Supporting Information for

Synthesis of Cyclic Chiral α-Amino Boronates by Copper-catalyzed Asymmetric Dearomative Borylation of Indoles

Lili Chen, Jun-Jian Shen, Qian Gao, and Senmiao Xu*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China senmiaoxu@licp.cas.cn

Index

1. General	S2
2. General procedures for the synthesis of N-Boc indole-3-carboxylate (GP	21)S3-S10
3. Synthesis of compound S2	S10
4. General procedures for the synthesis of compounds 1e and S3-S6 (GP2	2)S10-S12
5. General procedures for the synthesis of compounds 1f and S7-S10 (GP3	s)S12-S14
6. Initial survey of copper-catalyzed dearomative borylation (Table S1)	S14
7. General procedures for asymmetric dearomative borylation of indole	1 .S14-S26
8. Method to determine diastereoselective ratio (d.r.) by NMR	S26-S27
9. Control experiments for isomerization test	S27-S29
10. Gram-scale dearomative borylation of indole 2c	S30
11. C3 functionalization of 2-borylindoline 4	S30-S33
12. NOSEY spectrum of allylated 2-borylindoline 4	S33
13 Oxidation of 2-borylindoline 4	\$33-\$34
14 Stereospecific vinylation of 2-borylindoline 4	\$34-\$35
15 Stereospecific arylation of 2-borylindoline 4	\$35-\$36
16 Crystallographic data of compound 2s	S36-S37
17 NMR spectra of all new compounds	S37-S109

1. General

All oxygen- and moisture-sensitive manipulations were carried out under an inert atmosphere using standard Schlenk techniques or glovebox.

THF, Et_2O , CH_2Cl_2 , toluene, CH_3CN , and 1,4-dioxane were purified by passing through a neutral alumina column under argon. All other chemicals and solvents were purchased and used as received.

¹H NMR, ¹³C NMR and ¹¹B NMR spectra were recorded on Zhongke-Niujin 400, Bruker 400, Bruker 600 NMR spectrometer at ambient temperature. ¹³C shifts were obtained with ¹H decoupling. ¹¹B NMR chemical shifts are externally referenced to BF₃ OEt₂ (δ 0). HPLC data were collected on a Shimadzu LC-20AT spectrometer. Optical Rotation was recorded on a Perkin Elmer 341 polarimerter. High-resolution mass spectroscopy data were obtained on Agilent 6530, Agilent 6224 TOF LC/MS spectrometer. X-ray crystallography was measured on Burker Smart APEX II.

2. General procedures for the synthesis of N-Boc indole-3-carboxylate 1 (GP1)

The preparation of indole-3-carboxylic acid **S1** was according to literature procedures.¹ To a 100mL flame-dried two-necked flask was charged with LiO*t*Bu (2.0 g, 25 mmol, 5.0 equiv) was added indole (5 mmol, 1.0 equiv). The reaction vessel was evacuated under high vacuum and the atmosphere was replaced with a balloon of CO₂. Then DMF (25 mL) was added and the mixture was allowed to stir for 24 h at 100 °C. Then the resulting mixture was cooled and carefully quenched by a solution of HCl (2 M, 50 mL) and extracted with EtOAc 3 times (3×30 mL). The combined organic layers were washed with water (50 mL), brine (50 mL) and dry over MgSO₄. The dried organic phase was concentrated under reduced pressure and the residue (**S1**) was used in the next step without further purification.

Steps 2 and 3 were adapted from literature procedures.^{2,3} To a 100-mL flask charged with crude **S1**, DCM (50 mL) and DMF (0.1 mL) was added (COCl)₂ (0.96 g, 7.5 mmol) slowly at 0 $^{\circ}$ C. The resulting mixture was then allowed to warm to room temperature and stir at same temperature for 2 h. After concentration, alcohol (30 mL) was introduced and the mixture was continued to stir at room temperature for additional 2 h. The alcohol was then removed and the residue was dissolved in THF (5 mL) followed by addition of DMAP (0.92 g, 7.5 mmol) and Boc₂O (1.64 g, 7.5 mmol) at 0 $^{\circ}$ C. The reaction was then allowed to warm to room temperature and stir for 2 h. After concentration, the residue was purified by column chromatography on silica gel using PE/EtOAc (20:1) as the eluent to afford corresponding product **1**.

Compound 1a

White solid, 1.32 g, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.19-8.15 (m, 2H), 7.39-7.32 (m, 2H), 3.94 (s, 3H), 1.69 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 148.9, 135.5, 132.0, 127.4, 125.1, 123.9, 121.6, 115.1, 112.1, 85.0, 51.4, 28.0; HRMS (ESI) calcd for C₁₅H₁₈NO₄ ([M+H]⁺): 276.1236, found: 276.1232.

^{1.} W.-J. Yoo, M. G. Capdevila, X. Du and S. Kobayashi, Org. Lett. 2012, 14, 5326.

^{2.} E. C. Linton and M. C. Kozlowski, J. Am. Chem. Soc. 2008, 130, 16162.

^{3.} C. Fang, M. Li, X. Hu, W. Mo, B. Hu, N. Sun, L. Jin and Z. Shen Adv. Syn. Catal. 2016, 358, 1157.

Compound 1b

White solid, 1.39 g, 96% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.27(s, 1H), 8.18-8.15 (m, 2H), 7.39-7.32(m, 2H), 4.41 (q, *J* = 6.8 Hz, 2H), 1.69 (s, 9H), 1.43 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 149.0, 135.5, 132.0, 127.5, 125.0, 123.8, 121.7, 115.1, 112.5, 85.0, 60.3, 28.0, 14.4; HRMS (ESI) calcd for C₁₆H₂₀NO₄ ([M+H]⁺): 290.1392, found: 290.1389.

Compound 1c

White solid, 1.48 g, 98% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.18-8.16 (m, 2H), 7.38-7.32 (m, 2H), 5.33-5.27 (m, 1H), 1.69 (s, 9H), 1.41 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 149.0, 135.5, 131.9, 127.6, 125.0, 123.8, 121.7, 115.1, 112.9, 85.0, 67.7, 28.1, 22.1; HRMS (ESI) calcd for C₁₇H₂₂NO₄ ([M+H]⁺): 304.1549, found: 304.1546.

Compound 1d

White solid, 1.47 g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.15-8.12 (m, 2H), 7.38-7.30 (m, 2H), 1.68 (s, 9H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 149.1, 135.6, 131.8, 127.6, 124.9, 123.7, 121.7, 115.1, 114.1, 84.8, 80.9, 28.4, 28.1; HRMS (ESI) calcd for C₁₈H₂₄NO₄ ([M+H]⁺): 318.1705, found: 318.1701.

Compound 1g

White solid, 0.66 g, 41% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.33-7.29 (m, 1H), 7.05-7.00 (m, 1H), 5.32-5.23 (m, 1H), 1.69 (s, 9H), 1.39 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 155.9 (d, *J* = 252.0 Hz), 148.7, 138.0 (d, *J* = 8.8 Hz), 132.5, 126.0 (d, *J* = 7.7 Hz), 115.5 (d, *J* = 19.6 Hz),

112.3 (d, J = 3.8 Hz), 111.2 (d, J = 4.0 Hz), 110.3 (d, J = 20.8 Hz), 85.5, 68.2, 28.0, 21.9; HRMS (ESI) calcd for C₁₇H₂₁FNO₄ ([M+H]⁺): 322.1455, found: 322.1451.

Compound 1h

Colorless oil, 0.77 g, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 8.11 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.22-7.18 (m, 1H), 5.33-5.24 (m, 1H), 1.68 (s, 9H), 1.41 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 148.5, 136.7, 131.3, 128.8, 126.4, 125.9, 114.6, 114.3, 114.2, 85.4, 68.7, 28.0, 21.9; HRMS (ESI) calcd for C₁₇H₂₁⁷⁹BrNO₄ ([M+H]⁺): 382.0654, found: 382.0650.

Compound 1i

White solid, 0.69 g, 42% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.03 (d, *J* = 9.2 Hz, 1H), 7.66 (d, *J* = 1.6 Hz, 1H), 6.98-6.95 (m, 1H), 5.32-5.25 (m, 1H), 3.89 (s, 3H), 1.68 (s, 9H), 1.40 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 156.7, 149.0, 132.1, 130.1, 128.7, 115.9, 114.3, 112.5, 103.7, 84.9, 67.7, 55.6, 28.1, 22.1; HRMS (ESI) calcd for C₁₈H₂₄NO₅ ([M+H]⁺): 334.1654, found: 334.1650.

