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1. Experiments and data processing 

 

1.1 Single particle tracking of GNP-endosome transport in time lapse movies: 

Semi-automated custom Matlab software is used to extract endosome trajectories (X(t),Y(t)) 
from the time lapse movies of axonal transport as described earlier (1). Briefly, we used 2D-
Gaussian fitting adapted to detect the locations of endosomes (with GNPs) in each movie frame. 
We then used a particle-tracking algorithm, adapted from Jaqaman et al. (2), to link these 
detected locations into endosome trajectories. The flux of endosome transport, kept very sparse 
by controlled incubation conditions, lead to minimal tracking errors. Occasional errors associated 
with crossing trajectories are corrected by manual inspection in the final step of processing. For 
each endosome trajectory, we extracted the underlying microtubule track (Qx,Qy) using an edge-
based tracing algorithm. Using this microtubule track, the endosome trajectory is converted from 
camera pixels (X(t),Y(t)) to microtubule coordinates (Q||(t),Q(t)) representing the motion 
parallel and perpendicular to the microtubule (1). Since the microfluidic channels (and hence the 
axons) are aligned along the X-axis of the camera, X(t) is an approximation for Q||(t).  

Drift correction: For GNP-endosome trajectories spanning multiple movies, we corrected for 
the stage drift and mechanical disturbances using stationary scattering objects within the movies 
as internal references. We note that these references are associated with some highly scattering 
structures within axons and exhibited a slow drift with time. Therefore, some residual drift even 
within the reference corrected GNP-endosome trajectories cannot be ruled out completely. 

 

1.2 Localization precision of GNPs with darkfield imaging at 1 kHz:  

We obtained the localization precision of our darkfield imaging system using the standard 
approach detailed in literature (3). Briefly, we imaged the 80 nm GNPs stuck on a coverslip 
surface at 1 kHz for a duration of 22 seconds and then tracked the positions of the GNPs as 
discussed above. In order to correct for the long-time drift in measuring the localization 
precision, we subtracted the coordinates of pairs of GNPs (Fig. S0A) and got the distribution of 
differences for each pair (Fig. S0B). The standard deviation of this distribution of differences 
divided by √2 gives the localization precision of 4.4 ± 0.8 nm (Mean ± SD, N = 9).  
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Figure S1: Localization precision (σI) of 80 nm GNPs with darkfield imaging. A) Referenced 
and demeaned position coordinates of two GNPs over 22 seconds of tracking at 1 kHz. The red 
distribution is offset for clarity.  B) Demeaned difference distributions of the two GNPs shown in 
(A). The red distribution is offset for clarity. The standard deviation divided by √2 gives the 
localization precision σI. C) Localization precision as a function of the GNP intensities (spanning 
the range of GNP intensities in this work). 
 

 

1.3 Detachment model fitting of endosome jumps:  

We previously described (4) how the endosome jumps (gradual stalling followed by dynein 
detachment) can be explained by considering that the endosome is docked to the microtubule by 
an elastic tether. The dyneins pulling the tethered endosome are slowed down by the elastic 
restoring force of the tether (Fopp = -kx) opposing the endosome motion. The endosome gradually 
stalls as the tether is stretched and Fopp reaches the stall force of the leading dyneins. When the 
stalled dyneins detach from the microtubule, the endosome recoils back under the influence of 
Fopp. We also presented a model for dynein detachment under the elastic tether load to fit the post 
detachment recoil profiles of endosome jumps (4). Our model shows that the recoil profile is an 
exponential with a damping constant k/γ, where k is the tether stiffness and γ is the friction 
coefficient of the medium. Specifically, the endosome recoil is described by Eq. S1, where td is 
the detachment time, Vdetach is the instantaneous recoil velocity of endosome at detachment, and 
k/γ is the damping constant. By fitting the single-endosome jumps with uninterrupted recoil 
profiles, we can obtain the damping constant k/γ for the endosome.  

q(t) qs 
C

D
1 exp D(t  td )  ; C Vdet ach; D  k


; t  td    (S1) 

 

