Biophysical Journal, Volume 114

Supplemental Information

The Starch Utilization System Assembles around Stationary Starch-Binding Proteins

Hannah H. Tuson, Matthew H. Foley, Nicole M. Koropatkin, and Julie S. Biteen

Supporting Information for:

The Starch Utilization System Assembles Around Stationary Starch-Binding Proteins

Contents

- Figures S1 S8
- Captions for Movies S1 S2
- Tables S1 S2
- Captions for Tables S3 S4

SI Figures

Figure S1. The crystal structures of SusD (PDB 3CK9), SusE (PDB 4FEM), SusF (PDB 4FE9), and SusG (PDB 3K8L). Co-crystallized maltooligosaccharides are shown with grey and red spheres, prolines in SusE and SusF are shown with yellow spheres. The 15 – 20 residue N-terminal linkers that connect each protein to the lipidated cysteine for tethering to the membrane were not resolved in the crystal structures. The N-terminal domain of SusE (residues 38-167) was not resolved in the crystal structure.

Figure S2. SusG-HT is mobile on the cell surface whether imaged under aerobic or anaerobic conditions. (A-B): each image shows a cell with 35 SusG-HT single-molecule tracks plotted in random colors. Scale bars = 1 μ m. (C-D): the mean squared displacement of all tracks lasting longer than 20 frames is plotted for each protein fusion. Red: effective diffusion coefficient (*D*) ≤ 0.001 μ m²/s; yellow: 0.001 μ m²/s < *D* ≤ 0.02 μ m²/s; green: 0.02 μ m²/s < *D* ≤ 0.05 μ m²/s; blue: 0.05 μ m²/s < *D* ≤ 0.1 μ m²/s; purple: *D* > 0.1 μ m²/s.

Figure S3. The fluorescently labeled SusG strains support growth on starch. Growth was measured in minimal medium containing 5 mg/mL glucose (*left*) or maize amylopectin (*right*) as the sole carbon source. (A, B): SusG-HT and SusG-PAmCherry were made by replacing the starch-binding CBM58 domain with HT or PAmCherry; CBM58 is not required for growth on starch as evidenced by the normal growth of SusG CBM58*, which contains a starch-bindingdeficient version of CBM58. (C, D): SusE-HT, SusE-PAmCherry, SusF-HT, and SusF-PAmCherry are C-terminal protein fusions with 3-alanine linkers. (E, F): SusD-PAmCherry is a C-terminal protein fusion with a 20-alanine linker. The ΔSusD strain was used as a negative control for growth on starch.

Figure S4. SusE-PAmCherry and SusF-PAmCherry visualized by immunofluorescence. Formalin-fixed, non-permeabilized *Bt* strains were grown in minimal media supplemented with maltose and labeled with custom rabbit polyclonal antibodies to SusE and SusF and then stained with a secondary antibody conjugated to Alexa Fluor 488 goat anti-rabbit IgG. The side-by-side panels display bright-field and fluorescence images for each strain labeled with (A) anti-SusE serum and (B) anti-SusF serum. Scale bars = 5 μ m.

Figure S5. SusE-PAmCherry and SusF-PAmCherry remain highly confined when imaged for longer periods of time via time-lapse imaging. These figures show tracks of molecules that remain in place for 3 - 47 s, with one 40 ms frame acquired every 1 second. Each image shows a cell with 35 single-molecule tracks plotted in random colors. See also the corresponding Movies S1 and S2 of SusE-PAmCherry and SusF-PAmCherry, respectively. Scale bars = 1 μ m.

Figure S6. SusE-PAmCherry is highly confined when labeled with PAmCherry or HaloTag (HT) and whether imaged under aerobic or anaerobic conditions. (A-C): each image shows a cell with 35 single-molecule tracks plotted in random colors. Scale bars = 1 μ m. (D-F): the mean squared displacement of all tracks lasting longer than 20 frames is plotted for each protein fusion. Red: effective diffusion coefficient (*D*) ≤ 0.001 μ m²/s; yellow: 0.001 μ m²/s < *D* ≤ 0.02 μ m²/s; green: 0.02 μ m²/s < *D* ≤ 0.05 μ m²/s; blue: 0.05 μ m²/s; purple: *D* > 0.1 μ m²/s.

Figure S7. SusD-PAmCherry is mobile when the fluorescent label is attached via two different C-terminal linker lengths. (A, B): each image shows a cell with 35 single-molecule tracks plotted in random colors. Scale bars = 1 μ m. (C, D): the mean squared displacement of all tracks lasting longer than 20 frames is plotted for each protein fusion. Red: effective diffusion coefficient (*D*) ≤ 0.001 μ m²/s; yellow: 0.001 μ m²/s; green: 0.02 μ m²/s < *D* ≤ 0.05 μ m²/s; blue: 0.05 μ m²/s < *D* ≤ 0.1 μ m²/s; purple: *D* > 0.1 μ m²/s.