Compound 1j

White solid, 0.68 g, 43% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.96 (s, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 5.34-5.24 (m, 1H), 2.48 (s, 3H), 1.68 (s, 9H), 1.41 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 149.1, 133.7, 133.5, 131.9, 127.8, 126.4, 121.5, 114.7, 112.5, 84.8, 67.7, 28.1, 22.1, 21.5; HRMS (ESI) calcd for C₁₈H₂₄NO₄ ([M+H]⁺): 318.1705, found: 318.1703.

Compound 1k

White solid, 0.69 g, 43% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.13-8.10 (m, 1H), 7.82-7.79 (m, 1H), 7.11-7.06 (m, 1H), 5.33-5.26 (m, 1H), 1.69 (s, 9H), 1.41 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 242.2 Hz), 158.7, 148.8, 133.1, 131.9, 128.6, 116.2 (d, *J* = 9.2 Hz), 113.0 (d, *J* = 25.2 Hz), 112.7 (d, *J* = 3.8 Hz), 107.5 (d, *J* = 25.1 Hz), 85.3, 68.0, 28.1, 22.0; HRMS (ESI) calcd for C₁₇H₂₁FNO₄ ([M+H]⁺): 322.1455, found: 322.1451.

Compound 11

White solid, 1.23 g, 73% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.13 (d, *J* = 2.0 Hz, 1H), 8.09 (d, *J* = 8.8 Hz, 1H), 7.33-7.30 (m, 1H), 5.34-5.25 (m, 1H), 1.69 (s, 9H), 1.41 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.7, 133.9, 132.8, 129.7, 128.7, 125.3, 121.4, 116.2, 112.3, 85.4, 68.1, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₁³⁵ClNO₄ ([M+H]⁺): 338.1159, found: 338.1154.

Compound 1m

White solid, 0.66 g, 40% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.33 (s, 1H), 8.29 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 5.37-5.27 (m, 1H), 1.71 (s, 9H), 1.43 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 148.3, 137.3, 133.6, 128.1, 127.6, 126.8, 119.5, 116.1, 112.8, 107.5, 86.3, 68.5, 28.0, 22.0; HRMS (ESI) calcd for C₁₈H₂₁N₂O₄ ([M+H]⁺): 329.1501, found: 329.1495.

Compound 1n

White solid, 0.92 g, 48% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 1.6 Hz, 1H), 8.22 (s, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.47-7.44 (m, 1H), 5.34-5.24 (m, 1H), 1.68 (s, 9H), 1.41 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 148.6, 134.2, 132.6, 129.2, 127.9, 124.4, 117.5, 116.5, 112.2, 85.5, 68.0, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₁⁸¹BrNO₄ ([M+H]⁺): 384.0633, found: 384.0640.

Compound 1o

White solid, 0.90 g, 42% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 1.6 Hz, 1H), 8.18 (s, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.65-7.63 (m, 1H), 5.33-5.24 (m, 1H), 1.68 (s, 9H), 1.41 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 148.6, 134.8, 133.6, 132.2, 130.6, 129.7, 116.9, 112.0, 88.4, 85.5, 68.1, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₀INNaO₄ ([M+Na]⁺): 452.0335, found: 452.0330.

Compound 1p

White solid, 0.55 g, 33% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.75 (s, 1H), 6.98-6.96 (m, 1H), 5.33-5.24 (m, 1H), 3.88 (s, 3H), 1.69 (s, 9H), 1.40 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 158.1, 149.1, 136.6, 130.6, 122.2, 121.3, 113.3, 113.0, 99.0, 84.8, 67.7, 55.6, 28.1, 22.1; HRMS (ESI) calcd for C₁₈H₂₃NNaO₅ ([M+Na]⁺): 356.1474, found: 356.1472.

Compound 1q

White solid, 0.85 g, 53% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.10-8.07 (m, 1H), 7.90-7.88 (m, 1H), 7.11-7.06 (m, 1H), 5.34-5.24 (m, 1H), 1.69 (s, 9H), 1.40 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 161.1 (d, *J* = 240.0 Hz), 148.7, 135.7 (d, *J* = 12.9 Hz), 131.9 (d, *J* = 3.2 Hz), 123.9, 122.6 (d, *J* = 9.7 Hz), 112.8, 112.2 (d, *J* = 23.8 Hz), 102.5 (d, *J* = 28.5 Hz), 85.4, 67.9, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₁FNO₄ ([M+H]⁺): 322.1455, found: 322.1450.

Compound 1r

White solid, 0.62 g, 37% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 2H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.32-7.29 (m, 1H), 5.33-5.24 (m, 1H), 1.69 (s, 9H), 1.40 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.6, 135.8, 132.1, 131.0, 126.1, 124.4, 122.5, 115.4, 112.8, 85.5, 67.9, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₁³⁵ClNO₄ ([M+H]⁺): 338.1159, found: 338.1153.

Compound 1s

White solid, 1.24 g, 65% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.19 (s, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 5.32-5.26 (m, 1H), 1.69 (s, 9H), 1.41 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 148.6, 136.1, 132.0, 127.1, 126.4, 122.8, 118.8, 118.3, 112.8, 85.6, 68.0, 28.0, 22.0; HRMS (ESI) calcd for C₁₇H₂₀⁸¹BrNNaO₄ ([M+Na]⁺): 406.0453, found: 406.0449.

Compound 1t

White solid, 0.99 g, 52% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16(m, 2H), 7.57 (d, J = 7.6 Hz, 1H), 7.22-7.19 (m, 1H), 5.32-5.26 (m, 1H), 1.68 (s, 9H), 1.41 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 147.8, 135.0, 133.8, 130.9, 130.3, 125.0, 121.0, 112.3, 107.4, 85.7, 67.9, 27.8, 22.0; HRMS (ESI) calcd for C₁₇H₂₁⁷⁹BrNO₄ ([M+H]⁺): 382.0654, found: 382.0651.

Compound 1u

White solid, 0.16 g, 10% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.11-8.06 (m, 2H), 7.29-7.27 (m, 2H), 5.35-5.29 (m, 1H), 2.98 (s, 3H), 1.70 (s, 9H), 1.43 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 165.0, 150.0, 145.6, 135.4, 127.2, 124.0, 123.5, 121.3, 114.8, 110.6, 84.9, 67.5, 28.1, 22.2, 15.0; HRMS (ESI) calcd for C₁₈H₂₄NO₄ ([M+H]⁺): 318.1705, found: 318.1704.

Compound 1v

White solid, 1.20 g, 99% yield; ¹H NMR (400 MHz, CDCl3) δ 8.17 (d, J = 8.4 Hz, 1H), 8.10 (s, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.46-7.35 (m, 2H), 1.70 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 134.2, 133.2, 128.0, 126.2, 124.2, 119.7, 115.6, 114.1, 92.2, 85.9, 27.9; HRMS (ESI) calcd for C₁₄H₁₄N₂NaO₂ ([M+Na]⁺): 265.0947, found: 265.0949.

Compound 1w

White solid, 1.04 g, 85% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 8.29 (d, J = 7.6 Hz, 1H), 8.24 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.44-7.36 (m, 2H), 1.71 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 185.8, 156.6, 148.8, 136.5, 135.9, 126.1, 124.6, 122.1, 121.5, 115.1, 85.6, 28.1; HRMS (ESI) calcd for C₁₄H₁₆NO₃ ([M+H]⁺): 246.1125, found: 246.1127.

Compound 1x

White solid, 1.17 g, 90% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.38-8.36 (m, 1H), 8.23 (s, 1H), 8.11 (d, J = 7.2 Hz, 1H), 7.40-7.33 (m, 2H), 2.57 (s, 3H), 1.72 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 149.1, 135.5, 132.4, 127.3, 125.4, 124.3, 122.7, 120.6, 114.9, 85.4, 28.1, 27.7; HRMS (ESI) calcd for C₁₅H₁₇NNaO₃ ([M+Na]⁺): 282.1101, found: 282.1105.

Compound 1y

Colorless oil, 0.77 g, 60% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.20-7.19 (m, 1H), 6.60-6.59 (m, 1H), 5.23-5.13 (m, 1H), 1.61 (s, 9H), 1.32 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 148.1, 124.5, 120.5, 111.9, 84.8, 81.0,

67.4, 27.8, 21.9; HRMS (ESI) calcd for $C_{13}H_{20}NO_4$ ([M+H]⁺): 254.1387, found: 254.1390.