1.4 Maximum frame velocity and Instantaneous detachment velocity: 

The endosome trajectory in Fig. 2 of main text (acquired at 100 fps) exhibited ~500 stalls and 
detachments over a time of 18 minutes. However, the recoil profile following motor detachment 
is often interrupted within 30 – 40 ms, possibly by lagging microtubule-bound dyneins or fast 
rebinding of detached dyneins. In such cases, with a limited recoil range of 3 – 4 time points, 
fitting the exponential form in Eq. S1 would lead to inaccurate fit parameters (Vdetach and k/γ). 
We therefore used the maximum frame velocity (Vmaxf), which is easy to compute, as a simple 
statistical metric to compare the model simulations and experiment in this work. The maximum 
frame-to-frame velocity (<Vdetach) is correlated to the instantaneous detachment velocity (Vdetach) 
depending on the imaging frame rate and the damping constant k/γ of the recoil profiles. We 
simulated hundreds of recoil profiles using Eq. S1, with a wide range of Vdetach values and fixed 
k/γ, and digitized the profiles at 100 Hz. We then extracted the Vmaxf for each of these profiles 
and observed a linear relationship (that depends on frame rate and k/γ) between Vmaxf and Vdetach.  
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1.5 Automated detection and quantification of sequential endosome jumps: 

In order to quantify the sequential stalls and detachments in the experimental and simulated 
trajectories, we used the following automated routine. First, we used a sliding window of 0.5s to 
identify the extrema (minima and Maxima) in the endosome trajectory. In cases where there are 
two successive minima (or Maxima), we identified the missed intermediate maximum (or 
minimum) in the second step. These steps successfully identified each of the endosome jumps as 
a minimum-Maximum-minimum (m-M-m) sequence in the trajectory as shown in Fig. S1. We 
then identified the detachment point within each m-M-m sequence as the time point preceding 
the time-point with the maximum frame-to-frame velocity. Finally, we selected only those m-M-
m sequences that exhibited the recoil for at least two successive frames following the detachment 
point as valid endosome jumps. This step removes the spurious m-M-m sequences with no 
obvious motor detachment. We then computed the histograms of the variables like stall duration, 
detachment duration, and recoil duration for each endosome jump as shown in Fig. 3 (main text). 

 

Figure S2: Automated detection of the maximum (qmax), minimum (qmin), and detachment (qdet) 
positions within endosome jumps. Experimental trajectory from Fig. 2 of main text. 
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1.4 Single endosome motility under load imaged at 500 fps:  

 

Figure S3: Single endosome dynamics under load imaged at 500 fps for over 14 minutes. A) 
Repeated stalls and detachments (~200) of a retrograde moving endosome. B) zoomed view of 
the endosome jumps. The distributions of TD, TR, and TS for the simulated endosome jumps are 
shown in C), D), and E) respectively. F) Histograms of qmin, qmax, and qdet positions from the 
endosome jumps (check Fig. 3A for variable definitions). F) The distribution of Vmaxf obtained 
from all the endosome jumps. G) Stochastic and dynamic variations in Vmaxf with time. The blue 
markers show Vmaxf for each individual jump, the red line shows 51-point smoothed <Vmaxf >, and 
the green line is a linear fit.  
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2. 3D stochastic model for multiple dynein endosome transport 

 

2.1 3D stochastic mechanical model:  

Multi-motor 1D mechanical models for cargo transport, based on Monte Carlo simulation of 
cargo trajectories, have been elaborated for different motility regimes in literature (5-7). Erickson 
et al. have also presented a prototypical 3D stochastic model for cargo transport by multiple 
kinesins (8). Our 3D stochastic model, for endosome transport by multiple dyneins, is based on 
this prototype with key modifications in modeling the mechanochemical properties and the 
spatial distribution of dyneins on endosomes. Here we briefly summarize the general 
characteristics as well as the details specific to our 3D model. 

