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Figure S1: Performance of different model selection criteria on the simulated 3-state data sets used in Fig. 1. The
graphs show the fraction of data sets classified to different number of states, where 3 states is the true answer.
Model selection criteria: Criteria: Variational Bayes (“VB”), Akaike’s information criterion (“AIC”), pseudo-Bayes
factor (PBF) cross-validation on single trajectories (“leave-1-out CV”), PBF cross-validation on randomly selected
trajectories corresponding to 10% of the total data set (“10% CV”), PBF cross-validation on randomly selected
trajectories with about 300 positions in total (“300 pos. CV”), variational Bayes with vbSPT [1], which uses a
model without localization errors or motion blur (“vbSPT”).
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Figure S2: Diffusion constant estimates in an E coli geometry. Maximum likelihood estimates of diffusion constant,
from simulated movies with a single diffusive state and otherwise as for Fig. 5. We estimated based on both
x, y-coordinates (+) and position along the long cell axis (“MLE 1d”, square). The downward bias in the
x, y-analysis for high diffusion constants is comparable to the one seen for slow kinetics in Fig. 5b, which also used
x, y-coordinates, but using the long axis (1d) coordinate only reduces the bias. This rules out state-switching or bias
from prior parameters (which are absent here). However, the fact that the 1d analysis is less biased argues strongly
for a confinement artifact, since motion perpendicular to the cell long axis is more severely confined. Bootstrap
standard error (not shown) are smaller than the symbols.
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In the next sections, we go through the trajectory model and derivation of the variational inference algorithms in
detail. We first consider the case where both positions and localization uncertainties are estimated from the data.
Variations of the algorithms where localization uncertainties are instead model parameters are considered in Sec. S5.
This text is an excerpt from the vbSPTu software documentation, available at https://github.com/bmelinden/.
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S1. MODEL WITH ESTIMATED UNCERTAINTIES

Here, we simply state a diffusive hidden Markov model which assumes free diffusion in dim dimensions and gen-
eralizes the Berglund model of camera-based tracking [2] to free diffusion in dim dimensions, with diffusion constant
goverend by a distrete state Markov process, and arbitrary uncorrelated localization errors. This model was previously
considered in Ref. [3], and we refer to the supporting information of that work for details of the derivation. Here,
we closely follow that formulation with some crucial differences in mathematical formulation (but not in physical
interpretation) as noted below, which lead to much more efficient inference algorithms. Later, we also consider some
variations of the model.

S1.1. Data

We assume that we measure a set of positions xtm with associated uncertainties (variances of a Gaussian distribution)
vtm, where t = 1, 2, . . . , T describes time points in a trajectory, and m = 1, 2, . . . ,dim is the coordinate dimension.
We allow for missing data points, which we keep track of with the indicator variable

ot =
{

1 , if there is data at time t,
0 , if not. (S1)

As we will see, one can in practise dispense with ot almost everywhere if missing data points are assigned the value
vtm → ∞, so that 1/vtm = 0. Data in several dimensions are assumed independent, which among other things mean
that we neglect correlations between the localization errors in different coordinates. The application we have in mind
is mostly data sets consisting of many independent trajectories, but for notational simplicity we do the math for a
single trajectory only, except when otherwise noted.

S1.2. Equations of motion

a. Hidden states st ∈ {1, 2, . . . , N}, t = 1, 2, . . . , T :

p(s1) = πs1 , p(st+1|st) = Ast,st+1 . (S2)

We follow recent versions of vbSPT [1] and parameterize Aij in a form that makes it easier to formulate priors using
physical insights about dwell times, and set

Aij = δij(1 − ai) + (1 − δij)aiBij = (1 − ai)δija
(1−δij)
i B

(1−δij)
ij , (S3)

with constraints

0 ≤ aj ≤ 1, Bii = 0,
∑
j ̸=i

Bij = 1. (S4)

This means that ai = p(st+1 ̸= i|st = i) is the probability to exit state i, and Bij = p(st+1 = j|st = i, i ̸= j) is a
matrix of jump probabilities, conditional on a jump actually occurring. While, non-standard for HMMs, we believe
that this allows for formulating prior distributions that are easier to interpret, and thus can be formulated with
greater confidence. However, in Sec. S4.2 we show that a certain class of prior choices lead to algorithms that are
mathematically equivalent to the more conventional formulation where A is explicitly kept as a model parameter.

b. True diffusive path

yt+1,m = ytm +
√
λstεtm, εtm ∈ N(0,1) iid., (S5)

where λst = 2Dst∆t is the diffusive step-length variance.
c. Measured and motion-averaged positions We model two sources of position noise, motion blur and localization

errors, by the equation

xtm =
∫ ∆t

0
f(t′)ym(t+ t′)dt′︸ ︷︷ ︸

≡ztm

+
√
vtmξ

(x)
tm , (S6)
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where ym(t) is the continuous true diffusion path.
The first term ztm represent the motion-averaged position, and can be rewritten in terms of the discrete true

positions ytm [3], as

ztm = (1 − τ)ytm + τyt+1,m +
√
βλstζtm. (S7)

Here, τ and β = τ(1 − τ) − R are blur coefficients introduced in Ref. [3], and R is the original blur coefficient of
Berglund [2]:

τ = 1
∆t

∫ ∆t

0
f(t)t dt, F (t) =

∫ t

0
f(t′)dt′, R =

∫ ∆t

0
F (t)(1 − F (t))dt, (S8)

where f(t) is the shutter function [2], which describes the distribution of emitted light in each exposure. For example,
continuous exposure during a time tE in the beginning of each frame (0 < tE ≤ ∆t) leads to [3]

f(t) =
{ 1

tE
, 0 ≤ t ≤ tE ,

0, tE < t < ∆t. ⇒ τ = 1
2
tE
∆t

, R = 1
6
tE
∆t

, β = 1
4
tE
∆t

(4
3

− tE
∆t

)
. (S9)

The second term in Eq. (S6) represents a localization error, and thus we can write the measured position as

xtm = ztm +
√
vtmξtm, (S10)

where vt is the variance of the localization uncertainty at time t.
This formulation differs from our previous treatment [3] in that we do not integrate out ztm at this point, although it

can be done analytically. Instead, we keep both ytm and ztm as hidden path variables. While this doubles the number
of Gaussian nuisance variables, it keeps the model in the exponential family, which leads to analytically tractable
variational algorithms that allow a fully Bayesian treatment, large computational speed-ups, and treatment of several
variant models, compared to our previous work.

d. Model parameters

θ = {λ, π,B, a}. (S11)

S1.3. Likelihood

Putting it all together, the complete data likelihood can be written

p(x, z, y, s|π, a,B, λ) = p(x|z)p(z|y, s, λ)p(y|s, λ)p(s|π, a,B), (S12)

with

ln p(s|π, a,B) =
N∑

i=1
δi,s1 ln πi (S13)