Figure S8. SusF remains insoluble during prolonged incubation with dodecyl maltoside. SusF is solubilized from the membrane as described in Methods, but incubated for 1, 9 or 19 h prior to centrifugation. The membrane-solubilized supernatant (*s*) and insoluble material (*i*) were run on a Western blot and SusF was detected with custom anti-SusF rabbit antibodies.

SI Movies

Movie S1. SusE-PAmCherry molecules remain immobile in a *Bt* cell on the timescale of seconds. Movies are acquired via time-lapse imaging, with one 40 ms frame acquired every 1 second. Scale bar = $1 \mu m$.

Movie S2. SusF-PAmCherry molecules remain immobile in a *Bt* cell on the timescale of seconds. Movies are acquired via time-lapse imaging, with one 40 ms frame acquired every 1 second. Scale bar = $1 \mu m$.

SI Tables

Strain Name	Organism	Mutations	Notes
Bt ∆tdk	Bt	∆tdk	Ref. (13)
Bt SusG-HT	Bt	SusG-HT	Ref. (21)
MF001	Bt	SusG-PamCherry, ∆ <i>tdk</i>	
MF002	Bt	SusE-HT, ∆ <i>tdk</i>	
MF003	Bt	SusE-PamCherry, Δtdk	
MF004	Bt	SusE-PAmCherry Δ <i>susC,</i> Δ <i>tdk</i>	
MF005	Bt	SusE-PAmCherry Δ <i>susD,</i> Δ <i>tdk</i>	
MF006	Bt	SusE-PAmCherry ∆cps	
MF007	Bt	SusF-HT, ∆ <i>tdk</i>	
MF008	Bt	SusF-PAmCherry Δ <i>susC,</i> Δ <i>tdk</i>	
MF009	Bt	SusF-PAmCherry Δ <i>susD,</i> Δ <i>tdk</i>	
MF010	Bt	SusF-PAmCherry Δ <i>cps</i> , Δ <i>tdk</i>	

 Table S1.
 Bacterial strains used in this study

 Table S2. Oligonucleotides used in this study

Primer Name	Sequence (5′-3′)	Used for Construction of
SusD pAMCherry Up	GTGCAGACAAAGCCGCCAAC	SusD C-terminal PAmCherry
nest		fusion
SusD pAMCherry UpF	GCATGTCGACCTGGTTTGTGGTACTCGTGTAG	SusD C-terminal PAmCherry
Sal1		fusion
SusD pAMCherry UpR	GCGCATGAACTCCTTAATGATGGCTGCTGCTGCTTTATAGCCTTCA	SusD C-terminal PAmCherry
	TTTTGTG	fusion
pAMCherry SusD F	CACAAAATGAAGGCTATAAAGCAGCAGCAGCCATCATTAAGGAG	SusD C-terminal PAmCherry
	TTCATGCGC	fusion
pAMCherry SusD R	CTTTTATATAAGGATGAACTCTTGGTTACTTGTACAGCTCGTCCAT	SusD C-terminal PAmCherry
	G	fusion
SusD pAMCherry	CATGGACGAGCTGTACAAGTAACCAAGAGTTCATCCTTATATAAA	SusD C-terminal PAmCherry
DownF	AG	fusion
SusD pAMCherry	GCATTCTAGATAACCGTCACGCGGTTGTCG	SusD C-terminal PAmCherry
DownR Xba1		fusion
SusD pAMCherry	CCGCTTGCAGTCATGGCAGG	SusD C-terminal PAmCherry
Down nest		fusion
SusE pAMCherry Up	IGCCCAAACIGIAGAACICA	SusE C-terminal PAmCherry
nest		fusion
SusE pAMCherry UpF	GCATGTCGACGTAGCTGTATATATCCGCCTG	Suse C-terminal PAmCherry
Sal1		fusion
Suse pAMCherry UpR		Suse C-terminal PAmCherry
		fusion
PAIVICNERRY SUSE F		Suse C-terminal PAmCherry
nAMCharny SucE P		Tusion SusE C terminal DAmChorny
paivicherry suse R	GAATEGITETITTAAAGTAATTAETIGTAEAGETEGTEEATG	fusion
SusE nAMCherry		SusE C-terminal PAmCherry
DownF		fusion
SusE nAMCherry	GCATTCTAGACAGCTAACAAAATTATCACCGG	SusE C-terminal PAmCherry
DownR Xba1		fusion
SusE pAMCherry	CGGTGCAAATTTCACCTG	SusE C-terminal PAmCherry
DownR nest		fusion
SusF pAMCherry Up	GCATCACCTTGCAGCCTGCC	SusF C-terminal PAmCherry
nest		fusion
SusF pAMCherry Up	GCATGTCGACCGGTGATAATTTTGTTAGCTGG	SusF C-terminal PAmCherry
Sal1		fusion
SusF pAMCherry UpR	GCGCATGAACTCCTTAATGATGGCTGCTGCTGCTTCGATACGGCC	SusF C-terminal PAmCherry
	TGTTCCGTTGC	fusion
pAMCherry SusF F	GCAACGGAACAGGCCGTATCGAAGCAGCAGCAGCCATCATTAAG	SusF C-terminal PAmCherry
	GAGTTCATGCGC	fusion
pAMCherry SusF R	CCTTGATTTCTTGTAGTATTACTTGTACAGCTCGTCCATG	SusF C-terminal PAmCherry
		fusion
SusF pAMCherry	CATGGACGAGCTGTACAAGTAATACTACAAGAAATCAAGG	SusF C-terminal PAmCherry
DownF		fusion
SusF pAMCherry	GCATTCTAGACCTTTCACGGCAGCGGTC	SusF C-terminal PAmCherry
Down R Xba1		fusion
SusF pAMCherry	GGAAGAGGCGCCGTATTTTG	SusF C-terminal PAmCherry
Down nest		fusion
HaloTag F	AGACCTGGGTTATTTCTTCGAC	HaloTag C terminal fusion