3. Synthesis of Compound S2

The preparation of compound **S2** was adapted from the literature procedures.⁴ To a 50-mL flask charged with methyl indole-3-carboxylate (1.75 g, 10 mmol) and DMF (10 mL) was added NaH (0.80 g, 60% in mineral oil, 20 mmol) in 5 portions at 0 $^{\circ}$ C. The resulting mixture was allowed to stir at same temperature for 0.5 h. Methyl iodide (1.24 mL, 20 mmol) was then introduced slowly at 0 $^{\circ}$ C. The reaction was then warmed to room temperature and continued to stir for 2 h. Water (10 mL) was then added slowly at 0 $^{\circ}$ C to quench the reaction. The mixture was then extracted with EtOAc 3 times (3 X 30 mL). The combined organic phase was then washed with water 3 times (3 X 20 mL). After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (20:1) as the eluent to afford *N*-Methyl indole **S2** as white solid (1.88 g, 99% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.18-8.16 (m, 1H), 7.75 (s, 1H), 7.33-7.27 (m, 3H), 3.90 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 137.1, 135.1, 126.5, 122.7, 121.8, 121.5, 109.7, 106.7, 50.9, 33.4; HRMS (ESI) calcd for C₁₁H₁₂NO₂ ([M+H]⁺): 190.0868, found: 190.0861.

4. General Procedures for the synthesis of compounds 1e and S3-S6 (GP2)

The synthesis of compounds **1e** and **S3-S6** was adapted from literature procedures.⁵ To a 100-mL flask charged with 3-subsitiuted indole (10 mmol, carboxylic esters were prepared according to the GP1) and DCM (20 mL) was introduced DMAP (1.8 g, 15 mmol, 1.5 equiv) followed by slow addition of chloro methylformate or CbzCl (15 mmol, 1.5 equiv) at 0 °C. The resulting mixture was allowed to warm to room temperature and stir for 2 h. The reaction was then diluted by 1 M HCl (20 mL) and extracted with DCM 3 times (3 X 20 mL). The combined organic phase was dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (10:1) as the eluent to afford corresponding 1,3-disubtituted indole.

^{4.} M. Kitano, A. Kojima, K. Nakano, A. Miyagishi, T. Noguchi and N. Ohashi, *Chem. Pharm. Bull.* 1999, **47**, 1538.

^{5.} C. N. Rao, D. Lentz and H.-U. Reissig, Angew. Chem., Int. Ed. 2015, 54, 2750.

Compound 1e

White solid, 2.05 g, 88% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.18-8.15 (m, 2H), 7.41-7.34 (m, 2H), 4.07 (s, 3H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.8, 135.4, 131.5, 127.3, 125.3, 124.2, 121.6, 115.0, 112.9, 54.3, 51.5; HRMS (ESI) calcd for C₁₂H₁₂NO₄ ([M+H]⁺): 234.0766, found: 234.0763.

Compound S3

White solid, 1.98 g, 91% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 6.8 Hz, 1H), 8.24 (s, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.43-7.36 (m, 2H), 4.12 (s, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 151.0, 135.5, 131.9, 127.2, 125.8, 124.7, 122.7, 121.3, 114.8, 54.5, 27.7; HRMS (ESI) calcd for C₁₂H₁₂NO₃ ([M+H]⁺): 218.0817, found: 218.0811.

Compound S4

White solid, 2.23 g, 81% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.0 Hz, 1H), 8.14 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.50-7.37 (m, 7H), 5.49 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 134.3, 134.0, 132.8, 129.2, 128.9, 128.8, 127.9, 126.6, 124.6, 119.9, 115.6, 113.8, 93.3, 69.9; HRMS (ESI) calcd for C₁₇H₁₃N₂O₂ ([M+H]⁺): 277.0977, found: 277.0974.

Compound S5

CO₂CH₂CF₃ ℃O₂Me

White solid, 2.80 g, 93% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.21 (d, *J* = 7.6 Hz, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 7.45-7.38 (m, 2H), 4.76-4.70 (m, 2H), 4.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 150.7, 135.5, 132.6, 127.0, 125.8, 124.6,

123.1 (q, J = 275.7 Hz), 121.5, 115.2, 111.3, 60.1 (q, J = 36.4 Hz), 54.6; HRMS (ESI) calcd for C₁₃H₁₁F₃NO₄ ([M+H]⁺): 302.0640, found: 302.0636.

White solid, 1.87 g, 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H), 8.22 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.45-7.36 (m, 2H), 4.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 150.6, 136.0, 135.8, 126.3, 125.9, 124.8, 122.1, 115.0, 54.6 (two aromatic carbon signals overlap); HRMS (ESI) calcd for C₁₁H₉NNaO₃ ([M+Na]⁺): 226.0480, found: 226.0479.

5. General Procedures for the synthesis of compounds 1f and S7-S10 (GP3)

The synthesis of compounds **1f** and **S7-S10** was adapted from the literature procedures.⁶ To a 100-mL flask charged with 3-subsitiuted indole (10 mmol, carboxylic esters were prepared according to the GP1), DCM (10 mL), TBAB (0.32 g, 1.0 mmol), and NaOH (0.80 g, 20 mmol) was added corresponding CbzCl (15 mmol, 1.5 equiv), acyl chloride (15 mmol, 1.5 equiv) or TsCl (15 mmol, 1.5 equiv) slowly at 0 \degree . The resulting mixture was allowed to warm to room temperature and stir for 3 h. The reaction was then diluted by 1 M HCl (20 mL) and extracted with DCM 3 times (3 X 10 mL). The combined organic phase was dried over Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (10:1) as the eluent to afford corresponding 1,3-disubtituted indole.

Compound 1f

White solid, 2.93 g, 95% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.20-8.14 (m, 2H), 7.49-7.32 (m, 7H), 5.46 (s, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 150.2, 135.5, 134.4, 131.5, 129.0, 128.8, 128.7, 127.4, 125.4, 124.2, 121.7, 115.1, 113.0, 69.4, 51.5; HRMS (ESI) calcd for C₁₈H₁₆NO₄ ([M+H]⁺): 310.1079, found: 310.1078.

^{6.} E. Reimann Pharmazie 2000, 55, 907-912.

Compound S7

White solid, 2.46 g, 84% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.4 Hz, 1H), 8.21 (s, 1H), 8.13 (d, *J* = 7.2 Hz, 1H), 7.42 - 7.32 (m, 7H), 4.28 (s, 2H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 164.3, 136.1, 132.5, 130.7, 129.1, 129.0, 127.7, 127.2, 126.1, 124.9, 121.5, 116.6, 114.0, 51.6, 42.6; HRMS (ESI) calcd for C₁₈H₁₆NO₃ ([M+H]⁺): 294.1130, found: 294.1126.

Compound S8

White solid, 1.86 g, 72% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 8.0 Hz, 1H), 8.42 (s, 1H), 8.16 (d, J = 7.6 Hz, 1H), 7.43-7.36 (m, 2H), 3.96 (s, 3H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 164.6, 137.2, 131.5, 126.4, 125.9, 124.6, 121.2, 117.1, 112.9, 51.6, 41.6, 28.7; HRMS (ESI) calcd for C₁₅H₁₈NO₃ ([M+H]⁺): 260.1287, found: 260.1281.

Compound S9

White solid, 2.18 g, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 7.2 Hz, 1H), 7.99 (s, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.68-7.65 (m, 1H), 7.59-7.55 (m, 2H), 7.46-7.41(m, 2H), 3.91(s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 164.4, 136.3, 133.4, 133.3, 132.7, 129.4, 128.9, 127.6, 125.7, 125.0, 121.6, 116.2, 113.2, 51.6; HRMS (ESI) calcd for C₁₇H₁₃NNaO₃ ([M+Na]⁺): 302.0793, found: 302.0787.

Compound S10

White solid, 2.30 g, 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.13(d, J = 7.6 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H) 7.82 (d, J = 7.2 Hz, 2H), 7.38-7.31 (m, 2H), 7.24 (d, J = 7.6 Hz, 2H), 3.92 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 145.7, 134.7, 134.5, 132.0, 130.1, 127.7, 127.0, 125.3, 124.3, 122.0, 113.4,

113.2, 51.5, 21.5; HRMS (ESI) calcd for $C_{17}H_{16}NO_4S$ ([M+H]⁺): 330.0800, found: 330.0797.