+
T −1∑
t=1

N∑
k,j=1

δk,stδj,st+1

[
δkj ln(1 − ak) + (1 − δkj) ln ak + (1 − δkj) lnBkj

]
, (S14)

ln p(y|s, λ) = −1
2

T∑
t=1

N∑
k=1

dim∑
m=1

δkst

(
ln(2πλk) + λ−1

k (yt+1,m − ytm)2
)
, (S15)

ln p(z|y, s, λ) = −1
2

T∑
t=1

N∑
k=1

dim∑
m=1

δkst

(
ln(2πβλk) + (βλk)−1(ztm − (1 − τ)ytm − τyt+1,m)2

)
, (S16)

ln p(x|z) = −1
2

T∑
t=1

ot

dim∑
m=1

(
ln(2πvtm) + v−1

tm(xtm − ztm)2
)
. (S17)
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S2. INFERENCE, MODEL SELECTION, AND VARIATIONAL APPROXIMATIONS

S2.1. Maximum evidence and Variational Bayes inference

In a pure Bayesian treatment [4], we add prior distributions p(θ|M) ≡ p0(θ) on the parameter values (conditional
on model structure, M), and compute the evidence p(x|M) for different models by integrating out both parameters
and unobserved (nuisance) variables in the complete data likelihood,

p(x|M) =
∫
dz dy dθ

∑
s

p(x, z, y, s|θ)p0(θ). (S18)

This marginalization is intractable for our model, but we can make a mean-field approximation [4], and write

ln p(x|M) ≥ lnL =
∫
dz dy dθ

∑
s

q(s)q(y, z)q(θ) ln p(x, z, y, s|θ)p0(θ)
q(s)q(y, z)q(θ)

, (S19)

where the inequality follows from Jensen’s inequality, and q(s), q(y, z), q(θ) are arbitrary variational distributions, that
we will optimize to maximize the lower bound lnL, which is the mean-field approximation of lnL. Using functional
differentiation, and enforcing a normalization constraints of the variational distributions while optimizing lnL, we get
the variational equations

ln q(θ) = − lnZθ + ln p0(θ) + ⟨ln p(s|θ)⟩q(s) + ⟨ln p(y|s, θ)⟩q(s)q(y,z) + ⟨ln p(z|s, y, θ)⟩q(s)q(y,z) , (S20)
ln q(s) = − lnZs + ⟨ln p(s|θ)⟩q(θ) + ⟨ln p(y|s, θ)⟩q(θ)q(y,z) + ⟨ln p(z|y, s, θ)⟩q(θ),q(y,z) , (S21)

ln q(y, z) = − lnZyz + ⟨ln p(y|s, θ)⟩q(s)q(θ) + ⟨ln p(z|y, s, θ)⟩q(s)q(θ) ,+ ln p(x|z), (S22)

which we solve iteratively. From the likelihood terms one can see that a suitably factorized prior will lead to factoriza-
tion of the entire variational parameter distributions. We will assume such a prior structure, and furthermore choose
the functional forms of conjugate priors [4, 5] for computational tractability. We will also sometimes drop subscripts
from the average brackets ⟨·⟩ in unambiguous cases.

To actually compute the lower bound, we substitute the results of the variational updates back into lnL. The result
is especially convenient just after updating q(s), in which case a lot of terms cancel, and we end up with

lnL = lnZs +
⟨

ln p(x|z)
q(y, z)

⟩
q(y,z)

+
⟨

ln p0(θ)
q(θ)

⟩
q(θ)

. (S23)

The model selection criterion is then to prefer the model with the highest likelihood (or lower bound), or interpret
eln L or eF as proportional to the posterior probability that the model is true. The variational distributions can also
be used for (approximate) inference about the parameters and hidden states and paths.

S2.2. Maximum aposteriori estimates (MAP)

Instead of integrating over the parameters, maximum aposteriori inference simply seek parameter values that
maximize the likelihood,

lnL = max
θ

ln
∫
dz dy

∑
s

p(x, z, y, s|θ)p0(θ). (S24)

To derive approximate maximum likelihood inference, we make a variational ansatz with only q(s) and q(y, z), and
write

lnL = max
θ

∫
dz dy

∑
s

q(s)q(y, z) ln p(x, z, y, s|θ)p0(θ)
q(s)q(y, z)

, (S25)

and maximize w.r.t. q(s), q(y, z), and θ, to get

θMAP = argmaxθ

[
ln p0(θ) + ⟨ln p(s|θ)⟩q(s) + ⟨ln p(y|s, θ)⟩q(s)q(y,z) + ⟨ln p(z|s, y, θ)⟩q(s)q(y,z)

]
, (S26)

ln q(s) = − lnZs + ln p(s|θ) + ⟨ln p(y|s, θ)⟩q(y,z) + ⟨ln p(z|y, s, θ)⟩q(y,z) , (S27)
ln q(y, z) = − lnZyz + ⟨ln p(y|s, θ)⟩q(s)q(θ) + ⟨ln p(z|y, s, θ)⟩q(s)q(θ) ,+ ln p(x|z). (S28)
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After updating q(s), the lower bound is given by

lnL = lnZs +
⟨

ln p(x|z)
q(y, z)

⟩
q(y,z)

+ ln p0(θMAP ). (S29)

S2.3. Maximum likelihood estimates (MLE)

The Maximum likelihood estimate (MLE) is like MAP, but with priors removed. In practice, we will use MLE
rather than MAP, but note that MAP inference might offer a way to numerically stabilize MLE in a principled way.

S2.4. Cross-validation with point-estimates

An alternative to using the Bayesian maximum evidence criterion for model selection, is to estimate the predictive
performance of a model. This means that we imagine ensembles of training and validation data sets XT and XV , and
seek to maximize

lnP = ⟨ln p(XV |XT ,M)⟩XV ,XT
, (S30)

where the expectation is to be computed with respect to the true distribution of training and validation data sets.
Training and validation data is assumed to be identically distributed (except for possibly being of different size), and
their true distribution are not necessarily known, or part of the set of candidate models. The conditional dependence
in Eq. (S30) should be interpreted as learning the model (integrating/maximizing parameters, and integrating out
nuisance variables y, z, s) based on the training data.

In practice, we do not have an infinite amount of validation and training data, and instead divide out existing data
sets into K different partitions {(x(1)

V , x
(1)
T ), (x(2)

V , x
(2)
T ), . . . , (x(K)

V , x
(K)
T )}, and approximate the predictive performance

by a an average,

⟨ln p(XV |XT ,M)⟩XV ,XT
≈ 1
K

K∑
j=1

ln p(x(j)
V |x(j)

T ,M) (S31)

In practice, for each partition we learn (using MLE or MAP) a set of parameters θ(j)
T = θ(x(j)

T ), and use

ln p(x(j)
V |x(j)

T ,M) = ln p(x(j)
V |θ(j),M) = ln

∫
dyV dzV

∑
sV

p(x(j)
V , z

(j)
V , y

(j)
V , s

(j)
V |θ(j)

T ,M) (S32)

and do the marginalizations of yV , zV , sV using the same variational approximation as the inference, but exclude
explicit contributions from the prior to the predictive likelihood.

There is some freedom in choosing the size of the training and validation data sets, and to be able to compare
different choices, some normalization may be in order. The question is further complicated by the fact that the
statistically independent atoms of single particle tracking is (to good approximation) single trajectories, not single
coordinate observations, and single trajectories vary in length.

