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Dynamic Clustering of Dyneins on Axonal
Endosomes: Evidence from High-Speed Darkfield
Imaging
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ABSTRACT One of the fundamental features that govern the cooperativity of multiple dyneins during cargo trafficking in cells is
the spatial distribution of these dyneins on the cargo. Geometric considerations and recent experiments indicate that clustered
distributions of dyneins are required for effective cooperation on micron-sized cargos. However, very little is known about the
spatial distribution of dyneins and their cooperativity on smaller cargos, such as vesicles or endosomes <200 nm in size, which
are not amenable to conventional immunostaining and optical trapping methods. In this work, we present evidence that dyneins
can dynamically be clustered on endosomes in response to load. Using a darkfield imaging assay, we measured the repeated
stalls and detachments of retrograde axonal endosomes under load with <10 nm localization accuracy at imaging rates up to
1 kHz for over a timescale of minutes. A three-dimensional stochastic model was used to simulate the endosome motility under
load to gain insights on the mechanochemical properties and spatial distribution of dyneins on axonal endosomes. Our results
indicate that 1) the distribution of dyneins on endosomes is fluid enough to support dynamic clustering under load and 2) the
detachment kinetics of dynein on endosomes differs significantly from the in vitro measurements possibly due to an increase
in the unitary stall force of dynein on endosomes.
INTRODUCTION
Cytoplasmic dynein drives the long-distance trafficking of
various cellular cargos toward the minus-ends of microtu-
bules in eukaryotic cells (1–5). Though dynein is a weak
motor with a modest stall force of 1.1 pN in vitro, the collec-
tive function of multiple dyneins can generate forces up to
20 pN on large cargos in cells (6,7). Dynein-specific proper-
ties like adaptable stepping, convex force-velocity relation-
ship, and catch-bond detachment kinetics make it highly
conducive for dyneins to work cooperatively as a team
(7). This cooperation is fundamental for the diverse range
of dynein-driven processes in cells, besides cargo traf-
ficking, that entail mechanical forces higher than a few pN.

An important facet governing the cooperative function of
cargo-bound dyneins is the spatial distribution of dyneins on
cargo, which determines the number of dyneins that are
geometrically active (i.e., can bind to the microtubule)
simultaneously and can cooperate effectively. Erickson
and coworkers used simulations to show that the geometric
activity and cooperation between motors is facilitated by
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clustered distribution of motors for large micron-sized car-
gos (8). Recently, Rai and coworkers used optical trapping,
immunostaining, and pharmacological studies to show
that clustered distribution of dyneins on late phagosomes
(1–2 mm in size) is critical for the phagosome trafficking
in cells (9). They also discussed the structural interactions
that cluster dyneins within cholesterol microdomains on
the phagosomes. It is very likely that the functional rele-
vance for dynein clustering and the underlying clustering
mechanism is cargo specific.

The importance of dynein clustering for effective cooper-
ation on micron-sized cellular cargos is quite apparent from
the geometric considerations of dynein length and cargo size
(8,9). However, not much is known about the spatial distri-
bution of dyneins and their cooperativity on smaller cargos
like vesicles or endosomes around 100–200 nm in size. Op-
tical trapping approaches that measure the cumulative force
of dyneins on cargos are limited to just a few large micron-
sized cargos (6,7,10,11). Further, optical traps can only
probe the geometrically active motor forces and cannot
report directly on the spatial distribution of dyneins on the
cargo. Probing the spatial distribution of dyneins on such
small cargos in cells is also not practical with immunostain-
ing methods (12). New approaches are therefore needed to
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study smaller cellular cargos for better insights into the
cellular mechanisms assisting the clustering and cooperativ-
ity of dyneins. In this work, we present experimental data
and model simulations to support a hypothesis that dyneins
can dynamically be clustered on endosomes in cells based
on new experimental data on endosomes under load in axons
and three-dimensional (3D) model simulations.

Our recent studies indicate that the robust long-distance
retrograde transport of endosomes, as small as 100–
200 nm, along the axons of neurons is driven cooperatively
by multiple dyneins (13,14). We also reported an approach
that permitted us to study the retrograde endosome transport
under load. Specifically, we showed that retrograde endo-
somes carrying fluorescent nanoparticles could be tethered
in axons stochastically depending on the laser illumination
power (14). Though the tether mechanism is not yet clear,
the elastic tether force opposes the dyneins hauling the endo-
somes, resulting in repeated stalls and detachments of endo-
somes that are remarkably similar to the records of cargos
under load in optical traps (7). The repeated stall/detachment
profiles of the endosomes under load are expected to be sen-
sitive to the spatial distribution and detachment kinetics of
dyneins on endosomes. However, fluorescence-based imag-
ing limited the number of stalls/detachments seen per endo-
some due to photobleaching and irreversible endosome
stalling at the laser power required for good spatiotemporal
resolution. In this work, we report a low-power darkfield im-
aging assay for the long-term tracking of retrograde endo-
somes, carrying gold nanoparticles, with <10 nm spatial
resolution at imaging rates up to 1 kHz. This method
permitted us in a few cases to capture hundreds of stalls
and detachments of the same endosome under load and
made single-endosome mechanical analysis possible. We
then formulated a 3D stochastic model, which incorporates
the translational, rotational, and thermalmotions of the endo-
some driven bymultiple dyneins and the dynamics of dynein-
endosome contact positions, to simulate the endosome stalls
and detachments under load. Our model is successful in
quantitatively simulating all the features and statistics of
the experimental stall/detachment profiles and gave insights
on the mechanochemical properties and spatial distribution
of dyneins on endosomes. Based on these results, we hypoth-
esize that dyneins can dynamically be clustered on endo-
somes in response to load. The dynamic clustering of
dyneins can be a particularly efficient mechanism for smaller
cargos, but larger cargosmay need additional structural inter-
actions, as is the case for phagosomes (9).
METHODS

Conjugation of gold nanoparticles with wheat
germ agglutinin

Streptavidin functionalized gold nanoparticles (GNPs in phosphate-buff-

ered saline (PBS), 80 nm) were purchased from Nanopartz (Loveland,
CO). The GNPs were coated with wheat germ agglutinin (WGA) using

biotin-avidin covalent interaction to obtain GNP-WGA as follows. In a

typical conjugation procedure, 20 mL of the GNPs in PBS (1 nM) is soni-

cated for 10 s, and 8 mL of biotin-WGA (1 mM) is added and the mixture

is left standing for 30 min. The GNPs were then spun down by centrifuga-

tion at 3000 rpm for 10 min, and the supernatant with unconjugated WGA

was discarded (repeated twice). The GNP-WGA conjugate was then made

up in 20 mL culture medium and was briefly sonicated for 10–15 s before

adding to the dorsal root ganglion (DRG) neuron culture.
Microfluidic device for DRG neuron culture
compatible with darkfield imaging

The use of microfluidic devices for primary neuron culture had been docu-

mented by us elsewhere (15,16). These devices, made of polydimethyl

siloxane (PDMS), were typically �5 mm in thickness and were compatible

with objective-based oblique illumination fluorescence imaging of axonal

transport. In this work, we used PDMS devices �1 mm in thickness

compatible with dark field imaging of axonal transport (see below). The

device fabrication was as reported before, but in this study, we used an

8:1 weight ratio of silicone elastomer and curing agent to enhance the

mechanical stability of the thinner PDMS devices. DRG neurons were

cultured in these devices as reported earlier, and we used mature DRG cul-

tures (7–10 days old) for the transport studies.
Dark field imaging of GNP-endosome transport in
microfluidic DRG neuron cultures

We customized an inverted microscope (Nikon Eclipse Ti-U; Nikon, Tokyo,

Japan) for the dark field imaging of GNP-endosomes in axons with high

spatial localization accuracy (<10 nm) at imaging rates up to 1 kHz.

Briefly, unpolarized white light from a halogen lamp is focused by a high

numerical aperture condenser (NA ¼ 1.4) through a light stop that selects

highly oblique rays to illuminate the sample. An adjustable NA objective

(NA�0.8–1.25) collects only the scattered light, which is spectrally filtered

(selecting 550–650 nm) and focused onto a fast sCMOS camera. We ob-

tained the localization accuracy (<10 nm, Fig. S1) of our imaging system

from the position uncertainty of GNPs stuck on cover slips, as detailed in

the literature (17).

The axon terminals or cell bodies in the microfluidic culture were selec-

tively incubated with GNP-WGA (0.5 nM), which was washed off using

culture medium after 30 min. Shortly before imaging, the culture medium

was replaced with CO2 independent medium, and the culture was capped on

top with a cover slip to form a�1 mm thick microfluidic device compatible

with the working distance of the high-NA condenser and dark filed imaging.