We modeled the endosome as a hard sphere (radius R) driven by a stable number of 
endosome-bound dyneins (Nd) walking on a microtubule (along x-axis of lab frame) in 8 nm 
steps. The dyneins are distributed either in a random or clustered geometry on the endosome and 
when geometrically possible the dyneins can repeatedly bind to (rate = π/s) and detach from (rate 
= /s) the microtubule. At any instant, the dyneins engaged on microtubule can step forward 
(kf/s) or backward (kback/s), or detach (/s) from the microtubule with well-defined rates given 
below. The motors are treated as harmonic springs that exert a restoring force f = -k(l-l0) and 
torque on the endosome when stretched beyond their rest length l0. The dynein-endosome contact 
positions are either rigidly fixed or allowed to diffuse and slide under torque on the endosome 
surface. At any instant, the endosome position/orientation is determined by the net force/torque 
exerted by dyneins and the thermal forces (see below).  

The 3D motion of endosome can be separated into translational and rotational components as 
follows. Briefly, the translational motion of the endosome center of mass is described in terms of 
the laboratory frame (x, y, z) with the microtubule modeled simply as a 1D lattice of 8nm steps 
along the x-axis. The rotational motion is described in terms of the endosome frame of reference 
(a, b, c) related to the lab frame by Euler angles (θ(t), ϕ(t), ψ(t)) according to the x-convention. In 
what follows, we present the relevant equations for translational and rotational motion derived in 
detail by Erickson et al (8) and the procedure for dealing with dynein-endosome contact motion 
on the endosome surface.  

 

2.2 Translational Motion:  

The translational motion of the endosome center of mass is governed by Eq. S2, where v(t) is 
the instantaneous velocity of endosome, T  is the friction coefficient of the medium, and Fth(t) is 
the random thermal force on endosome. 
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(S2)

 

F(q,t) is the net force on endosome obtained as the sum of forces exerted by the stretched 
dyneins (Md ≤ Nd) and any other external force on endosome. Solving Eq. S2, it can be shown 
that (8) the stochastic displacement of endosome center of mass over a time step dt is given by 
Eq. S3, where  T  is the translational diffusion length and  is a vector of 

independent standard normal deviates. While the second term on the right hand side represents 
the drift of endosome under net force, the third term represents the random thermal motion of the 
endosome.  

   
(S3)

 

 

2.3 Rotational Motion:  

The rotational motion of the endosome is governed by Eq. S4 which is the torque equation in 
the lab frame, where w(t) is the instantaneous angular velocity of endosome, R  is the rotational 
friction coefficient, and  is the random torque on endosome.  

 

   
(S4) 

is the net torque on endosome obtained as the sum of torques exerted by stretched 
dyneins (Md ≤ Nd) and any other external torque on endosome. Solving Eq. S4, it can be shown 
that (8) the stochastic rotational motion of endosome over a time step dt, in terms of Euler 
angles, is given by Eq. S5, where  R  is the rotational diffusion angle over the time step dt and 

 , ,   are independent standard normal deviates.  
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 R 
2kbT

R

dt
        

(S5) 

 

2.4 Motion of dynein-endosome contacts on endosome surface:  

Our 3D model also considers the mobility of dynein-endosome contact positions on the 
endosome surface. Though the 2D diffusion of protein/lipid microdomains on cell membranes is 
expected to be confined or anomalous, treating this as a Brownian diffusion process is reasonable 
within the accuracy of our model simulations. We therefore considered that the dynein-
endosome contacts can undergo Brownian diffusion on endosome surface with an effective 
diffusion constant DM (typically 0.01 – 1 μm2/s on cell membranes, which is equivalent to 0.01/R 
– 1/R radian2/s, where R is the endosome radius). Further, the dynein-endosome contact can also 
slide on the endosome surface under torque when dynein is stretched beyond its restlength. The 
friction coefficient for this membrane diffusion/sliding process is given by M  kbT / DM  and the 

equations of motion for this process can be obtained as follows.  

Consider the dynein-endosome contact point A sliding under torque on the endosome surface 
while the endosome orientation is fixed. The coordinates of point A over time can equivalently 
be obtained by assuming that the point A is fixed on the endosome surface and the endosome is 
undergoing rotational motion with rotational drag constant M  (instead of R  in Eq. S5). The 
stochastic motion of the dynein-endosome contact position over a time step dt can therefore be 
determined using the equivalent changes in Euler angles given by Eq. S6 (analogous to Eq. S5) 
See the Monte Carlo simulation algorithm below for details.  