LaMont and Wiggins [6] suggested normalizing data sets of independent observations to the size of the full data
set. In our setting, this probably means rescaling the predictive performance of each validation set to the total data
set size,

ĤCV (M) = 1
K

K∑
j=1

N
(j)
V +N

(j)
T

N
(j)
V

ln p(x(j)
V |θ(j)

T ,M) = N

K

K∑
j=1

1
N

(j)
V

ln p(x(j)
V |θ(j)

T ,M), (S33)

where N··· means the number of coordinates (including missing positions) in the training/validation data sets, and
N = NT + NV if we always partition the data so that each data point is used exactly once. Equivalently, we could
rescale to compute the predictive performance per observed position.
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S2.5. Pseudo-Bayes factors

A Bayesian version of cross-validation is to include marginalization over parameters as well in the predictive perfor-
mance [7]. In particular, we use the parameter posterior from the training set as a prior in evaluating the performance
on the validation set. For brevity, we use the more compact notation

ST =(zT , yT , sT ), SV =(zV , yV , sV ), S =(z, y, s), (S34)∫
dST =

∫
dyT dzT

∑
sT

,

∫
dSV =

∫
dyV dzV

∑
sV

,

∫
dS =

∫
dy dz

∑
s

, (S35)

and the pseudo-Bayes factor for a single training-validation partition is then given by

lnPP BF (x(j)
V , x

(j)
T ) = ln

∫
dS

(j)
V dS

(j)
T dθp(x(j)

V , S
(j)
V |θ)p(x(j)

T , S
(j)
T |θ)p0(θ)∫

dS
(j)
T dθ′p(x(j)

T , S
(j)
T |θ′)p0(θ′)

= ln
∫
dS

(j)
V dS

(j)
T dθp(x(j)

V , S
(j)
V |θ)p(x(j)

T , S
(j)
T |θ)p0(θ) − ln

∫
dS

(j)
T dθp(x(j)

T , S
(j)
T |θ)p0(θ)

= ln p(x(j)
V , x

(j)
T |M) − ln p(x(j)

T |M) = ln p(x|M) − ln p(x(j)
T |M) ≈ lnL[x] − lnL[x(j)

T ]. (S36)

that is, the difference log evidence between the total and training data. On the other hand, one could also approximate
the training posterior by the variational parameter distributions from the training set,∫

dS
(j)
T p(x(j)

T , S
(j)
T |θ)p0(θ)∫

dS
(j)
T dθ′p(x(j)

T , S
(j)
T |θ)p0(θ)

≈ q(θ;x(j)
T ) ≡ q

(j)
T (θ), (S37)

which means that this approximate posterior is used as the prior for evaluating the validation set,

lnPP BF (x(j)
V , x

(j)
T ) ≈ lnL[x(j)

V ; q(j)
T (θ)]. (S38)

It is not quite clear which of these approximations is preferred theoretically. The lower bound difference of Eq. (S36)
seems more systematic in that it only approximates integrals with no reference to additional probabilistic interpre-
tations. On the other hand, the variational posterior, Eq. (S37), represents the approximate the Bayesian predictive
distribution available for practical use [4, 5], and hence is arguably a reasonable choice for assessing predictive per-
formance. Numerically, using the variational parameter posterior avoids potential cancellation problems inherent in
computing small differences between large numbers. Since the validation data sets will in general be smaller than the
training sets, the extra computational cost of converging both training and validation sets (as opposed to only the
training set, since the full data set is already converged) should be negligible. As for cross-validation, we compute an
average over many partitions,

ĤP BF (M) ≈ N

K

K∑
j=1

1
NV

lnPP BF (x(j)
V , x

(j)
T ) (S39)

and also normalize by validation set size in case of varying trajectory lengths. In order to generate the predictive/AIC
limit asymptotically, the validation sets should be chosen to be small [6, 7]. On the other hand, small validation data
sets means higher statistical errors in ĤP BF .

S3. VARIATIONAL BAYES ALGORITHM

S3.1. Inital state and transition probabilities

The variational equations for the parameters governing the hidden states are

ln q(πm) = − lnZπ + ln p0(πm) + ⟨δm,s1⟩ ln πm, (S40)

ln q(ak) = − lnZa + ln p0(ak) + ln(1 − ak)
T −1∑
t=1

⟨
δk,st

δk,st+1

⟩
+ ln ak

T −1∑
t=1

(
1 −

⟨
δk,st

δk,st+1

⟩ )
, (S41)

ln q(Bkj) = − lnZB,k + lnBkj

T −1∑
t=1

⟨
δk,stδj,st+1

⟩
, k ̸= j. (S42)
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Except for the summation bounds on t, this is the same as in vbSPT [1, software documentation], and all relevant
statistics are given in the count matrix

ŵij =
T −1∑
t=1

⟨
δk,stδj,st+1

⟩
(S43)

and expected occupancy ⟨δi,st⟩. Using conjugate priors, π and the rows (minus diagonal elements) of B get Dirichlet
distributions, while each ak is beta distributed (the 2-component Dirichlet).

q(π) = Dir(π|w(π)), w
(π)
j = w̃

(π)
j + ⟨δj,s1⟩ , (S44)

q(B) =
N∏

j=1
Dir(Bj,:|w(B)

j,: ), w
(B)
jk = w̃

(B)
jk + ŵij , (k ̸= j), (S45)

q(a) =
N∏

j=1
β(aj |w(a)

j1 , w
(a)
j2 ), w

(a)
j1 = w̃

(a)
j1 +

T −1∑
t=1

⟨
δj,st

(1 − δj,st+1)
⟩

= w̃
(a)
j1 +

∑
k ̸=j

ŵjk,

w
(a)
j2 = w̃

(a)
j2 +

T −1∑
t=1

⟨
δj,stδj,st+1

⟩
= w̃

(a)
j2 + ŵjj , (S46)

with where w̃(π)
j , w̃(B)

jk , and w̃(a)
jk are pseudo-counts in the prior distributions. The total number of pseudo-counts (for

each distribution) is called the prior strength and denoted w
(·)
0 =

∑
k w

(·)
k .

The Dirichlet density function, in this case for a vector x, is

Dir(x|w) = 1
B(w)

=
∏

j

x
(wj−1)
j , B(w) =

∏
j Γ(wj)
Γ(w0)

, w0 =
∑

k

wk (S47)

with the constraints 0 ≤ xj ≤ 1 and
∑

j xj = 1. The beta distribution is the special case of two components (x and
1 − x),

β(x|u, v) = Γ(u+ v)
Γ(u)Γ(v)

xu−1(1 − x)v−1. (S48)

The following average and mode values will be needed:

⟨ln πi⟩ =ψ(w(π)
i ) − ψ(w(π)

0 ), w
(π)
0 =

N∑
i=1

w
(π)
i , (S49)

⟨ln aj⟩ =ψ(w(a)
j1 ) − ψ(w(a)

j0 ), w
(a)
j0 =w(a)

j1 + w
(a)
j2 , (S50)

⟨ln(1 − aj)⟩ =ψ(w(a)
j2 ) − ψ(w(a)

j0 ), (S51)

⟨lnBjk⟩ =ψ(w(B)
jk ) − ψ(w(B)

j0 ), w
(B)
j0 =

N∑
k=1,k ̸=j

w
(B)
jk , (S52)
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Some additional variational mode∗, ⟨mean⟩ and variances are