The culture was imaged on a water-heated custom microscope stage set to

maintain the culture at 31�C. Maintaining the culture at physiological tem-

perature 37�C required heating the optical components, which are in oil

contact, to >45�C and was hence not preferred. Imaging was started typi-

cally 2 h after the incubation start and restricted to <45 min session. Time-

lapse videos of endosome transport were acquired at 100–1000 frames per

second with the illumination power in the range of 0.25–1 mW/cm2.
3D stochastic model simulation of GNP-
endosome motion and detachments

We built a 3D stochastic model, based on earlier models (8,13) with key

modifications, to simulate the collective function of dyneins on endosomes

under load (Fig. 4). Briefly, our model considers a stable number of dyneins,

distributed randomly or in a clustered geometry, on a spherical endosome

connected to the microtubule (along the x axis of laboratory frame).

The dynamics of individual dyneins, which determine the endosome mo-

tion, are governed by their microtubule-binding, unbinding, forward- or
Biophysical Journal 115, 230–241, July 17, 2018 231



Chowdary et al.
backward-stepping rates that include the load dependence of velocities and

detachment kinetics. The endosome motion is separated into translational

and rotational components, and the thermal fluctuations on endosome are

explicitly incorporated in both these components. In addition, our model

also considers the fluidity of dynein-distribution on endosomes under

load by incorporating the motor-endosome contact point diffusion and drift

under mechanical torque on the endosome surface. To simulate the tethered

endosome motility, we modeled the tether as a linear-elastic spring docking

the endosome to the microtubule. The elastic tether buckles freely but exerts

a restoring force when stretched beyond its rest length. The cooperative

function of dyneins moving the tethered endosome against this restoring

force results in repeated stalls and detachments, which are quantified and

compared to experimental data. Most of the parameters in our model are

constrained by experimental data from this study or from literature

(7,18). A detailed description of the model, the Monte Carlo simulation al-

gorithm, and the parameter selection is given in the Supporting Material.
FIGURE 1 Retrograde GNP-endosomes under load. (A) Unidirectional

trajectories of retrograde GNP-endosomes in axons captured by darkfield

imaging are shown. The inset shows a snapshot of GNP-endosomes trans-

porting in axons. Scale bars, 3 mm. (B) Gradual stalls and fast reversals

(‘‘jumps’’) exhibited by GNP-endosomes in axons are shown. (C) The

elastic tether model explains the endosome jumps as the gradual stalling

and detachment of dyneins under load.
RESULTS

Darkfield imaging of retrograde axonal endosome
transport in microfluidic neuron cultures

Enhanced accuracy and time resolution

In earlier studies, we reported the real-time tracking of
retrograde axonal endosome transport using receptor-medi-
ated endocytosis of WGA-coated fluorescent quantum dots/
nanoparticles and fluorescence imaging in microfluidic
neuron cultures (13,14). Using intensely fluorescent nano-
particles (100 nm), we reported a localization accuracy of
�25 nm at 150 Hz imaging rate and a laser illumination po-
wer of 45 W/cm2. Here, we tracked the retrograde transport
of endosomes carrying gold nanoparticles (GNPs, 80 nm)
using darkfield imaging as described in Methods. The
extremely high scattering cross section of GNPs in the
visible range improved the localization accuracy to
<10 nm at imaging rates up to 1 kHz and low illumination
power of <1mW/cm2 (Fig. S1). Further, the low power
darkfield illumination is noninvasive and enabled us to track
the same GNP-endosome for tens of minutes without any
degradation in GNP scattering. The imaging frame rate in
our experiments is limited by the size of imaging field,
which was 14 � 140 mm2 for 1 kHz frame rate.

Axonal transport imaging

The strong scattering signal from GNPs allowed us to visu-
alize the GNP-endosome transport in axons directly from
the eyepiece of microscope, which made it convenient to
select the regions of interest to be imaged. The imaging was
carried out in axonal segments far from (hundreds ofmicrons)
the terminals and cell bodies, following distal incubation of
WGA-GNPs. We observed robust internalization and fast
retrograde transport of GNPs in axons within an hour of incu-
bating with 0.5 nMWGA-GNP. The GNP-endosome motion
is highly processive and almost unidirectional in retrograde
direction (Fig. 1 A; Video S1). Most endosomes traversed
the imaging field of view (140 mm) with no indication of
detachment from themicrotubules anddiffusionwithin axons.
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The transport pattern ofGNP-endosome transport is compara-
ble to that of quantum dot-endosomes (13) indicating that the
GNP is not perturbing the mechanics of endosome transport.
The predominant unidirectionality makes the retrograde
GNP-endosome transport in axons a fitting system to study
the mechanics of multiple dyneins in cells.
Tethering of endosomes and long-term imaging of endosome
jumps

Recently, we developed a technique termed nanoparticle-as-
sisted optical tethering of endosomes (NOTE) in axons (14).
Specifically, we showed that retrograde endosomes carrying
fluorescent nanoparticles (30–100 nm) could become sto-
chastically tethered to the microtubule during transport, de-
pending on the fluorescence laser illumination power. We
find that a few of the retrogradely moving GNP-endosomes
(<5% at 1 mW/cm2) also behaved similarly, as if they
were docked to the microtubule by an elastic tether (Fig. 1
B; Video S2). The opposing force from the elastic tether re-
sulted in these GNP-endosomes gradually stalling and snap-
ping back due to the lead-dyneins detaching from the
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microtubule (Fig. 1 C). The gradual stalls and fast reversals,
referred to as ‘‘endosome jumps,’’ are remarkably similar to
the records of cellular cargos in optical traps (7) and contain
valuable information on the collective function of dyneins on
the endosomes under load. In the case of endosomes with
fluorescent nanoparticles (14), the endosomes typically
became stationary after a few jumps at the laser illumination
power of 45 W/cm2 and the imaging resolution degraded
within a few minutes due to photobleaching. In contrast, at
the low power darkfield illumination, the GNP-endosomes
often resumed retrograde transport after a few jumps and in
a few cases exhibited tens to hundreds of jumps at the
same axonal location over tens of minutes of imaging (Video
S3). Such long-term tracking of the sequential stalls and de-
tachments of the same GNP-endosome with darkfield imag-
ing made it possible for us to undertake single-endosome and
individual motor motility analysis as detailed below.
Retrograde endosome transport under load:
single-endosome analysis

Endosome jump sizes

Fig. 2 A shows a retrograde moving endosome exhibiting
hundreds of jumps at the same axonal location over
18 min of imaging at 100 fps before resuming normal retro-
grade transport. This trajectory is extracted from multiple
sequential videos with drift correction using stationary scat-
tering objects within the videos as internal references. We
then estimated the endosome jump size as the difference be-
tween the maximum position reached within each jump
event and the approximated tether location (dotted line in
Fig. 2 A). The endosome exhibits a wide range of jump sizes
from 110 to 900 nm, as shown in Fig. 2 B, which indicates
the activity of multiple dyneins stochastically sharing the
load on endosome. We note that the jump sizes are approx-
imate since the tether location is not precisely known and
some residual drift within the trajectory cannot be ruled
out altogether. Nonetheless, the distribution of jump sizes
exhibited an apparent peak multiplicity of �120 nm
(Fig. S5 D). Assuming the 120 nm jumps are single dynein
events, we can infer the cooperative activity of �8 dyneins
on the endosome.

Recoil velocities

Similar conclusion can be reached from the recoil velocity
of the stalled endosome upon detachment, which is related
to the cumulative stall force of lead-dyneins. Fig. 2 C shows
the distribution of the maximal frame velocity (Vmaxf ob-
tained for each endosome jump as the maximal frame-to-
frame distance covered per unit time during recoil) of the
recoiling endosome within each jump. This distribution
ranged up to 35 mm/s and exhibited a discrete peak structure
with a multiplicity of�5.1 mm/s (Fig. S5 E). It can be shown
(Supporting Material) that Vmaxf is linearly related to the
instantaneous detachment velocity (Vdetach), which is pro-
portional to the cumulative stall force of the lead-dyneins
(14). Therefore, the peak multiplicity in Fig. 2 C can be
attributed to the cooperative activity of at least six dyneins
stochastically sharing the load on the endosome. Notably,
while the recoil velocity distribution averages around the ac-
tivity of two to three dyneins, the jump size distribution
FIGURE 2 (A) Repeated stalls and detachments

of a retrograde GNP-endosome under load. The

black dotted line is the estimated location of the

tether. (B) Histogram of endosome jump size, ob-

tained as the maximum distance covered within

each jump relative to the tether location, exhibits

peak multiplicity of �120 nm. (C) Histogram of

maximum frame velocity (Vmaxf) within each

jump exhibits peak multiplicity of �5.1 mm/s.

(D) Sudden detachment recoil profile is shown.