 

 

 

 

M  kbT

DM

and M  2DM dt
      

(S6)
 

 

2.5 Mechanochemical properties of dyneins: 

 

Forward/backward stepping rates of dynein 

The restlength l0 of dynein is nominally considered to be 70 nm, while the motor stiffness k is 
0.32 pN/nm and the step length d is 8 nm. We modeled the forward and backward stepping rates 
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of dynein in two different ways using 1) a model based on the experimental force-velocity curve 
from in vitro measurements (9), and 2) an approximate analytical model.  

Experimental model: The forward stepping rate as a function of load is modeled by the 
exponential decay in Eq. S7 where vf

0 is the unloaded motor velocity, f the load on motor, and Fs 
the motor stall force. Though, the load dependence of dynein backward stepping rate is not 
explicitly reported, superstall measurements in optical traps (5, 9) show minimal backward 
motion even at a load of 10 pN. Therefore, we modeled the backward stepping rate using a 
shallow exponential given by Eq. S7, where  = 40 reflects the unloaded backward stepping rate 
of dynein seen in experiments. The exponential factors C1, C2 are determined by requiring that a) 
the forward stepping rate is equal to the backward stepping rate at the motor stall force (f = Fs), 
and b) the net velocity as a function of load fits the experimental force-velocity curve of dynein 
(9).  

k f 
vf

d ; vf  v
f

0 exp C1 * f        (S7) 

kback 
vb

d
; vb 

v
f

0


exp C2 * f   

 
Analytical model: The forward stepping rate is modeled by Eq. S8 where vf

0 is the unloaded 
motor velocity, f the load on the motor, Fs the motor stall force, and n = 0.5 is the nonlinearity. 
The backward stepping rate is modeled by a slow rising exponential given by Eq. S8, where  = 
40 reflects the unloaded backward stepping rate of dynein seen in experiments. In earlier studies 
the detachment rate is modeled using a similar functional form with C2 = 1/Fd, where Fd is the 
detachment scale (see below). 

k f 
vf

d ; vf  v
f

0 1 f
Fs

 
n







       (S8) 

kback 
vb

d
; vb 

v
f

0


exp C2 * f   

 
 

Detachment kinetics of dynein 
 

In vitro measurements show that dynein exhibits an exponential detachment rate under load 
till its stall force and catch-bond detachment kinetics above the stall force (5, 9). The functional 
form of dynein detachment kinetics is therefore parametrically dependent on the stall force of 
dynein. For the in vitro model (1.25 pN stall force of dynein) in this manuscript, we modeled the 
detachment rate  based on the in vitro catch-bond detachment kinetics from Kunwar et al. (5) 
given by Eq. S9, where 0 is the unloaded detachment rate and Fd is the detachment scale.  

  0 exp f
Fd

 ; f  Fs &    0 0.254* 1 exp  f
1.96646 


 











1

; f  Fs  (S9) 
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We also tried the single rate exponential kinetics given by Eq. S10 for all values of f. For the 
in vivo model (2.5 pN stall force of dynein) in this manuscript, we modeled the detachment rate 
 based on the single rate exponential kinetics given by Eq. S10. 

 

  0 exp f
Fd

           (S10) 

 
 

2.6 Monte Carlo simulation algorithm: 

 

Monte Carlo simulation – Initiation:  

For a given endosome size (radius R), the number of dyneins (Nd), and spatial distribution of 
dyneins (Random or Cluster angle Θ) the simulation is initiated as follows.  

1. Start the simulation with the endosome positioned 15nm above origin on the z-axis of the 
lab frame (x, y, z) at time 0. The endosome frame (a, b, c) is initially aligned to lab frame 
with the Euler angles (0, 0, 0). The microtubule lattice of 8nm steps is set along x-axis.  

2. Attach Nd dyneins (cargo binding ends) on endosome surface in a random or clustered 
geometry as described above. For random distribution, the dynein-endosome contacts are 
randomly distributed on the endosome surface. For clustered distribution, the dynein-
endosome contacts are randomly distributed on a spherical sector of the endosome 
surface subtending an angle Θ (range of 0 to π radians) at the center of the endosome. 

3. The geometrically active dyneins (i.e. dyneins that can reach the microtubule without 
stretching beyond restlength or passing through the endosome) are then attached to 
randomly chosen microtubular sites accessible within the restlength of motors.  