Primer Name	SEQUENCE (5'-3')	Used for Construction of
HaloTag R	GTCGAAGAAATAACCCAGGTCT	HaloTag C terminal fusion
SusG-PAmCherry UpF	GCATGTCGACCAAGGAAACAGGGAATGGCCGTCGC	CBM58 swap with
Sall		PAmCherry
SusG-PAmCherry UpR	GCTGCTGCATTGCCTGAGCCTGTCACGGCAGCGGTCTCGTCAG	CBM58 swap with
		PAmCherry
SusG-PAmCherry	CAGCAGCAGGCAGCAACGGCGCGAACGGCCAGATCACCTATTTC	CBM58 swap with
DownF	CATTCTC	PAmCherry
SusG-PAmCherry	GCATTCTAGAGTGAATGGGTATCGGCTTGTTGG	CBM58 swap with
DownR Xbal		PAmCherry
PAmCherry SusG F	CAGGCTCAGGCAATGCAGCAGCAGCCATCATTAAGG	CBM58 swap with
		PAmCherry
PAmCherry SusG R	GTTGCTGCCTGCTGCCTTGTACAGCTCGTCCATG	CBM58 swap with
		PAmCherry
PAmCherry-SusG F	CGCTGCCGTGACAGGCTCAGGCAATGCAGCAGCAGCCATCATTA	CBM58 swap with
	AG	PAmCherry
PAmCherry-SusG R	CTGGCCGTTCGCGCCGTTGCTGCCTGCTGCCTGCTGTACAGCTC	CBM58 swap with
	GTCC	PAmCherry
SusG-PAmCherry-pX	ATTGCCTGAGCCTGTCACGGCAGCGG	CBM58 swap with
R		PAmCherry
SusG-PAmCherry-pX	GGCAGCAACGGCGCGAACGG	CBM58 swap with
F		PAmCherry
SusE-PAmCherry	GACGAGCTGTACAAGTAATTAACTTTAAAAAGAACGATTCATC	SusD* E-PAmCherry ∆FG
D*dFG DownF		
SusE-PAmCherry	GGCGGCCGCTCTAGAGAATGCGGAGTGATTATTC	SusD* E-PAmCherry ∆FG
D*dFG DownR		
SusE-PAmCherry-pX	TTACTTGTACAGCTCGTCC	SusD* E-PAmCherry ∆FG
R		
SusE-PAmCherry-pX F	ICIAGAGCGGCCGCCAC	SusD* E-PAmCherry ΔFG
SusG-PAmCherry pX	TGGACCGCACTTACCGCC	SusE-Nterm-SusG-
NT swap F		PAmCherry
SusG-PAmCherry pX	AATGATGATGTATTAAAGAC	SusE-Nterm-SusG-
NT swap R		PAmCherry
SusE NT F	TGTCTTTAATACATCATCATTATGAAAAAAATATCCAACATATTAC	SusE-Nterm-SusG-
		PAmCherry
SusE NT R	CGGTAAGTGCGGTCCAGTTCAGGATCGGATTGCTG	SusE-Nterm-SusG-
		PAmCherry

Table S3. Whole membrane proteomics. (Attached separately)

Table S4. Co-IP proteomics. (Attached separately)