(E) Delayed detachment recoil profile is

shown. (F) Sequential detachment recoil profile

is shown. To see this figure in color, go online.
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averages around the activity of four to five dyneins. It is
plausible that some of the endosome jumps exhibit much
lower Vmaxf than expected due to the endosome recoil pro-
files being abruptly interrupted as detailed below.

Recoil profiles

We see a wide range of recoil profiles following dynein
detachment over these hundreds of endosome jumps. In
many cases the recoil profile is a sharp exponential decay
(Fig. 2D), indicating that the detachment ofmultiple lead dy-
neins happens in quick succession. The fast exponential
recoil of the endosome after lead-dynein detachment is often
interrupted within 40 –60 ms, possibly by the presence of
lagging microtubule-bound dyneins or by the rebinding of
detached dyneins to the microtubule. On average, the com-
plete endosome recoil lasted �180 ms before dynein driven
retrograde movement resumed for the next stall/jump. Inter-
estingly, we also see delayed detachment profiles, although
less frequently, as shown in Fig. 2E. Such profiles likely arise
due to partial detachment of lead-dyneins followed by the
backward stepping of remaining lead-dyneins under super-
stall load before detaching from the microtubule. Occasion-
ally, we see sequential detachment of dyneins apparent as a
step pattern in the recoil profile (Fig. 2 F).

Sequential stalls/detachments

In order to quantify the repeated stall and detachment pro-
files, we used an automated sliding window analysis to iden-
tify the maximal position (qmax) reached within a stall event,
the detachment position (qdet) after the stall, and the mini-
mum position (qmin) reached after the detachment (Fig. 3
A; Fig. S2). Fig. 3 B shows the histograms of the minima,
maxima, and detachment positions within each jump for
the endosome in Fig. 2. We then quantified the stalls/detach-
ments in terms of three statistical metrics namely the stall
duration (TS), the detachment duration (TD), and the recoil
duration (TR), as shown in Fig. 3 A. The distributions of
these dynamic variables are shown in Fig. 3, C–E and the
mean statistics are summarized in Table 1. These distribu-
tions, obtained from sequential stalls/detachments of the en-
dosome over a long time, can provide valuable insights on
the mechanochemical properties and spatial distribution of
dyneins on the endosome by guiding accurate models.

Gradual variations in motor forces

An intriguing feature in the repeated detachments of the en-
dosome in Fig. 2 is the gradual variation of the detachment
velocities (i.e., cumulative dynein forces) over a timescale
of minutes. Fig. 3 F shows the maximal frame velocity Vmaxf

within each successive jump (black markers) in Fig. 2,
which highlights the stochastic variation in the lead-dyneins
sharing load. On the other hand, the rolling average of Vmaxf

(red curve in Fig. 3 F) reveals two notable features. Firstly,
there is a gradual variation in the average <Vmaxf> over a
series of 100–200 detachments as seen from the autocorre-
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lation of <Vmaxf> in Fig. 3 G. Secondly, there is a gradual
increase in <Vmaxf> over the timescale of 1000 s until the
endosome eventually broke free and resumed retrograde
transport. These observations suggest that the cumulative
dynein forces acting on the endosome are dynamic and
can gradually evolve over a timescale of minutes. Recently,
there have been a few studies probing the collective forces
of dyneins on large cellular cargos using calibrated optical
traps (6,7,9). However, none of the studies probed the
same cargo over a long period of time. Our results suggest
that such long time trapping studies could be valuable in un-
derstanding the dynamic nature of the cargo transport ma-
chinery. We note that the single-endosome motility
analysis presented above is also done on a few other endo-
somes exhibiting repeated stalls and detachments. Fig. S3
shows another representative example of an endosome,
imaged at 500 fps, exhibiting �200 jumps over 14 min.
3D stochastic model simulations of multi-dynein
endosome transport under load

In order to analyze the single-endosome stalls/detachments
we built a 3D stochastic model, based on the prototype by
Erickson and coworkers (8), to simulate the endosome
motility under elastic load (see Methods and Supporting
Material). In our Monte Carlo model simulations, an endo-
some driven by multiple dyneins is linked to the microtubule
by an elastic tether that exerts a restoring force when
stretched beyond its rest length (Fig. 4 A). The collective
function of dyneins against the restoring force of the tether
results in repeated endosome stalls and detachments, which
can be quantified and compared to the experimental data.

The key model parameters are the endosome size, axonal
viscosity, number of dyneins, tether stiffness, mechano-
chemical properties of dyneins, and the spatial distribution
of dyneins on the endosome. For a given endosome exhibit-
ing tens of stalls and detachments, most of these model
parameters can be estimated from the experimental data
as detailed below and in the Supporting Material. Within
the constraints of experimental data, we extensively
analyzed a few specific considerations in our simulations
including 1) the stall force and detachment kinetics of
dyneins on endosomes, 2) the spatial distribution of
dyneins on endosomes (Fig. 4 B), and 3) the diffusion of mo-
tor-endosome contact positions on the endosome surface
(Fig. 4 C). Our model simulations successfully replicated
the variety of experimental stall and detachment profiles
as well as the overall single-endosome experimental statis-
tics (Fig. 5) to aid our understandings on the collective func-
tion of dyneins on endosomes (detailed below).

In vitro mechanochemical properties cannot simulate
experimental stall/detachment profiles

First, we tried to simulate the main statistical metrics quan-
tifying the single-endosome stalls and detachments (i.e.,



FIGURE 3 Single endosome statistics obtained

from the multiple endosome jumps in Fig 2. (A)

A depiction of the stall duration TS, detachment

duration TD, and the recoil duration TR, based on

the minimal (qmin), maximal (qmax), and detach-

ment (qdet) positions within the endosome jump is

shown. (B) Histograms of qmin, qmax, and qdet posi-

tions are shown. The distributions of TD, TR, and TS
are shown in (C), (D), and (E), respectively. (F) The

maximum frame velocity Vmaxf within each succes-

sive jump is shown as a function of time (black

markers). The moving average <Vmaxf > (red

line) shows the dynamic variation of detachment

velocities over a span of minutes. (G) The autocor-

relation of <Vmaxf > is shown.
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stall duration TS, detachment duration TD, and recoil dura-
tion TR) in Fig. 2, by constraining the mechanochemical
properties of dynein in the model to in vitro measurements
(18). Specifically, the unitary stall force of dynein (Fs ¼
1.25 pN), the load dependence of dynein-stepping rates,
and catch-bond detachment kinetics are fixed to in vitro
measurements (Supporting Material). We estimated the
other model parameters from the experimental data as fol-
lows. 1) The forward/backward stepping rates can be esti-
mated from the net velocity of freely moving endosomes
before the initiation of jumps. 2) Considering the jump
size of 120 nm as a single dynein event, the tether stiffness
is given by k ¼ Fs/120, where Fs is the single dynein stall
force. 3) We then fit a few jumps with uninterrupted expo-
nential recoil profiles to extract the damping constant k/g
(Eq. S1) and thereby the friction coefficient g using k
from the previous step. 4) From the effective axonal viscos-
ity (0.05–0.2 Ns/m2) and known g, we can estimate the en-
dosome size using the Stokes relation. 5) From the peak
structure in jump sizes and detachment velocities, we can
estimate the number of cooperating dyneins on the endo-
some to be �8. Our simulations spanned a reasonable range
of model parameters around these experimental estimates
(Table 1).

Our simulations show that the in vitro model has signifi-
cant limitations in replicating the experimental metrics
(Table 1, rows A–J). Basically, the dynein detachment under
load in the in vitro model is too fast for efficient cooperation
between dyneins and resulted in the average stall durations
40–50% lower than the experiment. Decreasing the detach-
ment rate to enhance the dynein cooperativity, on the other
hand, resulted in delayed detachment profiles with average
detachment durations twofold higher than the experiment.
Further, the histograms of the minima, maxima, and
Biophysical Journal 115, 230–241, July 17, 2018 235



