
and weaknesses of the different approaches.

7) As stated in the previous round of review, a detailed investigation of the Spglib computational cost 
is beyond the scope of the present work, and we would rather avoid to mention any speed comparison 
in the manuscript. The purpose of our work in fact is not to be faster than Spglib, but to be predictive 
on defective structures without having to guess a threshold, or find it with trial and error thus 
effectively increasing the computational cost. A fair comparison would require to express these 
considerations in a somewhat quantitative manner, in addition to extensively optimize and benchmark 
our code and associated libraries (e.g. Condor [Ref. 64] for the diffraction images generation), which is 
beyond the scope of the present paper.

Finally, as noted above, Reviewer #1’s questions about the rotation angles/axes used to generate the 
diffraction images highlighted an issue regarding the generation of the standard conventional cell used 
to create the diffraction patterns. The authors state that they are following the approach of Setyawan 
and Curtarolo (Ref. 33 in their paper) to find the correct conventional cell. However, this approach, as 
implemented in the AFLOW code, depends on standard symmetry routines based around applying 
rotation and translation operations to coordinates in order to find the correct transformations required to
build the standard conventional cell and the supercells (see arXiv:1802.07977). Depending on exactly 
how they implement this approach, this could mean that the robustness or accuracy of any analysis they
perform would still be dependent on the traditional symmetry routines. The authors need to provide 
more detail about the exact approach used to generate the standard conventional cells and supercells, 
such as whether these cells are generated prior to the introduction of the defects (i.e. removal or 
random displacement of atoms) so that the modifications are applied to an already generated supercell, 
or whether supercells are being generated for the defect cells. The authors need to demonstrate that the 
reliability of their method is independent of the use of standard symmetry approaches in formatting the 
input data, since this could be a major limiting factor for this approach. 

8) We addressed this question at Point 2) of this document.



Other minor changes (highlighted in blue in the manuscript):

9)  To make absolutely sure that Spglib thresholds are not influencing our results, we extract structures 
that have a consistent space group across a large range of Spglib symprec thresholds; this is 
explained in Methods/Dataset:
“Specifically, we extract structures that have a consistent space group classification for different 
symmetry tolerances, as determined by the Python Materials Genomics (pymatgen)60 wrapper around 
the Spglib11 library with symprec={10-3Å, 10-6Å, 10-9Å} for all except rh and hex structures, 
for which symprec={10-3Å, 10-6Å} is employed since some symmetries are missed for symprec=10-

9Å}.” 
The pristine (defective) dataset now contains 10 517 (105 170) structures, instead of 10 765 (107 650).

10) In Results (How to represent a material: the descriptor):
“This procedure is then repeated for all three crystal axis.” 
with
“This procedure is then repeated for all three crystal axes.” 

11) Updated reference to AFLOW-SYM (Ref. 12) since now the work is available on the ArXiv 
(1802.07977).



Appendix: Conventional Standard Cell Python Implementation  

def get_conventional_std_cell_no_sym(atoms):
    """Given an ASE atoms object, return the ASE atoms object in the conventional standard cell.

    It does NOT use symmetries to obtain the standard cell. 
    Gives a structure with a conventional cell according to the standard defined for TRICLINIC cells in
    W. Setyawan, and S. Curtarolo, Comput. Mater. Sci.49(2), 299-312 (2010). 
    The triclinic convention is employed to make sure that no information on the symmetry of the lattice
    is used in the generation of the standard cell. 
    The code is taken from the triclinic cell case in pymatgen:
    http://pymatgen.org/_modules/pymatgen/symmetry/analyzer.html

    Parameters:
    atoms: `ase.Atoms` object
        Atomic structure.
    Returns:
    `ase.Atoms` object
        Return the structure in a conventional cell (the convention used is the one for triclinic cells)
    """
    # save atoms.info dict otherwise it gets lost in the conversion
    atoms_info = atoms.info
    mg_structure = AseAtomsAdaptor.get_structure(atoms)
    finder = SpacegroupAnalyzer(mg_structure)

    # get structure in the spglib format
    # according to the Spglib documentation 
    # (https://atztogo.github.io/spglib/python-spglib.html?highlight=standardize_cell#standardize-cell)
    # ‘no_idealize=True’ disables to idealize lengths and angles of basis vectors and positions of atoms according to crystal symmetry. 
    # the structure is not refined and thus symmetries are not used
    lattice, scaled_positions, numbers = spglib.standardize_cell(finder._cell, to_primitive=False, no_idealize=True)
    species = [finder._unique_species[i - 1] for i in numbers]
    struct = Structure(lattice, species, scaled_positions).get_sorted_structure()

    # this is the convention for triclinic cells in pymatgen
    # see http://pymatgen.org/_modules/pymatgen/symmetry/analyzer.html
    latt = struct.lattice
    a, b, c = latt.lengths_and_angles[0]
    alpha, beta, gamma = [math.pi * i / 180 for i in latt.lengths_and_angles[1]]
    new_matrix = None
    transf = None
    test_matrix = [[a, 0, 0], [b * cos(gamma), b * sin(gamma), 0.0],
                   [c * cos(beta), c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma), c * math.sqrt(
                       sin(gamma) ** 2 - cos(alpha) ** 2 - cos(beta) ** 2 + 2 * cos(alpha) * cos(beta) * cos(
                           gamma)) / sin(gamma)]]

    def is_all_acute_or_obtuse(m):
        recp_angles = np.array(Lattice(m).reciprocal_lattice.angles)
        return np.all(recp_angles <= 90) or np.all(recp_angles > 90)

    if is_all_acute_or_obtuse(test_matrix):
        transf = np.eye(3)
        new_matrix = test_matrix