π∗
i = w

(π)
i − 1

w
(π)
0 −N

, ⟨πi⟩ =w
(π)
i

w
(π)
0

, Var[πi] =w
(π)
i (w(π)

0 − w
(π)
i )

(w(π)
0 )2(w(π)

0 + 1)
, (S53)

a∗
i =w

(a)
i1 − 1

w
(a)
i0 − 2

, ⟨ai⟩ =w
(a)
i1

w
(a)
i0

, Var[aj ] =
w

(a)
j1 w

(a)
j2

(w(a)
j0 )2(1 + w

(a)
j1 )

, (S54)

(1 − ai)∗ =w
(a)
i2 − 1

w
(a)
i0 − 2

, ⟨1 − ai⟩ =w
(a)
i2

w
(a)
i0

, Var[1 − aj ] =Var[aj ] (S55)

B∗
jk =

w
(B)
jk − 1

w
(B)
j0 −N + 1

⟨Bjk⟩ =
w

(B)
jk

w
(B)
j0

, Var[Bjk] =
w

(B)
jk (w(B)

j0 − w
(B)
jk )

(w(B)
j0 )2(1 + w

(B)
j0 )

, (S56)

A∗
jj =???, ⟨Ajj⟩ = ⟨1 − aj⟩ , (S57)

A∗
jk =???, ⟨Ajk⟩ = ⟨ai⟩ ⟨Bjk⟩ . (S58)

The variational distributions of a,B induces a joint distribution on A, which can be written (for row i), as

q(Ai,:)dAi,: = qa(ai(Ai,:))qB(Bi,:(Ai,:))
∣∣∣∣∂(ai, Bi,:)

∂Ai,:

∣∣∣∣ dAi,:. (S59)

This is difficult to do analytically, and we leave the posterior mode of the transition matrix unknown.

S3.2. Dwell times

Mean dwell times (in units of ∆t) is τj = a−1
j . This gives the variational density function

q(τj) = q(aj(τj))
∣∣∣∣daj

dτj

∣∣∣∣ =
Γ(w(a)

j1 )Γ(w(a)
j2 )

Γ(w(a)
j0 )

τ
−w

(a)
j0

j (τj − 1)w
(a)
j2 −1, τj ≥ 1, (S60)

which means that

⟨τj⟩ =
⟨
a−1

j

⟩
=
w

(a)
j0

w
(a)
j1

= 1
⟨aj⟩

, (S61)

τ∗
j =

w
(a)
j0

1 + w
(a)
j1

, (S62)

⟨
τ2

j

⟩
=
⟨
a−2

j

⟩
q(a) = ⟨τj⟩

w
(a)
j0 − 1

w
(a)
j1 − 1

= ⟨τj⟩2 w
(a)
j0 − 1

w
(a)
j0 − ⟨τj⟩

, (S63)

Var(τj) =
⟨
τ2

j

⟩
− ⟨τj⟩2 = ⟨τj⟩2 (⟨τj⟩ − 1)

w
(a)
j0 − ⟨τj⟩

. (S64)

or

w
(a)
j1 =

w
(a)
j0

⟨τj⟩
= 1 + ⟨τj⟩ (⟨τj⟩ − 1)

Var(τj)
,

w
(a)
j2 =w(a)

j0
⟨τj⟩ − 1

⟨τj⟩
= (⟨τj⟩ − 1)w(a)

j1 . (S65)
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S3.3. Step variance

ln q(λk) = − lnZλ + ln p0(λk)

− 1
2

T∑
t=1

dim∑
m=1

⟨δkst⟩
(

2 lnλk + λ−1
k

[ ⟨
(yt+1,m − ytm)2⟩+ β−1 ⟨(ztm − (1 − τ)ytm − τyt+1,m)2⟩ ]). (S66)

If the prior is inverse gamma, then so is q(λk):

q(λk) =
cnk

k

Γ(nk)
λ−nk−1

k e−ck/λk . (S67)

with

nk = ñk + n̂k, ck = c̃k + ĉk. (S68)

Here, ñk, c̃k are prior parameters, and the data-dependent terms are given by

n̂k = dim ×
T∑

t=1
⟨δkst⟩ , (S69)

and

ĉk = 1
2

T∑
t=1

⟨δkst
⟩

dim∑
m=1

{(
⟨yt+1,m⟩ − ⟨ytm⟩

)2 + β−1( ⟨ztm⟩ − (1 − τ) ⟨ytm⟩ − τ ⟨yt+1,m⟩
)2

+
(
1 + β−1(1 − τ)2)Σytm,ytm +

(
1 + β−1τ2)Σyt+1,m,yt+1,m + β−1Σztm,ztm

−2
(
1 − β−1τ(1 − τ)

)︸ ︷︷ ︸
=2R/β

Σytm,yt+1,m − 2β−1(1 − τ)Σztm,ytm − 2β−1τΣztm,yt+1,m

}
, (S70)

where Σ are joint covariance matrices of q(y:,m, z:,m). We need the following averages (dropping the subscript):

⟨λ⟩ = c

n− 1
, (S71)

std[λ] = c

(n− 1)
√
n− 2

, (S72)⟨
λ−1⟩ = n

c
, (S73)

⟨lnλ⟩ = ln c− ψ(n), (S74)
λ∗ = c

n+ 1
, (S75)

Here, ψ is the digamma function, and the asterix ∗ denotes the mode (most likely value). Since λ = 2D∆t, the
variational distribution for the diffusion constant is

q(Dk) = (ck/2∆t)nk

Γ(nk)
D−nk−1

k e−(ck/2∆t)/Dk , (S76)

i.e., D is also inverse gamma, with

c
(D)
k = c

(λ)
k /2∆t, n

(D)
k = n

(λ)
k . (S77)
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S3.4. Hidden states

ln q(s) = − lnZs +
N∑

i=1
δi,s1 ⟨ln πi⟩ (S78)

+
T −1∑
t=1

N∑
k,j=1

δk,stδj,st+1

[
δkj ⟨ln(1 − ak)⟩ + (1 − δkj) ⟨ln ak⟩ + (1 − δkj) ⟨lnBkj⟩

]
(S79)

−1
2

T∑
t=1

N∑
i=1

dim∑
m=1

δist

[
⟨ln(λi)⟩ +

⟨
λ−1

i

⟩ ⟨
(ytm − yt+1,m)2⟩ ] (S80)

−1
2

T∑
t=1

N∑
i=1

dim∑
m=1

δist

[
⟨ln(λi)⟩ + β−1 ⟨λ−1

i

⟩ ⟨
(ztm − (1 − τ)ytm − τyt+1,m)2⟩ ] (S81)

= − lnZs +
T −1∑
t=1

N∑
k,j=1

δk,stδj,st+1 lnQjk +
T∑

t=1

N∑
i=1

δist lnHti, (S82)

with

lnQkj = δkj ⟨ln(1 − ak)⟩ + (1 − δkj)
[

⟨ln ak⟩ + ⟨lnBkj⟩
]
, (S83)

lnHti = δ1t ⟨ln πi⟩ − dim × ⟨ln(λi)⟩ (S84)

− 1
2
⟨
λ−1

i

⟩ dim∑
m=1

{(
⟨yt+1,m⟩ − ⟨ytm⟩

)2
+ β−1

(
⟨ztm⟩ − (1 − τ) ⟨ytm⟩ − τ ⟨yt+1,m⟩

)2
(S85)

+
(

1 + (1 − τ)2

β

)
Σytmytm +

(
1 + τ2

β

)
Σyt+1,myt+1,m + 1

β
Σztmztm (S86)

−2
(

1 − τ(1 − τ)
β

)
︸ ︷︷ ︸

=2R/β

Σytmyt+1,m − 21 − τ

β
Σytmztm − 2τ

β
Σyt+1,mztm

}
. (S87)

Averages ⟨δj,st⟩,
∑T −1

t=1
⟨
δk,stδj,st+1

⟩
, and the normalization constant lnZs are computed with the standard forward-

backward algorithm.