TABLE 1 3D Model Simulation of the Tethered Single Endosome Dynamics

Model Detach Kinetics Dynein Dist. TD (s) TR (s) TS (s) Vmaxf (mm/s) Ld

endosome: Fig. 2 0.11 0.18 1.52 11.6

A IVT, Nd ¼ 8 CB random 0.14 0.13 1.10 4.21 1.96

B IVT, Nd ¼ 8 EXPN 0.08 0.11 0.75 6.21 1.68

C IVT, Nd ¼ 6 CB Q ¼ 5 0.17 0.12 1.14 4.04 3.11

D IVT, Nd ¼ 6 EXPN 0.10 0.11 1.06 10.0 3.10

E IVT, Nd ¼ 6 CB Q ¼ 30 0.17 0.12 1.06 3.94 3.01

F IVT, Nd ¼ 6 EXPN 0.11 0.10 1.01 9.87 2.93

G IVT, Nd ¼ 6 CB Q ¼ 90 0.17 0.12 0.98 4.50 2.65

H IVT, Nd ¼ 6 EXPN 0.09 0.14 0.87 7.15 2.75

I IVT, Nd ¼ 8 CB fluid 0.30 0.21 1.71 3.79 3.08

J IVT, Nd ¼ 8 EXPN 0.05 0.15 0.87 8.58 1.88

K HS, Nd ¼ 8 EXPN random 0.11 0.13 0.95 5.84 1.91

L HS, Nd ¼ 6 Q ¼ 60 0.24 0.12 2.49 12.8 4.20

M HS, Nd ¼ 6 Q ¼ 90 0.24 0.12 2.43 10.8 4.12

N HS, Nd ¼ 6 Q ¼ 180 0.19 0.12 1.65 8.90 3.30

O HS, Nd ¼ 8 fluid 0.12 0.16 1.39 10.1 2.88

P HS, Nd ¼ 10 0.13 0.12 1.50 11.7 3.51

From Figs. 2 and 3. For each simulation resulting in multiple endosome jumps, we computed the averages of detachment duration TD, recoil duration TR, stall

duration TS, maximal frame velocity Vmaxf, and the load sharing dyneins Ld. The mean of these averages from eight different simulations for each condition

are tabulated above. The standard errors in these values are�10% of the values. All simulations in this table are run with an endosome size of 150 nm, dynein

binding rate of 5/s, and unloaded dynein detachment rate of 0.4/s. The dynein-motor contact diffusion constant used for the fluid distribution is 0.01 mm2/s.

See Supporting Material for additional information on the simulation and model parameters. CB, catch-bond kinetics; EXPN, exponential kinetics; HS, high

stall force model with dynein stall force ¼ 2.5 pN; IVT, in vitro model with dynein stall force ¼ 1.25 pN.

Chowdary et al.
detachment positions within each jump obtained from the
model simulations showed significant qualitative differ-
ences with experiment (Fig. S4). We tried an extensive set
of considerations, including different spatial distributions
of dyneins on endosome (Fig. 4, B and C) and relaxed
scans of parameters around the experimentally determined
estimates. However, the simulated stall duration, detach-
ment duration, and detachment velocity were not simulta-
neously consistent with experimental data using the
in vitro stall force and detachment kinetics of dynein. For
instance, clustering the dyneins within a narrow sector on
the endosome increases dynein cooperation and the stall
duration but results in significantly delayed detachments
and rapidly interrupted recoil profiles that are qualitatively
inconsistent with experimental data (Fig. S4). We also
explored single-rate exponential detachment kinetics as
well as a wide range of parameters within catch-bond
detachment kinetics with minimal improvement in model
performance. Although the exponential kinetics fit the
detachment duration and detachment velocity reasonably
well, the stall duration is underestimated by 30–50%.

We then tried a modified set of mechanochemical proper-
ties (i.e., the high stall force model) based on the in vivo
force measurements on lipid droplet system (11,18,19). Spe-
cifically, we used a higher unitary stall force of 2.5 pN and
single-rate exponential detachment kinetics for dynein
(Supporting Material). Interestingly, we observed a very
good fit to not only the averages but also the distributions
of different metrics quantifying the experimental stalls and
detachments using the high stall force model simulations
with exponential detachment kinetics (Table 1, rows O–P).
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The averages of stall duration, detachment duration, recoil
duration, and detachment velocity could all be simulated
with <15% error using the experimentally constrained pa-
rameters. Fig. 5 A shows the simulated trajectory of a teth-
ered endosome (Table 1, row O) exhibiting repeated stalls
and detachments. Further, notable experimental features
like the shoulders in stall profiles and the sudden, delayed,
and sequential detachment profiles, etc., are all borne out
by model simulations (Fig. 5 B). These results indicate
that the detachment kinetics of dynein on endosomes differs
substantially from in vitro measurements, within the accu-
racy of our model. A plausible reason could be the differ-
ence in stall force of dynein on endosome, which
parametrically affects the detachment kinetics (7,18). It is
also plausible that a pair of dyneins could function as a
unit with a unitary stall force of �2.5 pN and significantly
altered detachment kinetics.
Spatial distribution of dyneins on the endosome
in 3D model simulations

In analyzing the efficacy of the in vitro (1.25 pN) and high
stall force (2.5 pN) models, we tried several considerations
for the spatial distribution of dyneins on endosomes
including random-fixed, cluster-fixed, and fluid distributions
(Fig. 4, B and C). Briefly, for the random-fixed distribution,
dyneins are randomly distributed and the dynein-endosome
contact positions are fixed on the endosome surface during
the simulation. For the cluster-fixed distribution, the
dynein-endosome contact positions are randomly distributed
and fixed on a spherical sector of the endosome surface



FIGURE 4 3D model for simulating the tethered endosome dynamics.

(A) A schematic of the endosome with multiple dyneins in our 3D model

is shown (see Methods and Supporting Material). (X, Y, Z) is the laboratory

frame and (a, b, c) is the endosome frame of reference. (B) Random-fixed

and clustered-fixed spatial distributions of dyneins on endosomes are

shown. (C) Fluid distribution of dyneins on endosomes, which permits

the dynein-endosome contacts to diffuse and slide under mechanical torque,

is shown. To see this figure in color, go online.
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subtending an angleQ (range of 0–p radians) at the center of
the endosome. For the fluid distribution, the dynein-endo-
some contact positions were allowed to diffuse (D ¼
0.001–0.1 mm2/s) and drift with torque on the endosome sur-
face (Fig. 4 C). The statistics of simulated endosome stalls
and detachments over a long time are highly sensitive to
the nature of dynein distribution as detailed below.

Fixed distributions of dyneins on endosomes are not
consistent with experimental data

Random-fixed distribution. The geometric activity of dy-
neins, and hence their cooperativity, is sensitive to the
spatial distribution of dyneins even on endosomes as small
as 150 nm and the random-fixed distribution is not condu-
cive for dynein cooperativity. For a tethered 150 nm endo-
some with eight randomly distributed dyneins, the average
number of dyneins sharing the load at detachment is <2.
In order to have four dyneins cooperating on average, as
seen in the experimental data (14), we need a total of 20 dy-
neins randomly distributed on the endosome (in vitro
model). This is implausible based on immunostaining
studies (12,20), which indicate that the maximum number
of dyneins on neuronal vesicles is <12. The observation
that the number of cooperating dyneins on axonal endo-
somes (�4 on average (14)) is comparable to the total num-
ber of dyneins (�5–7 on average (12,20)) indicates some
degree of dynein clustering even on the endosomes as small
as 100–200 nm.

Cluster-fixed distribution. We then analyzed the cluster-
fixed distributions of dyneins on endosome with Q ranging
from p/30 (all dyneins at one point) to p (all dyneins in one
hemisphere). As expected, the dynein cooperativity is
enhanced with decreasing Q due to an increasing number
of dyneins that are geometrically active simultaneously.
For a tethered 150 nm endosome with eight dyneins, the
average number of dyneins sharing load at detachment is
4 for Q ¼ p/30, 3.9 for Q ¼ p/6, 3.8 for Q ¼ p/3, 3.6
for Q ¼ p/2, and 2.2 for Q ¼ p. However, the stalls and
detachment profiles for low Q values are inconsistent with
the experimental data for both the in vitro (Table 1, rows
C–H) and high stall force (Table 1, rows L–N) models. Clus-
tering the dyneins on a narrow sector (Q < p/3) not only
increased the detachment duration (80–100% greater than
seen in experiment) but also decreased the recoil duration
(40%< experiment) due to fast rebinding of dyneins, which
are all geometrically active. Further, clustered distributions
with low Q resulted in a narrow distribution of large stalls
due to uniform cooperativity and a bimodal distribution of
minima between stalls due to frequently interrupted recoil
profiles (Fig. S4), which clearly contrast the experimental
data (Fig. 3 B). These results suggest that the dyneins are
neither randomly distributed nor clustered at a spot (or too
narrowly, as in Q < p/4) on the endosome.

The high stall force model with clustered dynein distribu-
tion overestimates both the detachment duration and the
stall duration (Table 1, rows L–N) due to enhanced cooper-
ative activity. We then considered the possibility that the
spatial distribution of dyneins is dynamically evolving as
opposed to being fixed at the initially recruited positions
on endosome surface. It is plausible that the dynein-endo-
some contact positions are not rigidly fixed and retain
some degree of mobility on endosome surface. We hypoth-
esized that this scenario would result in partial clustering of
dyneins to intermediate Q (p/4–p/2) on endosomes, which
might not only fit the data better but also explain the dy-
namic long time variations in detachment velocities seen
in experiments. We therefore explored the fluid-distribution
model where the dynein-endosome contact positions are
allowed to diffuse and drift under mechanical torque
(Supporting Material).