 

Monte Carlo simulation – Propagation:  

We then continuously update the states (i.e. bound or unbound to microtubule) of dyneins, 
the positions of dyneins on microtubule, dynein-endosome contact positions on endosome 
surface, and the position/orientation of endosome at each time step (dt = 0.5µs) in the following 
sequence.  

4. Check the motor extensions and compute the force exerted by each motor (i.e the load on 
each motor). These are used to compute the forward/backward stepping and detachment 
rates for each dynein in the following step.  

5. Loop through each dynein on the endosome and take one of the following actions if the 
dynein is bound to the microtubule.  

 Step 8nm forward with probability P = kf*dt 

 Step 8nm backward with probability P = kb*dt  

 Detach from microtubule and relax to restlength with probability P = *dt  

 Remain at the same position if none of the above happens 
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If the dynein is not bound to microtubule and is geometrically active (i.e. can reach the 
microtubule without passing through endosome) then, attach it to a random microtubular 
site accessible within its restlength with probability P = π*dt*ξ, where ξ is the ratio of the 
number of accessible microtubular sites to the maximum number of accessible sites for 
the motor length given by 2l0/8.  

6. [Optional step when simulating endosome motility against the load of an elastic tether]. If 
the current simulation time is greater than a preset duration (typically 10s) and the closest 
distance between the endosome and the microtubule is less than a preset tether length LT , 
then connect the closest points on the endosome and microtubule with an elastic tether of 
length LT and stiffness k. If a tether is already established, then ignore this step.  

7. If all motors are detached and the endosome is not connected to the microtubule anymore 
(i.e. no external tether), then randomize the endosome orientation, and reattach the 
geometrically active dyneins to microtubule as in step 3.  

8. Update all the states (bound or unbound) and positions of the motors on the microtubule 
simultaneously.  

9. Compute the motor extensions and the force exerted by each dynein on the endosome. 
Compute the external force (i.e. from any elastic tether connecting the endosome and the 
microtubule as discussed below). Compute the net force on the endosome using Eq. S2.  

10. Compute the new position of the endosome center of mass using Eq. S3. 

11. Compute the torques exerted at each of the dynein-endosome contact. Compute the 
external torque (i.e. from any elastic tether connecting the endosome and the microtubule 
as discussed below). Compute the net torque on the endosome using Eq. S4. 

12. For each dynein-endosome contact under torque, compute the equivalent changes in the 
Euler angles of endosome representing the displacement of the dynein-endosome contact 
on the endosome surface using Eq. S6. Perform a rotational transformation of the dynein-
endosome contact position using these angles to obtain the new position of the dynein-
endosome contact on the endosome surface. Update all the new positions of the dynein-
endosome contact positions simultaneously. 

13. Compute the changes in the Euler angles of the endosome due to the net torque computed 
in step 10 using Eq. S5. 

14. Update the new position and orientation of the endosome.  

15. Following an initial stabilization period of around 5 – 10s, start recording the averages of 
relevant variables (endosome center of mass position, endosome orientation, number of 
motors cooperatively driving the transport etc.) at an acquisition rate equivalent to the 
experimental imaging rate (100 – 500 Hz). 

16. Repeat steps 4 – 14 till the any of the simulation termination conditions are met. 

 

Monte Carlo simulation – Termination:  

The simulation is terminated when any of the following termination conditions is met and the 
recorded variables are saved for subsequent analysis.  
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17. The simulation is terminated when the simulation time exceeds the initially set time 
duration in the range of 5 – 20 minutes, or optionally if the distance covered by the 
endosome exceeds the camera field of view. 

18. Finally, we add Gaussian noise ( = 5 – 10nm) to the simulated trajectory (position of the 
endosome center of mass) to replicate the localization accuracy of our system.  