6. Table S1. Initial Survey of Copper-catalyzed Dearomative Borylation Using

E N	EWG dp NaO	pe/CuCl (10 mol%) tBu (10 mol %), tBuOH B₂pin₂, rt, THF	EWG Bpin +	EWG Bpin PG
substrate		16 h	cis-product	trans-product
To entry	substrate	PG, EWG	results	
1	S2	Me, CO ₂ Me	no reaction	
2	S3	CO ₂ Me, COMe	yes, major trans-	product.
3	S4	Cbz, CN	no reaction	
4	S 5	CO ₂ Me, CO ₂ CH ₂ CF ₃	yes, major trans-	product
5	S6	CO ₂ Me, CHO	messy	
6	S7	COBn, CO ₂ Me	trace	
7	S8	COtBu, CO ₂ Me	trace	
8	S9	Bz, CO ₂ Me	trace	
9	S10	Ts, CO ₂ Me	no reaction	
10	1a	Boc, CO_2Me	yes, major cis-pr	oduct
11	1e	CO ₂ Me, CO ₂ Me	yes, major trans-	product
12	1f	Cbz, CO ₂ Me	yes, major trans-	product

Achiral ligand (dppe).

Conclusions: 1) When indole substrate bearing electron-withdrawing group such as acyl, formyl, or alkoxycarbonyl in its 3-position was used, alkoxycarbonyl substitution in nitrogen was responsible for the reaction to take place; 2) In the presence of achiral ligand dppe, only substrate **1a** could give *cis*-product preferentially; 3) *Trans*-product was not stable towards isolation by chromatography on either silica gel or alumina whereas *cis*-one was isolable.

Therefore, we chose indole **1a** as model substrate to further evaluate reactivity and stereoselectivity in the presence of chiral catalyst.

7. General procedures for the catalytic asymmetric dearomative borylation of indole 1

In a nitrogen-filled grovebox, to a 25-mL flame-dried Schlenk tube charged with CuCl (2.0 mg, 0.02 mmol), NaOMe (1.1 mg, 0.02 mmol) and (R,R)-QunioxP* (6.7 mg, 0.02 mmol) was added toluene (0.5 mL). The resulting mixture was allowed to

stir at room temperature for 0.5 h. B_2pin_2 (0.30 mmol in 0.5 mL) was then introduced and the reaction was allowed to stir at room temperature for 10 min followed by addition of indole **1** (0.20 mmol in 1 mL toluene) and *t*BuOH (37.5 µL, 0.4 mmol) at 0 °C. The resulting mixture was continued to stir at 0 °C for 18-48 hours. After removal of the solvent, the ¹H NMR of crude mixture was taken to determine the d.r. value. The residue was purified by column chromatography on silica gel using PE/EtOAc (12:1) as the eluent to affording corresponding 2-boryl indoline **2** or **3**.

Compound 2a

Colorless oil, 70.9 mg, 88% yield, 95:5 *d.r.*, 86% *ee*, $[\alpha]_D^{25} = -57.7$ (*c* 0.40, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (brs, 1H), 7.27-7.17 (m, 2H), 6.93-6.90 (m, 1H), 4.44 (brs, 1H), 4.11 (d, *J* = 11.6 Hz, 1H), 3.74 (s, 3H), 1.58 (s, 9H), 1.31 (s, 6H), 1.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 152.4, 142.1, 128.6, 128.3, 125.1, 121.8, 114.8, 83.8, 81.4, 52.4, 48.8, 47.2, 28.3, 25.3, 24.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.6; HRMS (ESI) calcd for C₂₁H₃₁BNO₆ ([M+H]⁺): 404.2244, found: 404.2245. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98: 2, flow rate = 1.0 mL/min., wavelength = 230 nm, t_R = 13.09 (minor), 15.85 (major).

Compound 2b

Colorless oil, 72.6 mg, 87% yield, 95:5 *d.r.*, 93% *ee* $[\alpha]_D^{25} = -66.5$ (*c* 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (brs, 1H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.20-7.17 (m, 1H), 6.92-6.89 (m, 1H), 4.47 (d, *J* = 11.2 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, *J* = 14.0 Hz, 2H), 4.11 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.26 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 152.4, 142.3, 128.5, 128.3, 124.8, 121.8, 115.1, 83.8, 81.2, 61.4, 48.6, 47.5, 28.3, 25.3, 24.8, 14.1; ¹¹B NMR (128 MHz, CDCl₃) δ 31.6; HRMS (ESI) calcd for C₂₂H₃₂BNNaO₆ ([M+Na]⁺): 440.2220, found: 440.2216. The enantiopurity was

determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98: 2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 13.11 (minor), 16.61 (major).

Compound 2c

Colorless oil, 75.0 mg, 87% yield, 95:5 *d.r.*, 95% *ee*, $[\alpha]_D^{25} = -66.3$ (*c* 0.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (brs, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.20-7.16 (m, 1H), 6.91-6.88 (m, 1H), 5.07-5.01 (m, 1H), 4.44 (d, *J* = 12.0 Hz, 1H), 4.10 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.25 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 152.4, 142.3, 128.5, 128.3, 124.7, 121.7, 115.0, 83.8, 81.2, 69.2, 48.7, 47.8, 28.4, 25.3, 24.9, 21.8, 21.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.8; HRMS (ESI) calcd for C₂₃H₃₄BNNaO₆ ([M+Na]⁺): 454.2377, found: 454.2376. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 11.11 (minor), 14.56 (major).

Compound 2d

Colorless oil, 80.1 mg, 90% yield, 96:4 *d.r.*, 91% *ee*, $[\alpha]_D^{25} = -30.9$ (*c* 0.19, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.19-7.15 (m, 1H), 6.91-6.87 (m, 1H), 4.41 (d, J = 12.0 Hz, 1H), 4.06 (d, J = 12.0 Hz, 1H), 1.57 (s, 9H), 1.47 (s, 9H), 1.33 (s, 6H), 1.31 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 152.2, 141.9, 128.3, 124.5, 121.5, 114.9, 83.5, 81.8, 80.8, 48.4, 28.2, 27.8, 25.2, 24.7 (two aromatic carbons overlap; *B*-adjacent carbon overlaps with C3-carbon); ¹¹B NMR (128 MHz, CDCl₃) δ 31.5; HRMS (ESI) calcd for C₂₄H₃₆BNNaO₆ ([M+Na]⁺): 468.2535, found: 468.2531. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 10.13 (minor), 14.21 (major).

Compound 2e

Colorless oil, 54.1 mg, 75% yield, 90:10 *d.r.*, 78% *ee*, $[\alpha]_D^{25} = -9.2$ (*c* 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (brs, 1H), 7.29-7.21 (m, 2H), 6.97 - 6.94 (m, 1H), 4.50 (s, 1H), 4.12 (d, *J* = 11.6 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 1.31 (s, 6H), 1.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 153.3, 142.8, 128.8, 127.5, 124.6, 122.4, 115.1, 84.0, 60.3, 52.6, 48.4, 25.2, 24.8 (*B*-adjacent carbon overlaps with C3-carbon); ¹¹B NMR (128 MHz, CDCl₃) δ 31.9; HRMS (ESI) calcd for C₁₈H₂₄BNNaO₆ ([M+Na]⁺): 384.1594, found: 384.1592. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IC column, Hexane/*i*PrOH = 90: 10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 12.68 (major), 14.28 (minor).

Compound 2f

White solid, 66.4 mg, 76% yield, 95:5 *d.r.*, 68% *ee*, $[\alpha]_D^{25} = -49.2$ (*c* 0.24, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.41 (m 1H), 7.41-7.28 (m, 7H), 6.94 (s, 1H), 5.39-5.07 (m, 2H), 4.50 (brs, 1H), 4.20 (brs, 1H), 3.74 (s, 3H), 1.18 (brs, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 152.8, 142.7, 136.0, 128.8, 128.4, 127.9, 127.7, 125.3, 124.5, 122.5, 115.3, 84.0, 66.9, 52.5, 48.5, 47.4, 25.1, 24.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.8; HRMS (ESI) calcd for C₂₄H₂₉BNO₆ ([M+H]⁺): 438.2088, found: 438.2090; The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IC column, Hexane/*i*PrOH = 90: 10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 14.25 (major), 15.42 (minor).