Fluid distribution of dynein-endosome contacts leads to
dynein clustering on endosomes

With the fluid distribution, we first asked if the repeated
stalls and detachments of dyneins on tethered endosomes
could result in the spatial reorganization of dyneins on endo-
some surface. To this end, we simulated the dynamics of a
tethered endosome (150 nm size, with eight dyneins) with
Biophysical Journal 115, 230–241, July 17, 2018 237



FIGURE 5 High stall force model simulation with fluid distribution of dyneins on endosome (Table 1, row O). (A) Simulated trajectory of the tethered

endosome exhibiting repeated stalls and detachments is shown. (B) Zooming into the endosome jumps shows key features like sudden, delayed, and sequen-

tial detachment profiles. The distributions of TD, TR, and TS for the simulated endosome jumps are shown in (C), (D), and (E), respectively. (F) Histograms of

qmin, qmax, and qdet positions for the simulated endosome jumps are shown. To see this figure in color, go online.
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the dynein-endosome contact diffusion constant in the range
of D ¼ 0.001–0.1 mm2/s. Starting with randomly distributed
dyneins, we monitored the spatial distribution of dyneins on
the tethered endosome after 10 min of repeated stalls and
detachments. Interestingly, in quite a few cases, we
observed partial spatial pooling of dyneins (as in Fig. 4 C)
on the endosome surface (Fig. 6, A and B). This can be ratio-
nalized as follows. Endosomes driven by multiple dyneins
tend to maintain a stable orientation with respect to the
microtubule for sustained periods of time. The asymmetric
positioning of the microtubule can pool dyneins on the en-
dosome surface due to two factors, including 1) the duty ra-
tio of dyneins (microtubule binding/unbinding rate ratio>5)
prevents the geometrically active dyneins diffusing away
from the region on endosome surface closer to the microtu-
bule and 2) the torques exerted at the dynein-endosome con-
tact positions, for dyneins under load, slide the contacts
closer to the microtubule. Of course, the fluctuations of en-
dosome orientation can prolong the timescale for spatial
clustering and may also result in multiple clusters depending
on the endosome size and viscosity. These results demon-
strate that dyneins can dynamically be clustered on the en-
dosome surface in response to load.

We then analyzed the tethered endosome stalls and detach-
ments over a long time with fluid distribution of dyneins. The
model simulations with fluid dynein distribution (high stall
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force model) were quite successful in replicating the experi-
mental data with minimal modification of the experimentally
determined parameters (Fig. 2), as mentioned in the earlier
section on in vivo model simulations (Fig. 5; Table 1).
Notably, the simulations also show the dynamic variations
in detachment velocities over a span of minutes, which corre-
late well with the number of load-sharing dyneins (Fig. 6 C).
The quantitative accuracy of these model simulations sup-
ports the hypothesis that the dynamic clustering of dyneins
could be a viable mechanism to facilitate the cooperativity
of dyneins on axonal endosomes.
DISCUSSION

The collective function of dyneins is fundamental for the
retrograde transport of a diverse range of cellular cargos
with different sizes and motility regimes. Broadly, the coop-
erativity of multiple dyneins is governed by several factors,
including 1) molecular adaptations of dynein (7,18), 2)
intracellular regulators modifying single dynein properties
(21–23), and 3) mechanisms controlling the spatial assem-
bly of dyneins on cellular cargos (9). Although there is
extensive research in literature focused on the first two fac-
tors, our understanding of the spatial assembly of dyneins on
cellular cargos is limited to specific micron-sized cargos.
Probing the spatial assembly of dyneins on smaller cellular



FIGURE 6 Dynamic clustering of dyneins on tethered endosomes shown

by high stall force model simulation with fluid distribution of dyneins on

150 nm endosomes. (A) The spatial distribution of dyneins on endosome

is shown by plotting the endosome body coordinates (polar versus

azimuthal angles) for each dynein-endosome contact position. The initial

distribution is shown in black (filled triangles), and the distribution

after 10 min of stalls/detachments is shown in red (filled circles).

D ¼ 0.001 mm2/s (B), same as in (A), except D ¼ 0.01 mm2/s. (C) Dynamic

variation in motor detachment velocities (Vmaxf as black markers and

<Vmaxf> as red line/dotted line) over a span of minutes from simulation

is shown (Table 1, row P). The <Vmaxf> shows a clear correlation with

the average number of load sharing dyneins (blue line/dashed line). To

see this figure in color, go online.
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cargos is not practical with direct approaches like optical
trapping and immunostaining. In this work, we combined
a new darkfield imaging assay and 3D stochastic models
to analyze the spatial assembly and collective function of
dyneins on retrograde endosomes in axons. Our results sug-
gest that the dyneins are assembled in a semiclustered ge-
ometry even on endosomes as small as 100–200 nm.
Further, we show that such a semiclustered distribution on
endosomes can arise from dynamic clustering of dyneins
during active transport under load, which can be an efficient
mechanism for smaller cargos. The high-accuracy tracking
of GNP-endosome motility under load and the quantitative
accuracy of our model simulations provide a better under-
standing of the spatial distribution and mechanochemical
properties of dyneins endosomes.
Dynamic clustering of dyneins on cellular cargos:
a generic mechanism?

Proteins and lipid microdomains are known to undergo
diffusion in the cell membrane, with the diffusion constant
ranging from 0.01 to 0.1 mm2/s. It is therefore plausible
that the dynein-endosome contact positions are not
completely rigid and retain some degree of mobility on
the endosome surface. As a consequence, mechanical tor-
ques at dynein-endosome contact positions for stretched dy-
neins under load could result in the contacts sliding and
clustering on endosome surface proximal to the microtu-
bule. Our simulations show that even with highly con-
strained dynein-endosome contact diffusion (0.001 mm2/s),
dyneins can dynamically assemble into semiclustered ge-
ometries on the endosome in response to load.

The dynamic clustering can be a particularly efficient
mechanism for small cellular cargos with a high geometri-
cally active/inactive surface area ratio than larger cargos.
However, dynamic clustering by itself may not be enough
to support the high cooperativity of dyneins seen on
micron-sized cellular cargos. Intracellular force measure-
ments show that the collective forces on micron-sized car-
gos can be up to 20 pN, indicating the cooperativity of
around 10–15 dyneins. Additional structural interactions
may be necessary for large cellular cargos to keep all the dy-
neins clustered within one or more tight spots on cargo for
high cooperativity. Recent work by Rai and coworkers
demonstrated that the dyneins are spatially clustered on
micron-sized late phagosomes in cells (9). More impor-
tantly, they also elucidated the likely structural interactions
responsible for the clustering of dyneins within cholesterol
microdomains on phagosomes. The fact that uniformly
distributed dyneins on early phagosomes evolve into clus-
tered distributions on late phagosomes indicates that the
dynein-phagosome contacts are mobile before being trapped
into tight spots by structural interactions (9). From a general
perspective, the clustering mechanism could be cargo-spe-
cific and cargo size-dependent. It is quite plausible that a
combination of dynamic clustering and cargo-specific struc-
tural interactions shape the assembly of dyneins on large
cellular cargos.

Evidence for dynamic clustering of motors on cellular
cargos under load could also be noted from other experi-
mental data. Soppina and coworkers showed that large bidi-
rectional endosomes in cells were enlongated during pauses,
resulting from tugs of war between teams of kinesins and
dyneins (24). This indicates that the dyneins were not only
clustered to cooperatively withstand the kinesin forces but
also positioned spatially opposite to kinesins. Whereas
structural interactions can be attributed to the clustering of
dyneins, it is hard to rationalize the relative positioning
of opposing motor teams. Such polarized spatial assembly
of kinesins and dyneins on endosomes could potentially
result from dynamic clustering under opposing load.
Biophysical Journal 115, 230–241, July 17, 2018 239
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Recently, there were a few studies probing the collective
forces of dyneins on populations of large cellular cargos us-
ing calibrated optical traps (6,7,9). However, there was no
study probing the forces on the same cargo over long times,
which is important to distinguish the stochastic and long-
time dynamic variations in the collective mechanics of dy-
neins. Although some long time variations can be attributed
to regulatory interactions coupled with cargo maturation,
our results suggest that some dynamic variation can also
result from fluid distributions of dyneins on cargos.
Mechanochemical properties of dyneins on
endosomes

In vitro measurements from several groups have established
the stall force of dynein (1.1–1.25 pN) and the catch-
bond detachment kinetics of dynein at superstall load
(6,7,10,18). However, force measurements on a few large
cellular cargos reveal system-dependent stall force of
dynein in cells. Shubeita and coworkers, studying lipid
droplet transport in vivo, show that the stall force of dynein
is 2.5 pN (11). This is substantiated by other independent
studies on lipid droplets in vivo (19). On the other hand,
Rai and coworkers showed that the unit stall force of retro-
grade phagosomes in cells is 2.2 pN. This was interpreted as
a pair of dyneins recruited by Rab7, thereby giving a stall
force of 1.1 pN for dynein on phagosomes (7). The mechan-
ical properties of dyneins extracted by modeling the single
GNP-endosome jumps under load could therefore extend
the current knowledge on the system dependence of dynein
properties in cells.