 

2.7 Simulation of endosome stalls and detachments – Load from elastic tether: 

As mentioned above, the endosome stalls and detachments can be explained by considering 
that the endosome is docked to microtubule by an elastic tether that exerts load when stretched. 
In order to simulate the endosome stalls and detachments, we therefore modeled the opposing 
load as resulting from an elastic tether docking the endosome to the microtubule. Briefly, we 
start with an endosome being driven by Nd dyneins. After a preset duration (typically 10s) of 
unloaded transport, we suddenly establish a physical tether of nominal length LT = 50 nm and 
stiffness k between the endosome and microtubule as explained in step 6 of Monte Carlo 
simulation algorithm. The tether buckles freely under pressure but exerts a restoring force Fext = 
-k*(L-LT) when stretched beyond LT (included in Eq. S2). 

Fig. 5A (main text) shows a simulated trajectory of an endosome repeatedly stalling against 
such elastic load and detaching from the microtubule. The endosome stall and recoil profiles 
depend on the number of motors, their binding rate, their unitary stall force, and the load 
dependence of their velocity and detachment kinetics. 

 

3. Stochastic model simulations 

 

3.1 Estimating model parameters from single-endosome experimental data: 

For an endosome with tens of sequential stalls/detachments, many of the model parameters 
can be determined from the experimental data. Here, we present the parameter estimation for the 
endosome with multiple jumps shown in Fig. 2 of main text.  

1. The forward and backward stepping rates of dynein are estimated using the run 
velocity of the endosome before exhibiting stalls and detachments based on the details 
given above (Eq. S8.)  

2. Based on the peak multiplicity (110 – 120 nm) in the jump size and detachment 
velocity distributions we estimated the involvement of ~ 8 dyneins on the endosome. 

3. Considering the 110 nm as the stall size of a single dynein, the tether stiffness k is 
estimated as k=Fs/110 pN/nm, where Fs is the stall force of dynein. 

4. We then selected a few endosome jumps with near-exponential recoil profiles and fit 
them to Eq. S1 to obtain k/γ = 81±6.7/s for 65 jumps with <10% fit error. 

5. The friction coefficient γ is then obtained as γ=Fs*0.001/(110*81) Ns/m 
6. The effective axonal viscosity for endosomes is estimated as η ~ 0.1 Ns/m2.  
7. We then estimated the radius of the endosome as R = γ/6πη. From these considerations 

we obtained the following initial parameter estimates for the model simulations. 
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In vitro model (Fs = 1.25 pN): Rd = 75, 149 nm for η = 0.1, 0.05 Ns/m2 respectively. 

High stall force model (2.5 pN): Rd = 75, 149, 298 nm for η = 0.2, 0.1, 0.05 Ns/m2 respectively.  

All the simulations in Table 1 (main text) were run with the endosome radius 75 nm. The 
assumption of a single dynein per 110 nm stall size gives an initial estimate for the number of 
active dyneins on the endosome. However, we have also explored a wide range of parameters in 
our model simulations around these initial estimates. For instance, while the initial estimate 
based on Fig. 2B was 8 dyneins, the motor number is varied from 6 – 14 in model simulations 
and the best result is considered for any given model in Table 1. Our intention was to ensure that 
a model failure was not due to an incorrect initial estimate for the motor number. While the high 
stall force model with exponential kinetics gave a good fit with the initial estimate of 8 – 10 
motors, the in vitro model (with in vitro detachment kinetics) fared poorly over this entire range 
of parameters. However, the high stall force model with exponential kinetics fit the experimental 
data with minimal modification of the experimentally estimated parameters. We note that the 
results of model simulations were negligibly affected within the range of 110 – 120 nm for single 
dynein stall size.  

We also considered the assumption of 2 dyneins per 110 nm jump in our simulation which 
gives an initial estimate of ~16 active dyneins on the endosomes. This is beyond the range of the 
number of dyneins on neuronal vesicles reported by immunostaining studies so far. Further, for 
16 dyneins to be geometrically active they need to be clustered at least within one hemisphere of 
the endosome. Simulations with the in vitro model under these conditions offered no 
improvement over the assumption of 1 dynein per 110 nm. 
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3.2 In vitro model simulations (clustered dynein distribution): 
 