Compound 2g

Colorless oil, 83.5 mg, 93% yield, >98:2 *d.r.*, 94% *ee*, $[\alpha]_D^{25} = -73.8$ (*c* 0.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (brs, 1H), 7.18-7.13 (m, 1H), 6.64-6.59 (m, 1H), 5.04-5.01(m, 1H), 4.45 (d, *J* = 10.0 Hz, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 1.57 (s, 9H), 1.30-1.22 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 159.1 (d, *J* = 245.6 Hz), 152.1, 145.0, 130.3 (d, *J* = 8.1 Hz), 115.7 (d, *J* = 17.9 Hz), 110.6, 108.7 (d, *J* = 20.2 Hz), 84.0, 81.7, 69.1, 50.0, 44.9, 28.3, 25.2, 24.7, 21.6, 21.4; ¹¹B NMR (128 MHz, CDCl₃) δ 31.5 ppm; HRMS (ESI) calcd for C₂₃H₃₃BFNNaO₆ ([M+Na]⁺): 472.2283, found: 472.2290. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.44 (minor), 9.59 (major).

Compound 2h

Colorless oil, 65.4 mg, 64% yield, 94:6 *d.r.*, 93% *ee*, $[\alpha]_D^{25} = -17.5$ (*c* 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (brs, 1H), 7.07-7.06 (m, 2H), 5.01 (s, 1H), 4.27 (brs, 1H), 4.09 (brs, 1H), 1.57 (s, 9H), 1.29-1.23 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 152.5, 140.0, 130.6, 130.0, 125.0, 120.2, 113.5, 84.2, 82.2, 69.0, 49.1, 49.0, 28.3, 25.4, 24.6, 21.6, 21.5; ¹¹B NMR (128 MHz, CDCl₃) δ 31.1; HRMS (ESI) calcd for C₂₃H₃₃B⁸¹BrNNaO₆ ([M+Na]⁺): 534.1462, found: 534.1464. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 9.63 (minor), 11.91 (major).

Compound 2i

Colorless oil, 77.4 mg, 84% yield, 95:5 *d.r.*, 95% *ee*, $[\alpha]_D^{25} = -46.6$ (*c* 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 6.88 (s, 1H), 6.75-6.72 (m, 1H), 5.08-5.02 (m, 1H), 4.42 (d, *J* = 11.6 Hz, 1H), 4.10 (d, *J* = 12.0 Hz, 1H), 3.74 (s, 3H), 1.56 (s, 9H), 1.32-1.27 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 155.0, 152.3, 136.0, 129.5, 115.5, 113.7, 110.7, 83.8, 81.0, 69.2, 55.6, 48.9, 47.8, 28.4, 25.3, 24.8, 21.8(2), 21.8(0); ¹¹B NMR (128 MHz, CDCl₃) δ 30.5; HRMS (ESI) calcd for C₂₄H₃₇BNO₇ ([M+H]⁺):462.2663, found:462.2665. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IC column, Hexane/*i*PrOH = 90:10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 5.31 (major), 6.32 (minor).

Compound 2j

Colorless oil, 81.0 mg, 91% yield, 97:3 *d.r.*, 96% *ee*, $[\alpha]_D^{25} = -39.7$ (*c* 0.08, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.08 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 5.07-5.01(m, 1H), 4.40 (d, *J* = 11.6 Hz, 1H), 4.09 (d, *J* = 12.0 Hz, 1H), 2.26 (s, 3H), 1.57 (s, 9H), 1.32-1.26 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 152.4, 139.9, 131.1, 129.0, 128.5, 125.3, 114.7, 83.7, 81.1, 69.1, 48.7, 47.8, 28.4, 25.3, 24.9, 21.8, 21.7, 20.8; ¹¹B NMR (128 MHz, CDCl₃) δ 31.8; HRMS (ESI) calcd for C₂₄H₃₇BNO₆ ([M+H]⁺): 446.2714, found: 446.2710. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 14.48 (minor), 16.10 (major).

Compound 2k

Colorless oil, 60.2 mg, 67% yield, 85:15 *d.r.*, 93% *ee*, $[\alpha]_D^{25} = -32.8$ (*c* 0.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (brs, 1H), 7.01 (d, *J* = 6.8 Hz, 1H), 6.90-6.86 (m, 1H), 5.07-5.02 (m, 1H), 4.42 (d, *J* = 11.6 Hz, 1H), 4.13 (d, *J* = 12.0 Hz, 1H), 1.57 (s, 9H), 1.32-1.27(m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 158.2 (d, *J* = 238.1 Hz), 152.2, 138.4, 129.8, 115.5, 114.9 (d, *J* = 22.7 Hz), 112.1, 83.9, 81.4, 69.6, 49.0, 47.6, 28.3, 25.3, 24.8, 21.8; ¹¹B NMR (128 MHz, CDCl₃) δ 31.3; HRMS (ESI) calcd for C₂₃H₃₄BFNO₆ ([M+H]⁺): 450.2463, found: 450.2462. The enantiopurity was

determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.59 (minor), 11.70 (major).

Compound 2l

Colorless oil, 77.2 mg, 83% yield, 94:6 *d.r.*, 95% *ee*, $[\alpha]_D^{25} = -25.0$ (*c* 0.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.25 (s, 1H), 7.14 (d, J = 8.4 Hz, 1H), 5.08-5.02 (m, 1H), 4.41 (d, J = 11.6 Hz, 1H), 4.12 (d, J = 12.0 Hz, 1H), 1.57 (s, 9H), 1.32-1.27 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.1, 140.8, 130.0, 128.5, 126.6, 124.9, 115.9, 83.9, 81.6, 69.6, 49.1, 47.6, 28.3, 25.3, 25.0, 21.8; ¹¹B NMR (128 MHz, CDCl₃) δ 31.4; HRMS (ESI) calcd for C₂₃H₃₃BClNO₆ ([M+Na]⁺): 488.1987, found: 488.1982. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.62 (minor), 10.67 (major).

Compound 2m

Colorless oil, 45.6 mg, 50% yield, 71:29 *d.r.*, 85% *ee*, $[\alpha]_D^{25} = -57.1$ (*c* 0.14, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (brs, 1H), 7.56 (s, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 5.10-5.03(m, 1H), 4.44 (d, *J* = 12.4 Hz, 1H), 4.16 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.27 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 151.7, 145.7, 133.6, 129.4,, 128.5, 119.4, 115.2, 104.4, 84.0, 82.5, 70.0, 49.2, 47.3, 28.2, 25.2, 24.9, 21.7; ¹¹B

NMR (128 MHz, CDCl₃) δ 31.2 ppm; HRMS (ESI) calcd for C₂₄H₃₃BN₂NaO₆ ([M+Na]⁺): 479.2329, found: 479.2332. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 90: 10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 11.06 (minor), 15.86 (major).

Compound 2n

Boc

Colorless oil, 89.9 mg, 88% yield, 95:5 *d.r.*, 94% *ee*, $[\alpha]_D^{25} = -20.0$ (*c* 0.76, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.27 (m, 3H), 5.08-5.02 (m, 1H), 4.41 (d, *J* = 12.0 Hz, 1H), 4.11 (d, *J* = 12.0 Hz, 1H), 1.57 (s, 9H), 1.31-1.26(m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.1, 141.4, 131.4, 130.5, 127.8, 116.4, 113.9, 83.9, 81.7, 69.6, 49.0, 47.5, 28.3, 25.3, 25.0, 21.8; ¹¹B NMR (128 MHz, CDCl₃) δ 31.4; HRMS (ESI) calcd for C₂₃H₃₃B⁸¹BrNNaO₆ ([M+Na]⁺): 534.1462, found: 534.1466. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 9.46 (minor), 11.15 (major).

Colorless oil, 95.8 mg, 86% yield, 97:3 *d.r.*, 94% *ee*, $[\alpha]_D^{25} = -4.0$ (*c* 0.30, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.27 (brs, 1H), 5.08-5.02 (m, 1H), 4.41 (d, J = 12.0 Hz, 1H), 4.09 (d, J = 12.0 Hz, 1H), 1.56 (s, 9H), 1.31-1.26 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.1, 141.9, 137.3, 133.6, 130.9, 117.0, 83.9, 83.6, 81.6, 69.6, 48.8, 47.2, 28.3, 25.3, 24.9, 21.8; ¹¹B NMR (128 MHz, CDCl₃) δ 30.7; HRMS (ESI) calcd for C₂₃H₃₄BINO₆ ([M+H]⁺): 558.1524, found: 558.1520. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IF column, Hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 5.78 (minor), 7.64 (major).