A notable feature of our single-endosome data analysis
based on tens of endosome stalls and detachments is that
many model parameters (number of active motors, tether
stiffness, friction coefficient, dynein velocity) can be
roughly estimated from the experimental data. Further, there
are several statistical metrics to be fit simultaneously, which
is a rigorous test for different models. Within the accuracy
of our 3D model, our results show that the in vitro model
(1.25 pN stall force, in vitro detachment kinetics) has severe
drawbacks, whereas the high stall force model (2.5 pN stall
force) is reasonably accurate in simulating the experimental
data. We note that the quantitative accuracy of high stall
force model is not necessarily conclusive evidence for the
stall force of dynein being 2.5 pN on endosomes. However,
in conjunction with the results on lipid droplet system, it
lends further credence to the presumed cargo dependence
of dynein mechanical properties in cells. Our simulations
indicate that the detachment kinetics of dyneins on
endosomes differ significantly from in vitro measurements.
It is plausible that this could be due to 1) altered mechano-
chemical properties of dynein complexes on endosome or 2)
the function of a pair of dyneins as a unit with twice the
stall force of a dynein and modified detachment kinetics.
It was reported that the formation of dynein-dynactin-
240 Biophysical Journal 115, 230–241, July 17, 2018
BICD2 complex increases human dynein’s force production
to 4.3 pN (25). Further, a recent study shows that dynactin
can recruit a second dynein that elevates the stall force
and speed of the complex (26).

It is also worth discussing the caveats and limitations of
our 3D model. Firstly, it is evident from the data reported
earlier (14) and in this work that the endosome jumps are
the result of an opposing force on the dyneins driving the en-
dosome. However, the biochemical origins of this force are
yet to be established. Understanding the mechanical nature
of the force (beyond the simple elastic tether model) would
be imperative to improve and substantiate the model simu-
lations. Secondly, our model does not include any regulatory
interactions between dyneins and adaptors or between the
protofilament structure of the microtubule and protofilament
switching of dyneins. It is plausible that such interactions
play a critical role in altering the mechanochemical proper-
ties in cells as mentioned above (25,26). Thirdly, we note
that the Brownian diffusion of dynein-endosome contacts
is a simplification made to highlight the principle of dy-
namic clustering. However, the timescale of dynamic clus-
tering and the eventual spatial distribution of motors could
be modulated by structural domains on the cargo based on
the size and specifics of cellular cargos.
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1. Experiments and data processing 

 

1.1 Single particle tracking of GNP-endosome transport in time lapse movies: 

Semi-automated custom Matlab software is used to extract endosome trajectories (X(t),Y(t)) 
from the time lapse movies of axonal transport as described earlier (1). Briefly, we used 2D-
Gaussian fitting adapted to detect the locations of endosomes (with GNPs) in each movie frame. 
We then used a particle-tracking algorithm, adapted from Jaqaman et al. (2), to link these 
detected locations into endosome trajectories. The flux of endosome transport, kept very sparse 
by controlled incubation conditions, lead to minimal tracking errors. Occasional errors associated 
with crossing trajectories are corrected by manual inspection in the final step of processing. For 
each endosome trajectory, we extracted the underlying microtubule track (Qx,Qy) using an edge-
based tracing algorithm. Using this microtubule track, the endosome trajectory is converted from 
camera pixels (X(t),Y(t)) to microtubule coordinates (Q||(t),Q(t)) representing the motion 
parallel and perpendicular to the microtubule (1). Since the microfluidic channels (and hence the 
axons) are aligned along the X-axis of the camera, X(t) is an approximation for Q||(t).  

Drift correction: For GNP-endosome trajectories spanning multiple movies, we corrected for 
the stage drift and mechanical disturbances using stationary scattering objects within the movies 
as internal references. We note that these references are associated with some highly scattering 
structures within axons and exhibited a slow drift with time. Therefore, some residual drift even 
within the reference corrected GNP-endosome trajectories cannot be ruled out completely. 

 

1.2 Localization precision of GNPs with darkfield imaging at 1 kHz:  

We obtained the localization precision of our darkfield imaging system using the standard 
approach detailed in literature (3). Briefly, we imaged the 80 nm GNPs stuck on a coverslip 
surface at 1 kHz for a duration of 22 seconds and then tracked the positions of the GNPs as 
discussed above. In order to correct for the long-time drift in measuring the localization 
precision, we subtracted the coordinates of pairs of GNPs (Fig. S0A) and got the distribution of 
differences for each pair (Fig. S0B). The standard deviation of this distribution of differences 
divided by √2 gives the localization precision of 4.4 ± 0.8 nm (Mean ± SD, N = 9).  
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Figure S1: Localization precision (σI) of 80 nm GNPs with darkfield imaging. A) Referenced 
and demeaned position coordinates of two GNPs over 22 seconds of tracking at 1 kHz. The red 
distribution is offset for clarity.  B) Demeaned difference distributions of the two GNPs shown in 
(A). The red distribution is offset for clarity. The standard deviation divided by √2 gives the 
localization precision σI. C) Localization precision as a function of the GNP intensities (spanning 
the range of GNP intensities in this work). 
 

 

1.3 Detachment model fitting of endosome jumps:  

We previously described (4) how the endosome jumps (gradual stalling followed by dynein 
detachment) can be explained by considering that the endosome is docked to the microtubule by 
an elastic tether. The dyneins pulling the tethered endosome are slowed down by the elastic 
restoring force of the tether (Fopp = -kx) opposing the endosome motion. The endosome gradually 
stalls as the tether is stretched and Fopp reaches the stall force of the leading dyneins. When the 
stalled dyneins detach from the microtubule, the endosome recoils back under the influence of 
Fopp. We also presented a model for dynein detachment under the elastic tether load to fit the post 
detachment recoil profiles of endosome jumps (4). Our model shows that the recoil profile is an 
exponential with a damping constant k/γ, where k is the tether stiffness and γ is the friction 
coefficient of the medium. Specifically, the endosome recoil is described by Eq. S1, where td is 
the detachment time, Vdetach is the instantaneous recoil velocity of endosome at detachment, and 
k/γ is the damping constant. By fitting the single-endosome jumps with uninterrupted recoil 
profiles, we can obtain the damping constant k/γ for the endosome.  

q(t) qs 
C

D
1 exp D(t  td )  ; C Vdet ach; D  k


; t  td    (S1) 

 

1.4 Maximum frame velocity and Instantaneous detachment velocity: 

The endosome trajectory in Fig. 2 of main text (acquired at 100 fps) exhibited ~500 stalls and 
detachments over a time of 18 minutes. However, the recoil profile following motor detachment 
is often interrupted within 30 – 40 ms, possibly by lagging microtubule-bound dyneins or fast 
rebinding of detached dyneins. In such cases, with a limited recoil range of 3 – 4 time points, 
fitting the exponential form in Eq. S1 would lead to inaccurate fit parameters (Vdetach and k/γ). 
We therefore used the maximum frame velocity (Vmaxf), which is easy to compute, as a simple 
statistical metric to compare the model simulations and experiment in this work. The maximum 
frame-to-frame velocity (<Vdetach) is correlated to the instantaneous detachment velocity (Vdetach) 
depending on the imaging frame rate and the damping constant k/γ of the recoil profiles. We 
simulated hundreds of recoil profiles using Eq. S1, with a wide range of Vdetach values and fixed 
k/γ, and digitized the profiles at 100 Hz. We then extracted the Vmaxf for each of these profiles 
and observed a linear relationship (that depends on frame rate and k/γ) between Vmaxf and Vdetach.  
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1.5 Automated detection and quantification of sequential endosome jumps: 

In order to quantify the sequential stalls and detachments in the experimental and simulated 
trajectories, we used the following automated routine. First, we used a sliding window of 0.5s to 
identify the extrema (minima and Maxima) in the endosome trajectory. In cases where there are 
two successive minima (or Maxima), we identified the missed intermediate maximum (or 
minimum) in the second step. These steps successfully identified each of the endosome jumps as 
a minimum-Maximum-minimum (m-M-m) sequence in the trajectory as shown in Fig. S1. We 
then identified the detachment point within each m-M-m sequence as the time point preceding 
the time-point with the maximum frame-to-frame velocity. Finally, we selected only those m-M-
m sequences that exhibited the recoil for at least two successive frames following the detachment 
point as valid endosome jumps. This step removes the spurious m-M-m sequences with no 
obvious motor detachment. We then computed the histograms of the variables like stall duration, 
detachment duration, and recoil duration for each endosome jump as shown in Fig. 3 (main text). 