S3.5. Hidden trajectories

ln q(y, z) = const.− 1
2

T∑
t=1

dim∑
m=1

ot
(xtm − ztm)2

vtm
− 1

2

T∑
t=1

N∑
i=1

dim∑
m=1

⟨δist
⟩
⟨
λ−1

i

⟩
(yt+1,m − ytm)2

− 1
2

T∑
t=1

N∑
i=1

dim∑
m=1

⟨δist⟩
⟨
(βλi)−1⟩ (ztm − (1 − τ)ytm − τyt+1,m)2 (S88)

This is a product of dim multivariate normals. We introduce an effective step variance defined by

1
αt

=
N∑

i=1
⟨δist⟩

⟨
λ−1

i

⟩
, (S89)
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and expand:

ln q(y, z) = const.− 1
2

T∑
t=1

dim∑
m=1

{
ot

vtm
x2

tm + ot

vtm
z2

tm − 2 ot

vtm
xtmztm + y2

tm

αt
+
y2

t+1,m

αt
− 2ytmyt+1,m

αt

+ z2
tm

βαt
+ (1 − τ)2

βαt
y2

tm + τ2

βαt
y2

t+1,m − 21 − τ

βαt
ytmztm − 2 τ

βαt
yt+1,mztm + 2τ(1 − τ)

βαt
ytmyt+1,m

}

= const.− 1
2

T∑
t=1

dim∑
m=1

{(
1 + (1 − τ)2

β

)y2
tm

αt
+
(

1 + τ2

β

)y2
t+1,m

αt
+ 2
( τ(1 − τ)

β
− 1︸ ︷︷ ︸

=R/β

)ytmyt+1,m

αt

− 21 − τ

βαt
ytmztm − 2 τ

βαt
yt+1,mztm +

( ot

vtm
+ 1
βαt

)
z2

tm − 2 ot

vtm
xtmztm + ot

vtm
x2

tm

}
. (S90)

Written in matrix notation, with

zm =
[
z1m, z2m, . . . , zT m

]†
, ym =

[
y1m, y2m, . . . , yT m, yT +1,m

]†
, (S91)

we have

ln q(y, z) = const.− 1
2

dim∑
m=1

{[
y†

m, z
†
m

] [ Ayy −Ayz

−A†
yz Azzm

] [
ym

zm

]
− 2
[
0, x†

mVm

] [
ym

zm

]}
, (S92)

with Ayy ∈ R(T +1)×(T +1), Ayz ∈ R(T +1)×T , and Azz ∈ RT ×T , given by

Ayy =



1
α1

(
1 + (1−τ)2

β

)
R

βα1
0 · · ·

R
βα1

1
α2

(
1 + (1−τ)2

β

)
+ 1

α1

(
1 + τ2

β

) . . .

0
. . . . . .

...
1

αT

(
1 + (1−τ)2

β

)
+ 1

αT −1

(
1 + τ2

β

)
R

βαT

R
βαT

1
αT

(
1 + τ2

β

)


,

(S93)
and

Ayz = 1
β



1−τ
α1

0 0 · · ·
τ
α 1

1−τ
α2

0
0 τ

α 2
1−τ
α3

0
0 0 τ

α 3
...

. . .
1−τ
αT
τ

αT


, (S94)

Azzm = diag
([ o1

v1m
+ 1
βα1

,
o2

v2m
+ 1
βα2

, . . . ,
oT

vT m
+ 1
βαT

])
, (S95)

Vm = diag
([ o1

v1m
,
o2

v2m
, . . . ,

oT

vT m

])
. (S96)

Finally, we rewrite ln q(y, z) in the canonical form for multivariate normal distributions,

ln q(y, z) = − lnZyz − 1
2

dim∑
m=1

[
y†

m − ⟨ym⟩†
, z†

m − ⟨zm⟩†
] [ Σyym Σyzm

Σ†
yzm Σzzm

]−1 [
ym − ⟨ym⟩
zm − ⟨zm⟩

]
(S97)

= − lnZyz − 1
2

dim∑
m=1

[
y†

m − ⟨ym⟩†
, z†

m − ⟨zm⟩†
] [ Ayy −Ayz

−A†
yz Azzm

] [
ym − ⟨ym⟩
zm − ⟨zm⟩

]
, (S98)
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where the covariance matrix is given by[
Ayy −Ayz

−Azy Azzm

] [
Σyym Σyzm

Σzym Σzzm

]
=
[
I 0
0 I

]
. (S99)

Expanding Eq. (S98), we get

ln q(yz) = const.− 1
2

dim∑
m=1

{[
y†

m, z
†
m

] [ Ayy −Ayz

−A†
yz Azzm

] [
ym

zm

]
− 2
[

⟨ym⟩†
, ⟨zm⟩†

] [ Ayy −Ayz

−A†
yz Azzm

] [
ym

zm

]
, (S100)

and comparing the linear term with that of Eq. (S92), we see that the expectation values are given by[
Ayy −Ayz

−Azy Azzm

] [
⟨ym⟩
⟨zm⟩

]
=
[

0
Vmxm

]
. (S101)

The A-matrix blocks have some nice sparsity and symmetry properties: diagonal (Azzm), symmetric tri-diagonal
(Ayy), or asymmetric and non-square bi-diagonal (Ayz). We also note that Azz is guaranteed to be invertible, since
it is diagonal and βλt > 0 for all t. Furthermore, since q(y, z) is multivariate normal, the marginal distributions for
y and z are too. This means that both Σyym and Σzzm are invertible, since otherwise the marginals would not be
properly defined.

Algorithmically, we can avoid full matrix inversions, since only a special subset of covariances are needed, namely

Var(ytm) = Σytmytm , Σytmyt+1,m , Σytmztm , Var(ztm) = Σztmztm , Σyt+1mztm . (S102)

We also need the determinant of the full covariance matrix for the lower bound, but as we show below, this can
be reduced to computing |Azzm| (easy, since Azzm is diagonal), and |Σ−1

yym| (also fairly easy, since this matrix is
symmetric and tridiagonal).