    test_matrix = [[-a, 0, 0], [b * cos(gamma), b * sin(gamma), 0.0],
                   [-c * cos(beta), -c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma), -c * math.sqrt(
                       sin(gamma) ** 2 - cos(alpha) ** 2 - cos(beta) ** 2 + 2 * cos(alpha) * cos(beta) * cos(
                           gamma)) / sin(gamma)]]

    if is_all_acute_or_obtuse(test_matrix):
        transf = [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]
        new_matrix = test_matrix

    test_matrix = [[-a, 0, 0], [-b * cos(gamma), -b * sin(gamma), 0.0],
                   [c * cos(beta), c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma), c * math.sqrt(
                       sin(gamma) ** 2 - cos(alpha) ** 2 - cos(beta) ** 2 + 2 * cos(alpha) * cos(beta) * cos(
                           gamma)) / sin(gamma)]]



    if is_all_acute_or_obtuse(test_matrix):
        transf = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
        new_matrix = test_matrix

    test_matrix = [[a, 0, 0], [-b * cos(gamma), -b * sin(gamma), 0.0],
                   [-c * cos(beta), -c * (cos(alpha) - cos(beta) * cos(gamma)) / sin(gamma), -c * math.sqrt(
                       sin(gamma) ** 2 - cos(alpha) ** 2 - cos(beta) ** 2 + 2 * cos(alpha) * cos(beta) * cos(
                           gamma)) / sin(gamma)]]

    if is_all_acute_or_obtuse(test_matrix):
        transf = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
        new_matrix = test_matrix

    latt = Lattice(new_matrix)
    new_coords = np.dot(transf, np.transpose(struct.frac_coords)).T
    new_struct = Structure(latt, struct.species_and_occu, new_coords, site_properties=struct.site_properties,
                           to_unit_cell=True).get_sorted_structure()

    # put the results back in an ASE structure
    conventional_standard_atoms = AseAtomsAdaptor.get_atoms(new_struct)
    conventional_standard_atoms.info = atoms_info

    return conventional_standard_atoms



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
The main concern raised in the previous report was extent to which the machine learning method 
introduced in this work is dependent on the use of traditional symmetry routines to generate the 
conventional cell. To address this issue, the authors regenerated the cells using the convention for 
triclinic symmetry, meaning that the cell generation is independent of its symmetry classification, 
and also randomized the cell orientations. This approach made little difference to the results (only 
small quantitative differences in Fig. 4, and some changes to the diffraction pattern for hex and rhl 
systems in Figs. 2 and 5), successfully demonstrating that their approach does not depend on the 
routines used to generate the conventional cell.  
 
Other minor suggestions in the previous report included modifying the title and adding some 
specific example applications to the introduction, both of which have been made appropriately. The 
authors have also fixed the list of advantages of the method to clarify that the non-uniqueness 
across space groups is a disadvantage.  
 
Finally, there are a number of minor issues with the manuscript that should be fixed prior to 
publication, such as:  
 
1. In the first paragraph of the introduction, “generate path between high-symmetry points” 
should probably be “generate paths between high-symmetry points”, i.e. “path” should be 
“paths”.  
2. On page 4/16, just before Equation 2, there appears to be an article missing before “central 
quantity”, i.e. it should be “as a central quantity” or “as the central quantity”.  
3. On page 4/16, in point 6, “Example of highly defected structures” should probably be “Examples 
of highly defected structures”, i.e. “Example” should be “Examples”.  
4. On page 9/16, in the first paragraph of the Methods section, “generated from these supercells 
removing” should probably be “generated from these supercells by removing”.  
5. Finally, it appears that Ref. 12 is now available online at Acta Cryst. A, so should probably be 
updated to reflect this.  



Manuscript: "Insightful classification of crystal structures using
deep learning"

Reply to the Reviewers' comments

Reviewers' comments:

Reviewer #2 (Remarks to the Author):

The main concern raised in the previous report was extent to which the machine learning method 
introduced in this work is dependent on the use of traditional symmetry routines to generate the 
conventional cell. To address this issue, the authors regenerated the cells using the convention for 
triclinic symmetry, meaning that the cell generation is independent of its symmetry classification, and 
also randomized the cell orientations. This approach made little difference to the results (only small 
quantitative differences in Fig. 4, and some changes to the diffraction pattern for hex and rhl systems in
Figs. 2 and 5), successfully demonstrating that their approach does not depend on the routines used to 
generate the conventional cell.

Other minor suggestions in the previous report included modifying the title and adding some specific 
example applications to the introduction, both of which have been made appropriately. The authors 
have also fixed the list of advantages of the method to clarify that the non-uniqueness across space 
groups is a disadvantage. 

Finally, there are a number of minor issues with the manuscript that should be fixed prior to 
publication, such as: 

1. In the first paragraph of the introduction, “generate path between high-symmetry points” should 
probably be “generate paths between high-symmetry points”, i.e. “path” should be “paths”. 
2. On page 4/16, just before Equation 2, there appears to be an article missing before “central quantity”,
i.e. it should be “as a central quantity” or “as the central quantity”.
3. On page 4/16, in point 6, “Example of highly defected structures” should probably be “Examples of 
highly defected structures”, i.e. “Example” should be “Examples”.
4. On page 9/16, in the first paragraph of the Methods section, “generated from these supercells 
removing” should probably be “generated from these supercells by removing”.
5. Finally, it appears that Ref. 12 is now available online at Acta Cryst. A, so should probably be 
updated to reflect this.

We thank Ref #2 for pointing this out. The typos have been corrected and they are highlighted in blue 
in the pdf version of the manuscript. Ref. 12 has also been updated.
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