Figure S4: In vitro model simulations with clustered dynein distributions. Left Panel: Simulated 
trajectories, showing stalls and detachments, for different clustered geometries and detachment 
kinetics. Right Panel: The corresponding histograms of qmin, qmax, and qdet positions (as defined 
in Fig. 3A) from the endosome jumps in each simulated trajectory. The grey arrows highlight the 
bimodal distribution of qmin. The bimodality results from a) fast interruptions of the endosome 
recoil caused by the high number of geometrically active dyneins in the clustered geometry and 
b) the catchbond kinetics decreasing the frequency of complete motor detachment and thereby 
increasing the residence time of the endosome in the high load regime.  
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4. Statistical analysis of the peaks in experimental distributions 

  
Power spectrum analysis:  

We used the power spectrum analysis to determine if there were roughly evenly spaced peaks 
in the jump size and maximum frame velocity distributions, corresponding to discrete numbers 
of active motors (Fig. S4 A,B). A probability density function of the data was obtained using 
kernel density estimation with a normal kernel of width 5 nm for jump size (qd) and 0.6 μm/s for 
velocity (vd) distributions. As a null hypothesis, a unimodal Weibull function was fit to the data. 
Control distributions were generated by bootstrapping the null hypothesis and generating power 
spectra to estimate a 90% confidence interval for a unimodal distribution. Frequencies above the 
95th percentile of the null hypothesis were considered as statistically significant.  

Figure 1 demonstrates this method for the velocity distribution (Fig. 2C of main text). Figure 
1A shows simulated distributions of the velocity data by randomly sampling six evenly spaced 
Gaussian distributions with their means spaced 5.1 m/s apart. If the peak width is very narrow 
(top panel, 0.5 m/s) the peaks are clearly distinguishable, but as the peak width approaches the 
spacing, the peaks are harder to distinguish (bottom panel, 5 m/s). The power spectral densities 
as a function of peak width are shown in Fig. S4B with a very prominent peak at narrow peak 
widths (0.5 m/s, dark blue line) and no clear peak at large widths (5.0 m/s, dark red line). The 
power spectral density of the experimental velocity data (Fig. 2C of main text) is shown in black. 
The peak height of the experimental data is close to that of the 3.6 m/s wide peaks in the 
simulated data (middle panel of Figure 1A). 

Figure 1C shows the power spectral density of the experimental data overlaid on the power 
spectral density of the null hypothesis Weibull fit to this data (blue line, 90% confidence 
intervals in gray). The power at the frequency corresponding to 5.1 m/s is higher than the 95th 
percentile of the unimodal fit.  

The same analysis applied to the jump size distribution (Fig. 2B of main text) confirmed the 
statistical significance of peaks with an approximate spacing of 120 nm.  
 
Maximum likelihood estimation of peak spacing in vd and qd distributions: 

As a separate method for determining the peak spacing, the distributions of vd and qd were fit 
to a Gaussian mixture model where each Gaussian is defined by a position, width, and amplitude. 
In our model, each Gaussian represents the discrete number of motors pulling the endosome 
prior to the detachment, so the spacing between successive Gaussians is the contribution of a 
single motor unit. Therefore, instead of independently assigning a position, width, and amplitude 
to each peak in the distribution, we fit a single model to the whole distribution for each 
endosome.  

The model has six parameters: the spacing between peak centers (p), the position of the first 
peak (μo), the width of each peak (σo), and a noise term allowing for peak broadening as more 
motors participated in a given jump (η). These four parameters define the position and width of 
each Gaussian. Two additional parameters, λ and K define the amplitude by determining the 
probability of a given number of motors participating in each jump. λ and K are obtained by 
fitting the data to a Weibull distribution where K is the shape parameter and λ is the scale 
parameter. In the initial Weibull fit, λ is in units of velocity or distance (for vd and qd 
respectively), which can be converted to number of motors by dividing by the spacing parameter,  
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p (in units of velocity/motor or distance/motor for vd and qd respectively). It is this rescaled λ that 
is used in the Gaussian mixture model. 

Negative log likelihood was estimated by convolving the model with each data point and its 
error estimated from the fitting of individual jumps, thereby accounting for differences in error 
across different jumps. 
 
