Supplementary Information for:

Mie-Coupled Bound Guided States in Nanowire Geometric Superlattices

Seokhyoung Kim¹, Kyoung-Ho Kim^{1,2}, David J. Hill¹, Hong-Gyu Park^{2*}, and James F. Cahoon^{1*}

Supplementary Information includes:

Supplementary Figures 1-11

Supplementary Tables 1-2

Supplementary Movie 1-4 captions

Supplementary Figure 1 | Fourier selection of BGS by higher harmonics. a, A square wave representing a GSL structure and its Fourier series that consists of odd-numbered harmonics of the fundamental frequency. b, Q_{sca} spectrum of NW GSLs with d = 140 nm and e = 135 nm of three different values of p = 420 nm (top), p = 1260 nm (middle) and p = 2100 nm (bottom). Pitch was varied to tailor higher harmonic interactions with a Mie resonance fixed at the same wavelength. c-e, Schematic and calculated magnetic field profiles for the GSLs in panel b at the dip, showing a BGS mode with m = 1 (c), m = 3 (d) and m = 5 (e) antinodes confined at each segment.

Supplementary Figure 2 | Calculated Magnetic Field Profiles of a GSL with varying pitch. a-b, Schematic and calculated magnetic field profiles for a GSL with p = 360 nm (a) and p = 500 nm (b) from Figure 1c, showing coupled TM₁₁ dipolar modes appearing in small diameter regions (ω_+ , top) and large diameter regions (ω_- , middle), and a standing wave as a superposition of counter-propagating HE₁₁ guided modes (ω_g , bottom).

Supplementary Figure 3 | Disappearance of BGS coupling at long pitch values outside the Mie resonance envelope. a-b, Simulated Q_{sca} spectra with d = 140 nm and e = 135 nm for an onresonance p = 420 nm (a) and an off-resonance p = 1000 nm (b) NW GSL under plane wave illumination. A scattering dip is not observed for p = 1000 nm in the shaded region of the spectrum where the first-order (m = 1) BGS is expected, but the third-order (m = 3) mode appears at ~668 nm. c-d, Simulated Q_{sca} spectra (upper graphs) and Q_{guided} spectra (lower graphs) for an onresonance p = 420 nm (c) and an off-resonance p = 1000 nm (d) GSL-WG under illumination with a Gaussian beam. For the off-resonance structure (panel d), no guided power is observed in the shaded region of the spectrum where the first-order (m = 1) BGS is expected, but guided power from the third-order (m = 3) mode appears at ~668 nm.

Supplementary Figure 4 | Incident angle dependence of BGS coupling. Simulated Q_{sca} spectra of a NW GSL with d = 140 nm, e = 135 nm, and p = 420 nm under plane wave illumination at 0° (upper), 10° (middle), and 20° (bottom) with respect to the normal, showing a splitting of the BGS into primarily right-propagating (A_r) and left-propagating (A_l) BGS modes.

Supplementary Figure 5 | Schematic plots of Mie-BGS coupling with and without γ_g . Schematic scattering plots for $\omega_m = \omega_g$ when γ_g is zero (left), 1/100 ω_m (middle) and 3/100 ω_m (right).

Supplementary Figure 6 | Diameter dependence and spectral tunability of Mie-BGS coupling. Simulated Q_{sca} spectra of GSLs of selected pitches with d = 120 nm, e = 115 nm (a), d = 160 nm, e = 155 nm (b), d = 250 nm, e = 245 nm (c), and d = 340 nm, e = 330 nm (d).

Supplementary Figure 7 | Effect of modulation depth on bound character of the BGS. a, Numerically calculated Q_{sca} spectra (solid lines) and analytical fit by TCMT (dotted lines) for a NW GSL with d=140 nm, p=420 nm and varying δ of 0, 2, 5, 10, and 20 nm. $\delta = 0$ nm corresponds to a NW with uniform diameter. Parameters for TCMT spectra are provided in Table S2. b, Numerically calculated Q_{abs} spectra of GSLs from panel **a**, showing a broad background peak for $\delta = 0$ nm and appearance of a high-quality factor absorption peak for non-zero δ that eventually bifurcates into two peaks at $\delta > 15$ nm. **c**, Two-dimensional Q_{sca} heat map with vertical and horizontal axes for δ and wavelength, respectively, showing a vanishing point at $\delta = 0$ nm that corresponds to a completely bound guided state (BGS). **d**, Quality factor ($\lambda/\Delta\lambda$) calculated from the fit parameters (Supplementary Table 2) used panel **b** plotted against δ , which extrapolates to infinity as δ approaches zero.

Supplementary Figure 8 | NW with length of nearly 1 mm with no variation in diameter. ab, Optical (a) and SEM (b) images of a NW exhibiting no diameter variation over nearly 1 mm; scale bars, 100 μ m. Insets: Magnified views at each end of a straight portion of the NW; scale bars, 1 μ m.

Supplementary Figure 9 | Instrumental setup. Laser microscope for polarization-resolved bright-field extinction measurements.

Supplementary Figure 10 | Effect of Gaussian beam width. a, Q_{sca} spectra around the scattering dip region of a GSL with d = 140 nm, e = 115 nm and p = 400 nm under focused Gaussian illumination of varying width. Each spectrum is labeled with its Gaussian full-width at half maximum. Absorptive loss is artificially turned off to only account for scattering characteristics. b, Calculated magnetic field snapshots at marked locations from panel a and Supplementary Movie 3-4, showing coherent coupling to the BGS under a large beam (top) and radiative loss under a small beam (bottom).

Supplementary Figure 11 | Fabry-Perot cavity free spectral ranges in WGs of different lengths. a, A NW GSL attached to WGs at both ends in lengths of 21 and 53 μ m; scale bar, 10 μ m. b-c, Experimental guided spectra collected from WG₁ (b) and WG₂ (c).

	$\lambda_{\rm m}({\rm nm})$	$\lambda_{\rm g}({\rm nm})$	$\omega_{\rm m}({ m THz})$	ω_{g} (THz)	w _c (THz)	γ _m (THz)	γ _g (THz)
$p\infty$	700	1000	2691	1884	_ ^a	177	_ ^a
<i>p</i> 360	700	680	2691	2770	24	179	5.4
-							
<i>p</i> 420	700	703	2691	2679	30	179	5.4
-							
<i>p</i> 500	700	726	2691	2595	30	179	4.5
-							

Supplementary Table 1 | Parameters used in the TCMT for fitting Q_{sca} spectra in Figure 1c

^a Any arbitrary value can be chosen.

Supplementary Table 2	Parameters used in th	e TCMT for	r fitting Q _{sca}	spectra in
Supplementary Figure 7				

$\delta(nm)$	$\lambda_{\rm m}({\rm nm})$	$\lambda_{\rm g}({\rm nm})$	$\omega_{\rm m}$ (THz)	ω_{g} (THz)	w _c (THz)	γ _m (THz)	γ _g (THz)
0	711	- ^a	- ^a	_ ^a	0	177	- ^a
2	707	708	2664	2661	12	178	5.3
5	700	703	2691	2679	30	179	5.4
10	687	695	2742	2710	55	183	5.5
•					100	100	
20	665	675	2833	2791	129	189	5.7
		1			1		1

^a Any arbitrary value can be chosen.