In all, this suggests that further analytical calculations would be valuable.
a. Covariance matrices Manipulations of the inversion equation (S99) leads to

Σ−1
yym = (Ayy −AyzA

−1
zzmAzy)︸ ︷︷ ︸

symmetric tridiagonal

, (S103)

Σyzm = (Ayy −AyzA
−1
zzmAzy)−1AyzA

−1
zzm = ΣyymAyzA

−1
zzm, (S104)

Σzym = Σ†
yzm, (S105)

Σzzm = A−1
zzm(I +AzyΣyzm) = A−1

zzm +A−1
zzmAzyΣyymAyzA

−1
zzm. (S106)

To figure out which elements are needed, we write out some matrixx elements explicitly:

Σytm,ytm =
(
Σyym

)
t,t

, (S107)
Σytm,yt+1,m =

(
Σyym

)
t,t+1 , (S108)

Σytm,ztm =
(
Σyzm

)
t,t

=. . .=
(

(1 − τ)Σytm,ytm

βαt
+ τ

Σytm,yt+1,m

βαt

)(
A−1

zzm

)
t,t

, (S109)

Σyt+1,m,ztm =
(
Σyzm

)
t+1,t

=. . .=
(

(1 − τ)
Σytm,yt+1,m

βαt
+ τ

Σyt+1,m,yt+1,m

βαt

)(
A−1

zzm

)
t,t
, (S110)

Σztm,ztm =
(
Σzzm

)
t,t

=. . .=
(

1 + (1 − τ)Σytm,ztm

βαt
+ τ

Σyt+1,m,ztm

βαt

)(
A−1

zzm

)
t,t

. (S111)

From this, we see that we only need the diagonal and first off-diagonal of Σyym.
It is indeed possible to invert symmetric positive definite tridiagonal matrices from the main diagonal and outwards,

for example as described in Ref. [8], which means that this partial inversion can be done in linear time. We use recursion
relations from Ref. [8], rewritten so as to minimize the risk of numerical over- or underflow. These relations use a
Cholesky factorization as an intermediate step, which is useful for solving triangular systems of equations. They also
yield the determinant |Σ−1

yym|.
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b. Mean values To compute the mean values ⟨zm⟩, ⟨ym⟩ efficiently, we manipulate Eq. (S101) to get(
Ayy −AyzA

−1
zzmA

†
yz

)︸ ︷︷ ︸
= Σ−1

yym, symmetric tridiagonal

⟨ym⟩ =AyzA
−1
zzmVmxm, (S112)

⟨zm⟩ =A−1
zzm

(
Vmxm +A†

yz ⟨ym⟩
)
. (S113)

Thus, computing mean values requires inverting a diagonal matrix (Azzm) and solving a symmetric tri-diagonal linear
system of equations. As mentioned above, one first step in this solution would be a cholesky factorization, which we
get as a by-product of partially inverting Σyym. Σ−1

yym is a symmetric tri-diagonal matrix with elements

Σ−1
yym = Ayy −AyzA

−1
zzmA

†
yz =



a1 c1 0 · · ·
c1 a2 + b1 c2

0 c2 a3 + b2
. . .

...
. . . . . .

aT + bT −1 cT

cT bT


, (S114)

with

atm = 1
αt

(
1 + (1 − τ)2

β

)
− (1 − τ)2

β2α2
t

(
ot

vtm
+ 1
βαt

)−1

, (S115)

btm = 1
αt

(
1 + τ2

β

)
− τ2

β2α2
t

(
ot

vtm
+ 1
βαt

)−1

, (S116)

ctm = 1
αt

R

β
− τ(1 − τ)

β2α2
t

(
ot

vtm
+ 1
βαt

)−1

. (S117)

The RHS of the ⟨ym⟩ system is given by

AyzA
−1
zzmVmxm = (1 − τ)

β



1
α1

(
o1

v1m
+ 1

βα1

)−1
x1m

v1m

1
α2

(
o2

v2m
+ 1

βα2

)−1
x2m

v2m

...
1

αT

(
oT

vT m
+ 1

βαT

)−1
xT m

vT m

0


+ τ

β



0
1

α1

(
o1

v1m
+ 1

βα1

)−1
x1m

v1m

1
α2

(
o2

v2m
+ 1

βα2

)−1
x2m

v2m

...
1

αT

(
oT

vT m
+ 1

βαT

)−1
xT m

vT m


, (S118)

and the ⟨y⟩-dependent part of ⟨z⟩ is given by

A−1
zzmA

†
yz ⟨ym⟩ =

[
. . . ,

( ot

vtm
+ 1
βαt

)−1 1
βαt

(
(1 − τ) ⟨ytm⟩ + τ ⟨ytm⟩

)
, . . .

]†
∈ RT ×1. (S119)

S3.6. The lower bound

We recall the expression for the lower bound just after updating q(s),

F = lnZs +
⟨

ln p(x|z)
q(y, z)

⟩
q(y,z)

+
⟨

ln p0(θ)
q(θ)

⟩
q(θ)

. (S23)

Here, lnZs is the normalization constant in Eq. (S81), the contribution from measurement errors is

⟨ln p(x|z)⟩q(y,z) = −1
2

T∑
t=1

dim∑
m=1

ot

(
ln(2πvtm) + v−1

tm

⟨
(xtm − ztm)2⟩ )

= −1
2

T∑
t=1

dim∑
m=1

ot

(
ln(2πvtm) + (xtm − ⟨ztm⟩)2 + Σztm,ztm

vtm

)
, (S120)
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and the variational terms from q(y, z) are given, since q(ym, zm) are multivariate normal distributions of dimension
2T + 1, by

⟨ln q(y, z)⟩q(y,z) = −2T + 1
2

(1 + ln 2π) × dim + 1
2

dim∑
m=1

ln
∣∣Σ−1

m

∣∣
= −2T + 1

2
(1 + ln 2π) × dim + 1

2

dim∑
m=1

ln
∣∣∣∣ Ayy −Ayz

−Azy Azzm

∣∣∣∣ . (S121)

The determinants can be simplified in various ways. Since Azzm is diagonal and Azy = A†
yz, we can use a block LU

decomposition and write

[
Ayy −Ayz

−Azy Azzm

]
=
[
I −AyzA

−1
zzm

0 I

] [
Ayy −AyzA

−1
zzmAzy 0

0 Azzm

] [
I 0

−A−1
zzmAzy I

]
, (S122)

which means that

∣∣Σ−1∣∣ = |Azzm|
∣∣Ayy −AyzA

−1
zzmAzy

∣∣ = |Azzm|
∣∣Σ−1

yym

∣∣ . (S123)

Here, Azzm is diagonal positive definite, so that determinant is simply the product of the diagonal elements. The
second factor is a tridiagonal symmetric matrix which should be positive definite, since it is the inverse of a (symmetric,
positive definite) covariance matrix.