Compound 2p

Colorless oil, 81.1 mg, 88% yield, 98:2 *d.r.*, 95% *ee*, $[\alpha]_D^{25} = -73.8$ (*c* 0.13, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.14 (m, 2H), 6.47-6.44 (m, 1H), 5.07-4.98 (m, 1H), 4.37 (d, *J* = 12.0 Hz, 1H), 4.11 (d, *J* = 12.0 Hz, 1H), 3.77 (s, 3H), 1.58 (s, 9H), 1.32-1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 160.4, 152.3, 143.3, 124.9, 120.3, 107.6, 101.1, 83.8, 81.2, 69.1, 55.3, 49.8, 47.1, 28.4, 25.3, 24.8, 21.8, 21.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.8; HRMS (ESI) calcd for C₂₄H₃₆BNNaO₇ ([M+Na]⁺): 484.2483, found: 484.2484. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IC column, Hexane/*i*PrOH = 90: 10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 5.14 (major), 6.21 (minor).

Compound 2q COO*i*Pr Boc Colorless oil, 72.7 mg, 81% yield, 97:3 *d.r.*, 94% *ee*, $[\alpha]_D^{25} = -73.6$ (*c* 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.18 (m, 2H), 6.60-6.56 (m, 1H), 5.07-5.01 (m, 1H), 4.39 (d, *J* = 12.0 Hz, 1H), 4.13 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 163.4 (d, *J* = 241.0 Hz), 152.1, 143.6, 125.4, 123.7, 108.2 (d, *J* = 23.5 Hz), 103.1 (d, *J* = 22.6 Hz), 83.9, 81.8, 69.4, 49.6, 47.0, 28.3, 25.3, 24.8, 21.8, 21.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.1; HRMS (ESI) calcd for C₂₃H₃₃BFNNaO₆ ([M+Na]⁺): 472.2283, found: 472.2285. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.11 (minor), 11.16 (major).

Compound 2r

Colorless oil, 78.1 mg, 84% yield, 93:7 *d.r.*, 92% *ee*, $[\alpha]_D^{25} = -67.6$ (*c* 0.21, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (brs, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 5.07-5.02(m, 1H), 4.39 (d, *J* = 11.6 Hz, 1H), 4.12 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.25 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 151.9, 143.1, 134.3, 126.8, 125.4, 121.6, 115.4, 83.8, 81.6, 69.4, 49.2, 47.2, 28.2, 25.2, 24.9, 21.7; ¹¹B NMR (128 MHz, CDCl₃) δ 31.5; HRMS (ESI) calcd for C₂₃H₃₃BClNNaO₆ ([M+Na]⁺): 488.1987, found: 488.1992. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.45 (minor), 12.00 (major).

Compound 2s

White solid, 74.3 mg, 73% yield, 94:6 *d.r.*, 93% *ee*, $[\alpha]_D^{25} = -49.5$ (*c* 0.15, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 5.07-5.01(m, 1H), 4.37 (d, *J* = 12.0 Hz, 1H), 4.11 (d, *J* = 12.0 Hz, 1H), 1.58 (s, 9H), 1.32-1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 152.0, 127.4, 125.9, 124.6, 122.4, 118.4, 83.9, 82.0, 69.5, 49.2, 47.3, 28.3, 25.3, 25.0, 21.8 (one aromatic carbon signal does not show.); ¹¹B NMR (128 MHz, CDCl₃) δ 31.8; HRMS (ESI) calcd for C₂₃H₃₃B⁷⁹BrNNaO₆ ([M+Na]⁺): 532.1482, found: 532.1478. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 8.85 (minor), 12.44 (major).

Compound 3t

Colorless oil, 52.9 mg, 52% yield, 16:84 *d.r.*, 78% *ee*, $[\alpha]_D^{25} = -50.0$ (*c* 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 1H), 6.92-6.88 (m, 1H), 5.07-5.00 (m, 1H), 4.09-4.04 (m, 2H), 1.56 (s, 9H), 1.26-1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 155.4, 142.5, 136.5, 132.9, 125.7, 122.9, 112.5, 83.4, 82.9, 68.8, 54.3, 49.6, 28.3, 24.8, 24.7, 21.8; ¹¹B NMR (128 MHz, CDCl₃) δ 27.6 ppm; HRMS (ESI) calcd for C₂₃H₃₃B⁸¹BrNNaO₆ ([M+Na]⁺): 534.1462, found: 534.1467. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 11.16 (minor), 15.86 (major).

Compound 2v

Boc Colorless oil, 62.2 mg, 84% yield, 92:8 *d.r.*, 73% *ee*, $[\alpha]_D^{25} = -35.0$ (*c* 0.37, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.46 (m, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.28-7.25 (m, 1H), 7.02-6.98 (m, 1H), 4.50 (br s, 1H), 4.05 (br s, 1H), 1.59 (s, 9H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 152.7, 141.5, 129.8, 125.3, 122.7, 118.3, 115.0, 84.8, 82.6, 47.4, 30.8, 28.3, 25.4, 24.4; HRMS (ESI) calcd for $C_{20}H_{27}BN_2NaO_4([M+Na]^+)$: 393.1956, found: 393.1963. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IC column, Hexane/iPrOH = 90:10, flow rate = 1.0 mL/min., wavelength = 254 nm, $t_R = 5.51 \text{ (minor)}$, 6.95 (major).

8. Method to determine diastereoselective ratio (d.r.) by NMR (reaction of 1c at room temperature as an example)

To determine the d.r. value (2c/3c), H^{a-c} and H^{a'-c'} were chosen as diagnostic signals. Apparently, H^a and H^{a'} overlap at δ 5.07 ppm. In order to assign H^b, H^c, H^{b'}, and H^{c'}, a deuterium experiment was conducted. The reaction was carried out with MeOD instead of normal alcohol. Therefore by combination of ¹H NMR spectra from normal reaction we could elucidate the assignments of these diagnostic protons as shown in Figures S1 and S2. The disappearance of singal at δ 4.48 ppm upon use of MeOD indicates that H^c (or H^{c'}) is C3-proton in **2c** (or **3c**) (Figures S1 and S2, right spectra). Another information could be obtained is that H^b and H^{b'} overlap at δ 4.10 ppm (Figure S1). Lastly, the integration differnce (0.12) of singal at δ 4.10 ppm minus that of signal at δ 4.48 ppm is twice as much as difference (0.06) between signals at δ 5.07 ppm and δ 4.48 ppm, which indicates that H^{b'} and H^{c'} overap at δ 4.10 ppm. Therefore the chemical of 4.48 ppm belongs to H^c. With that, d.r. value coud be obtained from singals at δ 5.07 ppm (H^a and H^{a'}) and δ 4.48 ppm (H^c). A total integration of H^a and H^{a'} is denoted I^{a+a'}. The integration of H^c is denoted I^c. Therefore we could deduce the I^{a'} by substraction I^c from I^{a+a'}. Thus the d.r. could be caculated as 100*I^c/I^{a+a'}:100*I^{a'}/I^{a+a'}. The d.r values of the rest substrate scope could be calculated by analogue.

Figure S1. Partial ¹H NMR spectra of deterium experiment. Left: ¹H NMR of crude reaction mixture; right: pure C3-D *cis* product.

Figure S2. Partial ¹H NMR spectra of crude mixture and **2c**. Left: crude ¹H NMR of crude mixture; right: pure *cis* product **2c**.

9. Control experiments for isomerization test and NMR spectrum

In order to know possibility of isomerization of product, three control experiments were conducted: 1) **2c** under reaction conditions at 40 °C for 18 h; 2) **2c** under reaction conditions without B_2pin_2 at 40 °C for 18 h; 3) **2c** in CDCl₃ for 24 hours. The results of these experiments show that no isomerization was observed under these

conditions, demonstrating relative stability of stereochemistry of **2c**. Additionally, the ee value of each control experiment was not changed.