 

Figure S2: Automated detection of the maximum (qmax), minimum (qmin), and detachment (qdet) 
positions within endosome jumps. Experimental trajectory from Fig. 2 of main text. 
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1.4 Single endosome motility under load imaged at 500 fps:  

 

Figure S3: Single endosome dynamics under load imaged at 500 fps for over 14 minutes. A) 
Repeated stalls and detachments (~200) of a retrograde moving endosome. B) zoomed view of 
the endosome jumps. The distributions of TD, TR, and TS for the simulated endosome jumps are 
shown in C), D), and E) respectively. F) Histograms of qmin, qmax, and qdet positions from the 
endosome jumps (check Fig. 3A for variable definitions). F) The distribution of Vmaxf obtained 
from all the endosome jumps. G) Stochastic and dynamic variations in Vmaxf with time. The blue 
markers show Vmaxf for each individual jump, the red line shows 51-point smoothed <Vmaxf >, and 
the green line is a linear fit.  
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2. 3D stochastic model for multiple dynein endosome transport 

 

2.1 3D stochastic mechanical model:  

Multi-motor 1D mechanical models for cargo transport, based on Monte Carlo simulation of 
cargo trajectories, have been elaborated for different motility regimes in literature (5-7). Erickson 
et al. have also presented a prototypical 3D stochastic model for cargo transport by multiple 
kinesins (8). Our 3D stochastic model, for endosome transport by multiple dyneins, is based on 
this prototype with key modifications in modeling the mechanochemical properties and the 
spatial distribution of dyneins on endosomes. Here we briefly summarize the general 
characteristics as well as the details specific to our 3D model. 

We modeled the endosome as a hard sphere (radius R) driven by a stable number of 
endosome-bound dyneins (Nd) walking on a microtubule (along x-axis of lab frame) in 8 nm 
steps. The dyneins are distributed either in a random or clustered geometry on the endosome and 
when geometrically possible the dyneins can repeatedly bind to (rate = π/s) and detach from (rate 
= /s) the microtubule. At any instant, the dyneins engaged on microtubule can step forward 
(kf/s) or backward (kback/s), or detach (/s) from the microtubule with well-defined rates given 
below. The motors are treated as harmonic springs that exert a restoring force f = -k(l-l0) and 
torque on the endosome when stretched beyond their rest length l0. The dynein-endosome contact 
positions are either rigidly fixed or allowed to diffuse and slide under torque on the endosome 
surface. At any instant, the endosome position/orientation is determined by the net force/torque 
exerted by dyneins and the thermal forces (see below).  

The 3D motion of endosome can be separated into translational and rotational components as 
follows. Briefly, the translational motion of the endosome center of mass is described in terms of 
the laboratory frame (x, y, z) with the microtubule modeled simply as a 1D lattice of 8nm steps 
along the x-axis. The rotational motion is described in terms of the endosome frame of reference 
(a, b, c) related to the lab frame by Euler angles (θ(t), ϕ(t), ψ(t)) according to the x-convention. In 
what follows, we present the relevant equations for translational and rotational motion derived in 
detail by Erickson et al (8) and the procedure for dealing with dynein-endosome contact motion 
on the endosome surface.  

 

2.2 Translational Motion:  

The translational motion of the endosome center of mass is governed by Eq. S2, where v(t) is 
the instantaneous velocity of endosome, T  is the friction coefficient of the medium, and Fth(t) is 
the random thermal force on endosome. 
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(S2)

 

F(q,t) is the net force on endosome obtained as the sum of forces exerted by the stretched 
dyneins (Md ≤ Nd) and any other external force on endosome. Solving Eq. S2, it can be shown 
that (8) the stochastic displacement of endosome center of mass over a time step dt is given by 
Eq. S3, where  T  is the translational diffusion length and  is a vector of 

independent standard normal deviates. While the second term on the right hand side represents 
the drift of endosome under net force, the third term represents the random thermal motion of the 
endosome.  

   
(S3)

 

 

2.3 Rotational Motion:  

The rotational motion of the endosome is governed by Eq. S4 which is the torque equation in 
the lab frame, where w(t) is the instantaneous angular velocity of endosome, R  is the rotational 
friction coefficient, and  is the random torque on endosome.  

 

   
(S4) 

is the net torque on endosome obtained as the sum of torques exerted by stretched 
dyneins (Md ≤ Nd) and any other external torque on endosome. Solving Eq. S4, it can be shown 
that (8) the stochastic rotational motion of endosome over a time step dt, in terms of Euler 
angles, is given by Eq. S5, where  R  is the rotational diffusion angle over the time step dt and 

 , ,   are independent standard normal deviates.  
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 R 
2kbT

R

dt
        

(S5) 

 

2.4 Motion of dynein-endosome contacts on endosome surface:  

Our 3D model also considers the mobility of dynein-endosome contact positions on the 
endosome surface. Though the 2D diffusion of protein/lipid microdomains on cell membranes is 
expected to be confined or anomalous, treating this as a Brownian diffusion process is reasonable 
within the accuracy of our model simulations. We therefore considered that the dynein-
endosome contacts can undergo Brownian diffusion on endosome surface with an effective 
diffusion constant DM (typically 0.01 – 1 μm2/s on cell membranes, which is equivalent to 0.01/R 
– 1/R radian2/s, where R is the endosome radius). Further, the dynein-endosome contact can also 
slide on the endosome surface under torque when dynein is stretched beyond its restlength. The 
friction coefficient for this membrane diffusion/sliding process is given by M  kbT / DM  and the 

equations of motion for this process can be obtained as follows.  

Consider the dynein-endosome contact point A sliding under torque on the endosome surface 
while the endosome orientation is fixed. The coordinates of point A over time can equivalently 
be obtained by assuming that the point A is fixed on the endosome surface and the endosome is 
undergoing rotational motion with rotational drag constant M  (instead of R  in Eq. S5). The 
stochastic motion of the dynein-endosome contact position over a time step dt can therefore be 
determined using the equivalent changes in Euler angles given by Eq. S6 (analogous to Eq. S5) 
See the Monte Carlo simulation algorithm below for details.  

 

 

 

 

M  kbT

DM

and M  2DM dt
      

(S6)
 

 

2.5 Mechanochemical properties of dyneins: 

 

Forward/backward stepping rates of dynein 

The restlength l0 of dynein is nominally considered to be 70 nm, while the motor stiffness k is 
0.32 pN/nm and the step length d is 8 nm. We modeled the forward and backward stepping rates 



 10

of dynein in two different ways using 1) a model based on the experimental force-velocity curve 
from in vitro measurements (9), and 2) an approximate analytical model.  

Experimental model: The forward stepping rate as a function of load is modeled by the 
exponential decay in Eq. S7 where vf

0 is the unloaded motor velocity, f the load on motor, and Fs 
the motor stall force. Though, the load dependence of dynein backward stepping rate is not 
explicitly reported, superstall measurements in optical traps (5, 9) show minimal backward 
motion even at a load of 10 pN. Therefore, we modeled the backward stepping rate using a 
shallow exponential given by Eq. S7, where  = 40 reflects the unloaded backward stepping rate 
of dynein seen in experiments. The exponential factors C1, C2 are determined by requiring that a) 
the forward stepping rate is equal to the backward stepping rate at the motor stall force (f = Fs), 
and b) the net velocity as a function of load fits the experimental force-velocity curve of dynein 
(9).  

k f 
vf

d ; vf  v
f

0 exp C1 * f        (S7) 

kback 
vb

d
; vb 

v
f

0


exp C2 * f   

 
Analytical model: The forward stepping rate is modeled by Eq. S8 where vf

0 is the unloaded 
motor velocity, f the load on the motor, Fs the motor stall force, and n = 0.5 is the nonlinearity. 
The backward stepping rate is modeled by a slow rising exponential given by Eq. S8, where  = 
40 reflects the unloaded backward stepping rate of dynein seen in experiments. In earlier studies 
the detachment rate is modeled using a similar functional form with C2 = 1/Fd, where Fd is the 
detachment scale (see below). 

k f 
vf

d ; vf  v
f

0 1 f
Fs

 
n







       (S8) 

kback 
vb

d
; vb 

v
f

0


exp C2 * f   

 
 

Detachment kinetics of dynein 
 

In vitro measurements show that dynein exhibits an exponential detachment rate under load 
till its stall force and catch-bond detachment kinetics above the stall force (5, 9). The functional 
form of dynein detachment kinetics is therefore parametrically dependent on the stall force of 
dynein. For the in vitro model (1.25 pN stall force of dynein) in this manuscript, we modeled the 
detachment rate  based on the in vitro catch-bond detachment kinetics from Kunwar et al. (5) 
given by Eq. S9, where 0 is the unloaded detachment rate and Fd is the detachment scale.  