Finally, parameter contributions are given by the negative Kullback-Leibler divergence from the variational distri-
bution to the prior,

⟨ln p0(θ)⟩q(θ) − ⟨ln q(θ)⟩q(θ) = −
⟨

ln q(θ)
p0(θ)

⟩
q(θ)

= −
⟨

ln q(π)
p0(π)

⟩
q(π)

−
⟨

ln q(a)
p0(a)

⟩
q(a)

−
⟨

ln q(B)
p0(B)

⟩
q(B)

−
⟨

ln q(λ)
p0(λ)

⟩
q(λ)

(S124)

Here, the contributions from π, a,B are just as in vbSPT. The step length variance is not the same variable as used
in vbSPT, but it’s KL divergence term turns out to be the same:

⟨
ln q(λj)
p0(λj)

⟩
q(λ)

= . . . = ñj ln cj

c̃j
− nj

(
1 − c̃j

cj

)
− ln Γ(nj)

Γ(ñj)
+ (nj − ñj)ψ(nj) (S125)

S4. MAXIMUM LIKELIHOOD AND MAXIMUM APOSTERIORI INFERENCE

S4.1. Parameter updates and log likelihood

It might also be useful to perform maximum likelihood inference in the model parameters, to get unbiased estimates
and an impression about the influence of the priors. As we saw in Secs. S2.2-S2.3, to derive approximate maixmum
likelihood (MLE) or maximum aposteriori (MAP) estimates, we simply drop the variational ansatz for the model
parameters from the above variational treatment, and replace the optimization w.r.t. ln q(θ) by optimizing the param-
eter values. Skipping a lot of details, the parameter updates for a single trajectory are given by the classical update
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formulae, which we give below for without (MLE) and with (MAP) the conjugate priors used above:

(MLE) (MAP ) (S126)

π∗
k = ⟨δk,s1⟩∑

m ⟨δm,s1⟩
, π∗

k =
w

(π)
k − 1

w
(π)
0 −N

, (S127)

a∗
k =

∑T −1
t=1

(
1 −

⟨
δk,stδk,st+1

⟩ )∑N
j=1

⟨
δk,stδj,st+1

⟩ =
∑

j ̸=k ŵkj∑
j ŵkj

, a∗
k =

w
(a)
k1 − 1

w
(a)
k0 − 2

=
w̃

(a)
k1 − 1 +

∑
j ̸=k ŵkj

w̃
(a)
k0 − 2 +

∑
j ŵkj

, (S128)

B∗
kj =

∑T −1
t=1

⟨
δk,stδj,st+1

⟩∑T −1
t=1

(
1 −

⟨
δk,stδk,st+1

⟩ ) = ŵkl∑
j ̸=k ŵkl

,B∗
kj =

w
(B)
kj − 1∑

j ̸=k(w(B)
kj − 1)

=
w̃

(B)
kj − 1 + ŵkj∑

j ̸=k(w̃(B)
kj − 1 + ŵkj)

, (S129)

A∗
kj =

∑T −1
t=1

⟨
δk,stδj,st+1

⟩∑
j

∑T −1
t=1

⟨
δk,stδj,st+1

⟩ , A∗
kj =

{
(1 − a∗

k), j = k
a∗

kB
∗
kj , j ̸= k,

(S130)

λ∗
k = ĉk

n̂k
, λ∗

k = ck

nk + 1
= c̃k + ĉk

ñk + 1 + n̂k
, (S131)

where ĉk, n̂k are the data dependent terms of Eqs. (S69) and (S70). The MAP notation is the same as used for the
variational parameter updates, and inclues the same conjugate priors. The iterations for hidden states and path can
now be carried out by using delta functions for the variational parameter distributions, q(θ) = δ(θ − θ∗). The lower
bound on the likelihood can also be computed with the results above, except that the prior terms are absent (MLE)
or just the log prior evaluated at the MAP parameter values. After the s-update, the lower bound is given by

lnL = lnZs︸ ︷︷ ︸
forward-backward

+ ⟨ln p(x|z)⟩y,z︸ ︷︷ ︸
eq. (S120)

− ⟨ln q(y, z)⟩y,z︸ ︷︷ ︸
eq. (S121)

+ ln p0(θ)︸ ︷︷ ︸
MAP only

. (S132)

S4.2. Transition matrix parameterization

It is perhaps more common to parameterize A directly, in which case conjugate priors lead to Dirichlet-distributed
matrix rows, with parameters

w
(A)
ij = w̃

(A)
ij + ŵij ,⇒ AMLE

ij = ŵij∑
j ŵij

, AMAP
ij =

w
(A)
ij − 1∑

j(w(A)
ij − 1)

=
w̃

(A)
ij − 1 + ŵij∑

j(w(A)
ij − 1 + ŵij)

(S133)

Not surprising, the MLE estimate is equivalent to the ai,Bij parameterization. However, for the MAP estimates to
be consistent, we require

AMAP
kk =

w̃
(A)
kk − 1 + ŵkk∑

j(w(A)
kj − 1 + ŵkj)

=
w̃

(a)
k2 − 1 + ŵkk

w̃
(a)
k1 + w̃

(a)
k2 − 2 +

∑
j ŵkj

= 1 − a∗
k, (S134)

AMAP
kj =

w̃
(A)
kj − 1 + ŵkj∑

j(w(A)
kj − 1 + ŵkj)

=
w̃

(a)
k1 − 1 +

∑
j ̸=k ŵkj∑

j ̸=k(w̃(B)
kj − 1) +

∑
j ̸=k ŵkj︸ ︷︷ ︸

(†)

×
w̃

(B)
kj − 1 + ŵkj

w̃
(a)
k1 + w̃

(a)
k2 − 2 +

∑
j ŵkj

= a∗
kB

∗
kj , (S135)

where the second equation applies only for k ̸= j. The simplest solution seems to be to set (†) = 1, and then equate
nominators and denominators separately, since we seek a solution independent of ŵkj . This leads to a unique solution

w̃
(a)
k2 =w̃(A)

kk , w̃
(B)
kj =w̃(A)

kj , w̃
(a)
k1 =1 +

∑
j ̸=k

(w̃(B)
kj − 1). (S136)

and thus we see that not all conjugate priors on ak, Bkj are equivalent to Aij priors in this sense. Of special interest
is the flat prior w̃(A)

ij = 1, which corresponds to

w̃
(a)
k1 = 1, w̃

(a)
k2 = 1, w̃

(B)
kj = 1, (S137)

that leads to AMAP = AMLE (in both parameterizations).
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S5. LEARNING THE LOCALIZATION UNCERTAINTY

In some cases, point-wise uncertainty estimates might not available, in which case one can try to infer localization
errors from the trajectories instead. It is obviously not a good idea to try to infer point-wise localization uncertainties
(an underdetermined problem), but it might work to model an average localization uncertainty, or an average but
state-dependent localization uncertainty. Here, we explore those possibilities.

S5.1. Average localization uncertainty

We start with a single uniform localization error. Compared to the point-wise uncertainty model, this case differs
in the model of measured positions, which are instead given by

xtm = ztm +
√
vξtm, (S138)

corresponding to the likelihood term

ln p(x|z, v) = −1
2

T∑
t=1

dim∑
m=1

ot

(
ln(2πv) + v−1(xtm − ztm)2

)
, (S139)

where v is a single model parameter to be learned. For a maximum likelihood algorithm (MLE), the parameter update
is then given by maximizing

⟨ln p(x|z)⟩q(y,z) = const.− n̂(v) ln v − ĉ(v)

v
⇒ v∗ = ĉ(v)

n̂(v) , (S140)

n̂(v) = dim
2

T∑
t=1

ot, (S141)

ĉ(v) = 1
2

T∑
t=1

ot

dim∑
m=1

⟨
(xtm − ztm)2⟩

q(y,z) = 1
2

T∑
t=1

ot

dim∑
m=1

(
(xtm − ⟨ztm⟩)2 + Σzt,zt,m

)
. (S142)

The MLE parameter is further used to substitute v−1
mt → 1/v∗ in Azzm and Vm in the q(y, z) update.