NMR of control experiment (1)

NMR of control experiment (2)

.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0

10. Gram-scale dearomative borylation of indole 2c

To a 100-mL flame-dried flask charged with CuCl (9.9 mg, 0.10 mmol), NaOMe (5.4 mg, 0.10 mmol) and (R,R)-QunioxP* (33.5 mg, 0.10 mmol) was added toluene (10 mL). The resulting mixture was allowed to stir at room temperature for 0.5 h. B₂pin₂ (1.53 g, 6.0 mmol in 10 mL) was then introduced and the reaction was allowed to stir at same temperature for 10 min followed by addition of indole **1c** (1.21 g, 4.0 mmol in 20 mL toluene) and tBuOH (0.77 mL, 8.0 mmol) at same temperature. The resulting mixture was continued to stir at room temperature for 12 h. After removal of the solvent, the ¹H NMR of crude mixture was taken to determine the d.r. value (97:3). The residue was purified by column chromatography on silica gel using PE/EtOAc (12:1) as the eluent to affording corresponding 2-boryl indoline **2c** as colorless oil (1.64 g, 95% yield, 97:3 d.r., 96% ee).

11. C3 functionalzation of 2-borylindoline 4

To a 50-mL flame-dried flask charged with 2-borylindoline 2c (1.64 g, 3.80 mmol) and THF (30 mL) was added LDA (2.85 mL, 2M in hep/ethylbenzene, 5.7 mmol, 1.5 equiv) at -78 °C dropwisely. The resulting mixture was allowed at same temperature for 30 min. The allyl bromide (0.49 mL, 5.7 mmol, 1.5 equiv) was then added slowly at -78 °C. The reaction mixuture was then allowed to warm to room temerature and continued to stir at same temperature for 3 h. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (20: 1) as the eluent to afford C3 allylated 2-borylindoline **4a** as colorless oil (1.75 g, 98%). The relative configuration was determined by 2D NMR NOSEY spectrum.

96:4 *d.r.*, 95% *ee*, $[\alpha]_D^{25} = -50.0$ (*c* 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.47 (m, 1H), 7.35-7.33 (m, 1H), 7.18 (s, 1H), 6.91 (s, 1H), 5.60 (s, 1H), 5.13-5.05 (m, 3H), 3.87 (s, 1H), 2.60-2.66 (m, 2H), 1.57 (s, 9H), 1.27 (brs, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 152.3, 142.1, 132.6, 132.0, 128.6, 124.4, 121.7, 119.2, 114.9, 83.4, 81.1, 69.5, 54.1, 45.1, 28.4, 28.0, 25.3, 24.9, 21.7, 21.6; HRMS (ESI) calcd for C₂₆H₃₈BNNaO₆ ([M+Na]⁺): 494.2690, found: 494.2689. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 98:2, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 6.73 (minor), 8.94 (major)

To a 25-mL flame-dried flask charged with 2-borylindoline 2c (86.2 mg, 0.20 mmol) and THF (1 mL) was added LDA (150 µL, 2M in hep/ethylbenzene, 0.3 mmol, 1.5 equiv) at -78 $\,$ C dropwisely. The resulting mixture was allowed at same temperature for 10 min. The iodomethane (24.4 µL, 0.4 mmol, 2.0 equiv) was then added slowly at -78 °C. The reaction mixuture was then allowed to warm to room temerature and continued to stir at same temperature for 10 min. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (15: 1) as the eluent to afford C3 methylated 2-borylindoline 8 as colorless oil (59.6 mg, 67%).d.r. = 2:1, 96% ee, $[\alpha]_D^{25}$ = -18.0 (c 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.28-7.27 (m, 1H), 7.20-7.16 (m, 1H), 6.93-6.90 (m, 1H), 5.00-4.97 (m, 1H), 4.38 (s, 0.3H), 3.68 (s, 0.6H), 1.58 (s, 9H), 1.29-1.20 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ174.0, 173.5, 152.6, 129.0, 128.5, 124.6, 123.7, 122.7, 121.9, 121.8, 115.3, 114.9, 83.5, 81.1, 69.3, 68.8, 57.7, 28.4, 28.0, 27.2, 25.3, 24.9, 21.7, 21.5; HRMS (ESI) calcd for $C_{24}H_{36}BNNaO_6$ ([M+Na]⁺): 468.2528, found: 468.2542. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 99:1, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 9.29 (minor), 11.54 (major)

To a 25-mL flame-dried flask charged with 2-borylindoline 2c (86.2 mg, 0.20 mmol) and THF (1 mL) was added LDA (150 µL, 2M in hep/ethylbenzene, 0.3 mmol, 1.5 equiv) at -78 $\,$ C dropwisely. The resulting mixture was allowed at same temperature for 10 min. The benzyl bromide (35.6 µL, 0.3 mmol, 1.5 equiv) was then added slowly at -78 °C. The reaction mixuture was then allowed to warm to room temerature and continued to stir at same temperature for 10 min. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (15: 1) as the eluent to afford C3 benzylated 2-borylindoline 4c as colorless oil (67.8 mg, 65%). 95% *ee*, $[\alpha]_D^{25} = -23.0$ (*c* 0.57, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.34 (m, 2H), 7.19-7.09 (m, 4H), 6.94-6.74 (m, 3H), 5.09 (s, 1H), 3.97 (s, 1H), 3.27 (d, J = 6.8 Hz, 1H), 3.10-3.02 (m, 1H), 1.46 (s, 9H), 1.31-1.23 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 151.7, 142.9, 135.7, 131.8, 129.9, 128.7, 127.7, 126.6, 124.9, 121.4, 115.1, 83.3, 80.9, 69.7, 58.9, 53.6, 46.3, 28.3, 25.2, 24.7, 21.7; HRMS (ESI) calcd for $C_{30}H_{41}BNO_6$ ([M+H]⁺): 522.3021, found: 522.3030. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 99:1, flow rate = 1.0 mL/min., wavelength = 254 nm, $t_R = 4.67$ (minor), 5.08 (major)

To a 25-mL flame-dried flask charged with 2-borylindoline **2c** (86.2 mg, 0.20 mmol) and THF (1 mL) was added LDA (150 μ L, 2M in hep/ethylbenzene, 0.3 mmol, 1.5 equiv) at -78 °C dropwisely. The resulting mixture was allowed at same temperature for 10 min. The Ethyl bromoacetate (35.6 μ L, 0.3 mmol, 1.5 equiv) was then added slowly at -78 °C. The reaction mixuture was then allowed to warm to room temerature and continued to stir at same temperature for 10 min. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (12: 1) as the eluent to afford C3-alkylate 2-borylindoline **4d** as colorless oil (64.2mg, 62%). 96% *ee*, $[\alpha]_D^{25} = -32.0$ (*c* 0.32, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.48 (m, 1H), 7.27-7.18 (m, 2H), 6.91-6.89 (m, 1H), 5.08-5.05 (m, 1H), 4.13 (q, J = 6.6 Hz, 2H), 3.97 (s, 1H), 3.06(brs, 1H), 2.83 (d, J = 12.8 Hz, 1H), 1.58 (s, 9H), 1.27-1.22 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 169.9, 152.2, 141.3, 131.8, 129.1, 123.9, 121.8, 115.0, 83.4, 81.4, 69.7, 60.9, 56.2, 54.7, 45.2, 28.4, 25.4,

24.8, 21.7, 21.5, 14.0; HRMS (ESI) calcd for $C_{27}H_{41}BNO_8$ ([M+H]⁺): 518.2920, found: 518.2927. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak ODH column, Hexane/*i*PrOH = 90:10, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 6.65 (minor), 13.54 (major).

12. NOSEY spectrum of allylated 2-borylindoline 4

13. Oxidation of 2-borylindoline 4

The oxidation of 2-borylindoline was adapted from literature procedures.⁷ To a 25-mL flask charged with 4 (95 mg, 0.20 mmol), THF (2 mL) and H₂O (2 mL) was added NaBO₃ 4H₂O (123.2 mg, 0.80 mmol, 4.0 equiv) at room temperature. The

^{7.} F. Meng, K. P. McGrath and A. H. Hoveyda Nature 2014, 513, 367.

resulting mixture was allowed to stir at same temperature for 2 h. The reaction was then quenched with saturated Na₂S₂O₃ (5 mL) and diluted with water (20 mL). The biphasic solution was extracted with DCM 3 times (3 X 10 mL). The combined organic phase was then concentrated. The residue was dissolved in anhydrous DCM (5 mL) and cooled to 0 %. Bz₂O (68.0 mg, 0.30 mmol) and DMAP (2.7 mg, 0.02 mmol) were then introduced followed by slow addition of pyridine (24 µL, 0.30 mmol). The resulting mixture was then continued to stir at room temperature for 2 hours. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (10:1) as the eluent to afford corresponding indoline **5** as colorless oil (55.8 mg, 60% yield).