 𝜇௡ ൌ  𝜇௢ ൅ 𝑛𝑝              (S11) 
 
            𝜎௡ ൌ 𝜎௢ ൅ √𝑛𝜂  (S12) 
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Where N is the normal distribution; μi, σi are from equations S11, S12; and μj, σj are the jth data 
point from the experiment and its associated standard error with J total data points (i.e. J total 
jumps). This construction allows for calculation of p from all the data at once. It also means that 
the number of parameters in the model is fixed, irrespective of the number of peaks in the 
distribution. This is in contrast to a conventional Gaussian mixture model where the number of 
parameters grows with the number of Gaussians fit.  

We found that expectation maximization was sensitive to the initial guess of p, as can often 
be in the case of maximum likelihood approaches. Therefore, to avoid overfitting, we performed 
the fit with several initial guesses of p. The initial values and upper and lower bounds are set 
such that the distribution is fit by increasing integer number of Gaussians starting from one going 
up to p = 2μm/s or p = 25nm for vd and qd respectively. For each fit, we computed the Akaike 
information criterion (AIC) taking the number of Gaussians in the mixture as the number of 
parameters.  

We then used the parameter value at the AIC minimum as the initial guess for the fit, and 
then maximized the likelihood without the upper and lower bound constraints in MATLAB. We 
found that this approach worked well to avoid overfitting the distributions of vd and qd for the 
simulated trajectories where the number of motors is known. The confidence intervals of the fit 
were computed from the inverse of the information matrix calculated at the maximum likelihood 
parameter values.  

Using this approach, we found the peak spacing of 119 (107, 131) nm for the jump sizes and 
4.7 (4.2, 5.1) m/s for detachment velocities (numbers in parentheses represent the 95% 
confidence interval). Fig. S4D,E show the Gaussian mixture model fits overlaid on the 
experimental distributions of jump size and maximum frame velocities (Fig. 2 of main text).  
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Figure S5: A) Simulated multimodal velocity distributions using the indicated peak width and a 
peak fixed at 5.1 m/s. Colors correspond to colored curves in (B). B) Simulated distributions 
were generated with a peak spacing of 5.1 m/s and peak widths ranging from 0.5 to 5 m/s. For 
each peak width, 50 independent distributions were generated with 500 data points each and the 
average power spectrum for each is plotted with the indicated color. Overlaid on top in black is 
the power spectrum of experimental velocity distribution (Fig. 2C of main text). C) The 
experimental power spectrum (black) is over overlaid on the mean power spectrum of a 
unimodal fit to data (blue curve, gray indicating 90% confidence interval by bootstrapping). D) 
Gaussian mixture model fit curve with a peak spacing of 119 nm (red) overlaid on the jump size 
distribution (black, Fig. 2B in main text). Red asterisks indicate the modes found statistically 
significant by the nonparametric test and the p values are shown. E) Gaussian mixture model fit 
curve (red) overlaid on the velocity distribution (black, Fig. 2C in main text). Red asterisks 
indicate the statistically significant modes and the p values are shown. 
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Statistical significance of modes: 

We then used two different established methods to ascertain the statistical significance of the 
possible modes in the data. First, we then used a nonparametric approach (10, 11) to specifically 
test the statistical significance of the modes in the data. This approach found statistically 
significant peaks (p value < 0.05) in the jump size data at the following locations: 246 nm, 392 
nm, 487 nm, 603 nm, 679 nm, 827 nm. A red asterisk indicates the location of each peak in Fig. 
S4D and the corresponding p values are listed above each peak. We note that this peak 
identification approach is nonparametric and the exact peak locations are sensitive to noise in the 
data. However, the peak locations are close to the modes identified in the above analysis and 
gave a mean peak spacing of 116 nm. Similarly, for the maximum frame velocity distribution, 
we find significant peaks at 5.4, 10.5, 15.6, and 31.3 m/s (Fig. S4E) and the mean peak spacing 
is 5.1 m/s.  

Next, we used the Silverman’s test for multimodality (12), which identified the three most 
prominent peaks in the distribution located at 486, 601, and 682 nm for the jump size distribution 
at a level of p < 0.05. For the velocity distribution, three peaks are also identified at 10.6, 19.5, 
and 31.1 m/s. We note that the Silverman’s test has been found to be quite conservative, and 
can miss peaks particularly in the case of variable peak amplitudes (10, 13), as is the case in the 
data herein. 
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