The lower bound is also affected through the modified term ⟨ln p(x|z)⟩q(y,z), and now becomes

⟨ln p(x|z, v)⟩q(y,z) = −n̂(v)(ln 2π + ln v) − ĉ(v)

v
. (S143)

In a variational Bayes (VB) algorithm , the conjugate prior is inverse gamma, which leads to

ln q(v) = − lnZv − (n(v) + 1) ln v − c(v)

v
, n(v) = ñ(v) + n̂(v), c(v) = c̃(v) + ĉ(v), (S144)

where ˜ indicates prior parameters, and

⟨v⟩q(v) = c(v)

n(v) − 1
, v∗|q(v) = c(v)

n(v) + 1
,
⟨
v−1⟩

q(v) = n(v)

c(v) , ⟨ln v⟩q(v) = ln c(v) − ψ(n(v)). (S145)

The average
⟨
v−1⟩

q(v) is used to substitute v−1
mt in Azzm and Vm in the q(y, z) update, and ⟨ln v⟩q(v) is used in the

lower bound term

⟨ln p(x|z, v)⟩q(y,z)q(θ) = −n̂(v)(ln 2π + ⟨ln v⟩q(θ)) − ĉ(v) ⟨v−1⟩
q(θ) . (S146)

For prior specification, the RMS error, given by r =
√
v, is a more intuitive quantity. It’s distribution is

f(r) = 2cn

Γ(n)
r−(2n+1)e−c/r2

, (S147)

and by making use of the asymptotic series expansion

Γ(m+ 1
2 )

Γ(m)
=

√
m
(
1 − 1

8m
+ 1

128m2 +O(m−3)
)

(S148)
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from Mathworld[9], we get

⟨r⟩ =
√
c
Γ(n− 1

2 )
Γ(n)

≈
√

c

n− 1

(
1 − 1

8(n− 1)
+ . . .

)
, (S149)

r∗ =
√

c

n+ 1
2
,
⟨
r2⟩ = ⟨v⟩ = c

n− 1
. (S150)

Further,

Var[r] = c

n− 1

(
1 − (n− 1)

(Γ(n− 1
2 )

Γ(n)

)2
)

≈ c

4(n− 1)2

(
1 − 3

32(n− 1)
+ . . .

)
, (S151)

which with leads to

std[r] =
√
c

2(n− 1)

(
1 − 3

64(n− 1)
+ . . .

)
. (S152)

The first order approximations

⟨r⟩ ≈
√

c

n− 1
=
√

⟨v⟩, std[r] ≈
√
c

2(n− 1)
,

std[r]
⟨r⟩

≈ 1
2
√
n− 1

, (S153)

are better than about 10% for n > 2, or std[r]/r∗ ≤ 0.79, or std[r]/ ⟨r⟩ < 0.54. It seems likely that one would be able
to make an informed guess about the average localization error with smaller uncertainty than that.

If not, since the number of precision parameters does not change with model dimension, it is possible to use a
Jeffreys prior ∼ 1/v, corresponding to ñ(v) = c(v) = 0. Note that this makes

⟨
v−1⟩

q(v) = ĉ(v)/n̂(v), which coincides
with the MLE update 1/v∗.

S5.2. State-wise localization uncertainty

One could also imagine modeling distinct localization uncertainties for different states. For example, this could
be caused by motion blur, which contributes a diffusion-dependent terms to the localization uncertainty, or if differ-
ent states may have different spatial distributions. This case is a little more complicated, since it adds additional
interactions to the model. Here, the measurement model is modified to

xtm = ztm + √
vstξtm, (S154)

corresponding to the likelihood term

ln p(x|z, s, v) = −1
2

N∑
k=1

T∑
t=1

dim∑
m=1

otδk,st

(
ln(2πvk) + v−1

k (xtm − ztm)2
)
, (S155)

where there are now N precision parameters vk. This term will also influence the hidden state distribution.
a. Maximum likelihood First, the parameter updates are given by maximizing

⟨ln p(x|z, s, v)⟩q(y,z)q(s) = const.−
N∑

k=1

[
n̂

(v)
k ln vk − ĉ(v)

vk

]
⇒ v∗

k =
ĉ

(v)
k

n̂
(v)
k

, (S156)

n̂
(v)
k = dim

2

T∑
t=1

ot ⟨δkst⟩ , (S157)

ĉ
(v)
k = 1

2

T∑
t=1

ot ⟨δkst⟩
dim∑

m=1

⟨
(xtm − ztm)2⟩

q(y,z) (S158)

= 1
2

T∑
t=1

ot ⟨δkst⟩
dim∑

m=1

(
(xtm − ⟨ztm⟩)2 + Σzt,zt,m

)
. (S159)



20

Second, there is an additional term in the hidden state distribution,

lnHtk = . . .− ot

2

[
dim ln v∗

k + 1
v∗

k

dim∑
m=1

(
(xtm − ⟨ztm⟩)2 + Σzt,zt,m

)]
. (S160)

Third, the localization precision contribution to the trajectory distributions become

ln q(y, z) = −1
2

N∑
k=1

T∑
t=1

ot
⟨δk,st⟩
v∗

k

dim∑
m=1

(xtm − ztm)2 + . . . , (S161)

which means that we can introduce an effective time-dependent localization uncertainty given by

ṽt =

(
N∑

k=1

⟨δk,st⟩
v∗

k

)−1

, (S162)

which is substituted for vtm in Azzm and Vm for the q(y, z) update.
Finally, the fact that ⟨ln p(x|z, s, v)⟩q(y,z)q(s) contributes to ln q(s) means that needs not be explicitly accounted

for in the lower bound expression, since it is already included in lnZs. The lower bound (after an s-update) then
simplifies to

lnL = lnZs − ⟨ln q(y, z)⟩q(y,z) . (S163)

b. Variational Bayes For the precision parameters, this is analogous to the 1-parameter case, with inverse gamma
priors on vk leading to inverse gamma distributions for q(vk),

ln q(vk) = − lnZvk
− n

(v)
k ln vk − c(v)

vk
, n

(v)
k = ñ

(v)
k + n̂

(v)
k , c

(v)
k = c̃

(v)
k + n̂

(v)
k , (S164)

and expectation values as in Eq. (S145).
For the hidden states, the additional contribution to H is

lnHtk = . . .− ot

2

[
dim ⟨ln vk⟩ +

⟨
v−1

k

⟩ dim∑
m=1

(
(xtm − ⟨ztm⟩)2 + Σzt,zt,m

)]
. (S165)

For the trajectory distribution, it is again convenient to introduce an effective time-dependent localization precision

ṽt =

(
N∑

k=1

⟨δk,st⟩
⟨
v−1

k

⟩)−1

=

(
N∑

k=1

⟨δk,st⟩
n

(v)
k

c
(v)
k

)−1

, (S166)

and substitute in Azzm and Vm.
Again, ln p(z|x, s, θ) makes no explicit contribution to the lower bound, since it is already included in lnZs.
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