95% *ee*, $[\alpha]_D^{25} = +82.7$ (*c* 0.38, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.93 (m, 2H), 7.53-7.49 (m, 2H), 7.37-7.26 (m, 3H), 7.16-7.10 (m, 2H), 5.62-5.55 (m, 1H), 5.12 -5.05 (m, 2H), 4.88-4.85 (m, 1H), 2.97-2.92 (m, 1H), 2.55-2.50 (m, 1H), 1.45 (s, 9H), 1.17 (d, J = 6.0 Hz, 3H), 0.92 (d, J = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 164.2, 151.1, 141.2, 134.5, 133.3, 131.2, 130.6, 129.8, 129.6, 128.9, 128.7, 128.4, 126.8, 122.8, 119.9, 114.7, 87.0, 82.5, 69.2, 59.7, 42.4, 28.2, 21.7, 21.3; HRMS (ESI) calcd for C₂₀H₂₆NO₄ ([M-OBz]⁺): 344.1862, found: 344.1849. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 99:1, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 10.90(minor), 12.72 (major)

14. Stereospecific vinylation of 2-borylindoline 4.

This reaction was adapted from the literature procedures.⁸ To a 25-mL flame-dried Schlenk tube charged with **4** (110 mg, 0.23 mmol) and THF (2 mL) was added vinylMgBr (0.35 mL, 1 M in THF, 0. 35 mmol, 1.5 equiv) at room temperature. The resulting mixture was allowed to stir at same temperature for 0.5 h. Methanolic

^{8.} R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier, H. K. Scott and V. K. Aggarwal, *Angew. Chem., Int. Ed.* **2011**, 50, 3760.

solution of I₂ (292 mg, 1.15 mmol, 3 mL MeOH) was then introduced slowly to the reaction mixture at -78 °C. The reaction was then allowed to stir at this temperature for additional 0.5 h. Methanolic solution of NaOMe (62.1 mg, 1.15 mmol, 3 mL MeOH) was then added slowly at -78 °C. The resulting mixture was then warmed to room temperature and continued to stir at this temperature for 1 h. Saturated aqueous $Na_2S_2O_3$ (5 mL) was then added quench the reaction. After dilution with H₂O (20 mL), the mixture was extracted with EtOAc 3 times (3 X 20 mL). The combined organic phase was dried over anhydrous Na₂SO₄. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (20:1) as the eluent to afford corresponding 2-vinylindoline 6 as colorless oil (83.5 mg, 98% yield). 95% ee, $[\alpha]_D^{25} = +99.4$ (c 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) 7.84 (brs, 1H), 7.30-7.24 (m, 2H), 7.01-6.98 (m, 1H), 5.73-5.64 (m, 1H), 5.57-5.48 (m, 1H), 5.25-5.21 (m, 1H), 5.14-5.11 (m, 1H), 5.05-5.03 (m, 2H), 4.59 (brs, 1H), 2.82-2.79 (m, 1H), 2.53-2.48 (m, 1H), 1.53 (s, 9H), 1.26-1.22 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 151.8, 141.0 133.0, 132.2, 128.4, 126.8, 122.2, 119.3, 118.2, 115.0, 82.3, 70.5, 68.6, 59.1, 43.9, 28.3, 21.8, 21.7 (one sp^2 carbon signal does not show.) HRMS (ESI) calcd for $C_{22}H_{33}N_2O_4$ ([M+NH₄]⁺): 389.2435, found: 389.2429. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 99:1, flow rate = 1.0 mL/min., wavelength = 254 nm, $t_R = 9.23$ (major), 10.03 (minor)

15. Stereospecific arylation of 2-borylindoline 4.

This reaction was adapted by the literature procedures.⁹ To a 25-mL Schlenk tube charged with 4 (94 mg, 0.20 mmol) and THF (2 mL) was added freshly prepared fur-2-yl lithium (0.20 mL, 1.0 M in THF/hexanes, 0.20 mmol) slowly at -78 °C. The resulting mixture was then allowed to stir at this temperature for 1.5 h. NBS (36 mg, 0.20 mmol) in THF (2 mL) was then added slowly to the reaction mixture at -78 °C. The reaction was continued to stir at -78 °C for 0.5 h. Saturated aqueous Na₂S₂O₃ (2.5

^{9.} A. Bonet, M. Odachowski, D. Leonori, S. Essafi and V. K. Aggarwal, Nat. Chem. 2014, 6, 584.

mL) was then introduced to quench the reaction at room temperature. The organic phase was separated and the rest was extracted with EtOAc 3 times (3 X 10 mL). The combined organic phase was then dired over Na_2SO_4 . After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (20:1) as the eluent to afford corresponding 2-(2-furyl)-indoline **7** as colorless oil (32.9 mg, 40% yield).

Colorless oil, 32.9 mg, 40% yield, 95% *ee*, $[\alpha]_D^{25} = +72.8$ (*c* 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (brs, 1H), 7.41-7.45 (m, 1H), 7.23-7.21 (m, 1H), 7.06-7.03 (m, 1H), 6.21 (s, 1H), 6.03 (brs, 1H), 5.62-5.52(m, 1H), 5.25 (s, 1H), 5.09-5.02(m, 2H), 4.83-4.78 (m, 1H), 2.86-2.81 (m, 1H), 2.64-2.58 (m, 1H), 1.41 (s, 9H), 1.09 (d, *J* = 6.0 Hz, 3H), 0.95 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 152.8, 151.6, 141.1, 132.0, 128.5, 126.8, 122.3, 119.5, 114.7, 110.3, 106.9, 81.1, 68.5, 65.1, 45.1, 29.3, 28.2, 21.6, 21.3; HRMS (ESI) calcd for C₂₄H₃₃N₂O₅ ([M+NH₄]⁺): 429.2384, found: 429.2380. The enantiopurity was determined by HPLC analysis (Daicel Chiralpak IE column, Hexane/*i*PrOH = 99:1, flow rate = 1.0 mL/min., wavelength = 254 nm, t_R = 11.34 (major), 14.09 (minor).

16. Crystallographic data of compound 2s

Table S2.	Crystal data and structure refinement for	or 2s .
Identification	on code	1
Empirical f	ormula	C23 H33 B Br N O6
Formula weight	510.22	
---	---	-----------------------
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2(1)2(1)2(1)	
Unit cell dimensions	a = 10.0308(12) Å	$\alpha = 90^{\circ}$
	b = 12.6903(16) Å	$\beta = 90^{\circ}$
	c = 19.943(2) Å	$\gamma=90^\circ$
Volume	2538.6(5) Å ³	
Z	4	
Density (calculated)	1.335 Mg/m ³	
Absorption coefficient	1.655 mm ⁻¹	
F(000)	1064	
Crystal size	$0.30 \ge 0.20 \ge 0.20 \ \text{mm}^3$	
Theta range for data collection	1.90 to 25.00 °.	
Index ranges	$\hbox{-11<=}h{<}=11, \hbox{-15<=}k{<}=11, \hbox{-23<=}l{<}=22$	
Reflections collected	12877	
Independent reflections	4452 [R(int) = 0.0382]	
Completeness to theta = 25.00°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7331 and 0.6365	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4452 / 0 / 298	
Goodness-of-fit on F ²	1.001	
Final R indices [I>2sigma(I)]	R1 = 0.0408, wR2 = 0.1040	
R indices (all data)	R1 = 0.0506, wR2 = 0.1091	
Absolute structure parameter	0.029(10)	
Largest diff. peak and hole	0.584 and -0.841 e.Å ⁻³	

17. NMR spectra of all new compounds Compound 1a

Compound 1b

S39

Compound 1c

Compound 1d

S41

Compound 1e

Compound 1f

Compound 1g

Compound 1h

Compound 1i

Compound 1j

Compound 1k

Compound 11

Compound 1m

Compound 1n

Compound 1o

Compound 1p

Compound 1q

Compound 1r

S55

Compound 1s

Compound 1t

Compound 1u

Compound 1v

Compound 1w

Compound 1x

Compound 1y

S65

Compound S6

Compound 2a

Compound 2c

-31.8

Compound 2e

-31.9

-5.394 -5.266 -5.066 -5.066 -5.066 -5.066 -5.066 -5.066 -3.740 ---0.000

-1.181

Compound 2f

Compound 2g

-31.5

Compound 2i

Compound 2k

Compound 2m

Compound 2o

-30.7

Compound 2q

Compound 2s

Compound 2v

Compound 4a

Compound 4b

S104

Compound 4c

Compound 4d

Compound 5

Compound 6

Compound 7