  0 exp f
Fd

 ; f  Fs &    0 0.254* 1 exp  f
1.96646 


 











1

; f  Fs  (S9) 
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We also tried the single rate exponential kinetics given by Eq. S10 for all values of f. For the 
in vivo model (2.5 pN stall force of dynein) in this manuscript, we modeled the detachment rate 
 based on the single rate exponential kinetics given by Eq. S10. 

 

  0 exp f
Fd

           (S10) 

 
 

2.6 Monte Carlo simulation algorithm: 

 

Monte Carlo simulation – Initiation:  

For a given endosome size (radius R), the number of dyneins (Nd), and spatial distribution of 
dyneins (Random or Cluster angle Θ) the simulation is initiated as follows.  

1. Start the simulation with the endosome positioned 15nm above origin on the z-axis of the 
lab frame (x, y, z) at time 0. The endosome frame (a, b, c) is initially aligned to lab frame 
with the Euler angles (0, 0, 0). The microtubule lattice of 8nm steps is set along x-axis.  

2. Attach Nd dyneins (cargo binding ends) on endosome surface in a random or clustered 
geometry as described above. For random distribution, the dynein-endosome contacts are 
randomly distributed on the endosome surface. For clustered distribution, the dynein-
endosome contacts are randomly distributed on a spherical sector of the endosome 
surface subtending an angle Θ (range of 0 to π radians) at the center of the endosome. 

3. The geometrically active dyneins (i.e. dyneins that can reach the microtubule without 
stretching beyond restlength or passing through the endosome) are then attached to 
randomly chosen microtubular sites accessible within the restlength of motors.  

 

Monte Carlo simulation – Propagation:  

We then continuously update the states (i.e. bound or unbound to microtubule) of dyneins, 
the positions of dyneins on microtubule, dynein-endosome contact positions on endosome 
surface, and the position/orientation of endosome at each time step (dt = 0.5µs) in the following 
sequence.  

4. Check the motor extensions and compute the force exerted by each motor (i.e the load on 
each motor). These are used to compute the forward/backward stepping and detachment 
rates for each dynein in the following step.  

5. Loop through each dynein on the endosome and take one of the following actions if the 
dynein is bound to the microtubule.  

 Step 8nm forward with probability P = kf*dt 

 Step 8nm backward with probability P = kb*dt  

 Detach from microtubule and relax to restlength with probability P = *dt  

 Remain at the same position if none of the above happens 
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If the dynein is not bound to microtubule and is geometrically active (i.e. can reach the 
microtubule without passing through endosome) then, attach it to a random microtubular 
site accessible within its restlength with probability P = π*dt*ξ, where ξ is the ratio of the 
number of accessible microtubular sites to the maximum number of accessible sites for 
the motor length given by 2l0/8.  

6. [Optional step when simulating endosome motility against the load of an elastic tether]. If 
the current simulation time is greater than a preset duration (typically 10s) and the closest 
distance between the endosome and the microtubule is less than a preset tether length LT , 
then connect the closest points on the endosome and microtubule with an elastic tether of 
length LT and stiffness k. If a tether is already established, then ignore this step.  

7. If all motors are detached and the endosome is not connected to the microtubule anymore 
(i.e. no external tether), then randomize the endosome orientation, and reattach the 
geometrically active dyneins to microtubule as in step 3.  

8. Update all the states (bound or unbound) and positions of the motors on the microtubule 
simultaneously.  

9. Compute the motor extensions and the force exerted by each dynein on the endosome. 
Compute the external force (i.e. from any elastic tether connecting the endosome and the 
microtubule as discussed below). Compute the net force on the endosome using Eq. S2.  

10. Compute the new position of the endosome center of mass using Eq. S3. 

11. Compute the torques exerted at each of the dynein-endosome contact. Compute the 
external torque (i.e. from any elastic tether connecting the endosome and the microtubule 
as discussed below). Compute the net torque on the endosome using Eq. S4. 

12. For each dynein-endosome contact under torque, compute the equivalent changes in the 
Euler angles of endosome representing the displacement of the dynein-endosome contact 
on the endosome surface using Eq. S6. Perform a rotational transformation of the dynein-
endosome contact position using these angles to obtain the new position of the dynein-
endosome contact on the endosome surface. Update all the new positions of the dynein-
endosome contact positions simultaneously. 

13. Compute the changes in the Euler angles of the endosome due to the net torque computed 
in step 10 using Eq. S5. 

14. Update the new position and orientation of the endosome.  

15. Following an initial stabilization period of around 5 – 10s, start recording the averages of 
relevant variables (endosome center of mass position, endosome orientation, number of 
motors cooperatively driving the transport etc.) at an acquisition rate equivalent to the 
experimental imaging rate (100 – 500 Hz). 

16. Repeat steps 4 – 14 till the any of the simulation termination conditions are met. 

 

Monte Carlo simulation – Termination:  

The simulation is terminated when any of the following termination conditions is met and the 
recorded variables are saved for subsequent analysis.  
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17. The simulation is terminated when the simulation time exceeds the initially set time 
duration in the range of 5 – 20 minutes, or optionally if the distance covered by the 
endosome exceeds the camera field of view. 

18. Finally, we add Gaussian noise ( = 5 – 10nm) to the simulated trajectory (position of the 
endosome center of mass) to replicate the localization accuracy of our system.  

 

2.7 Simulation of endosome stalls and detachments – Load from elastic tether: 

As mentioned above, the endosome stalls and detachments can be explained by considering 
that the endosome is docked to microtubule by an elastic tether that exerts load when stretched. 
In order to simulate the endosome stalls and detachments, we therefore modeled the opposing 
load as resulting from an elastic tether docking the endosome to the microtubule. Briefly, we 
start with an endosome being driven by Nd dyneins. After a preset duration (typically 10s) of 
unloaded transport, we suddenly establish a physical tether of nominal length LT = 50 nm and 
stiffness k between the endosome and microtubule as explained in step 6 of Monte Carlo 
simulation algorithm. The tether buckles freely under pressure but exerts a restoring force Fext = 
-k*(L-LT) when stretched beyond LT (included in Eq. S2). 

Fig. 5A (main text) shows a simulated trajectory of an endosome repeatedly stalling against 
such elastic load and detaching from the microtubule. The endosome stall and recoil profiles 
depend on the number of motors, their binding rate, their unitary stall force, and the load 
dependence of their velocity and detachment kinetics. 

 

3. Stochastic model simulations 

 

3.1 Estimating model parameters from single-endosome experimental data: 

For an endosome with tens of sequential stalls/detachments, many of the model parameters 
can be determined from the experimental data. Here, we present the parameter estimation for the 
endosome with multiple jumps shown in Fig. 2 of main text.  

1. The forward and backward stepping rates of dynein are estimated using the run 
velocity of the endosome before exhibiting stalls and detachments based on the details 
given above (Eq. S8.)  

2. Based on the peak multiplicity (110 – 120 nm) in the jump size and detachment 
velocity distributions we estimated the involvement of ~ 8 dyneins on the endosome. 

3. Considering the 110 nm as the stall size of a single dynein, the tether stiffness k is 
estimated as k=Fs/110 pN/nm, where Fs is the stall force of dynein. 

4. We then selected a few endosome jumps with near-exponential recoil profiles and fit 
them to Eq. S1 to obtain k/γ = 81±6.7/s for 65 jumps with <10% fit error. 

5. The friction coefficient γ is then obtained as γ=Fs*0.001/(110*81) Ns/m 
6. The effective axonal viscosity for endosomes is estimated as η ~ 0.1 Ns/m2.  
7. We then estimated the radius of the endosome as R = γ/6πη. From these considerations 

we obtained the following initial parameter estimates for the model simulations. 
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In vitro model (Fs = 1.25 pN): Rd = 75, 149 nm for η = 0.1, 0.05 Ns/m2 respectively. 

High stall force model (2.5 pN): Rd = 75, 149, 298 nm for η = 0.2, 0.1, 0.05 Ns/m2 respectively.  

All the simulations in Table 1 (main text) were run with the endosome radius 75 nm. The 
assumption of a single dynein per 110 nm stall size gives an initial estimate for the number of 
active dyneins on the endosome. However, we have also explored a wide range of parameters in 
our model simulations around these initial estimates. For instance, while the initial estimate 
based on Fig. 2B was 8 dyneins, the motor number is varied from 6 – 14 in model simulations 
and the best result is considered for any given model in Table 1. Our intention was to ensure that 
a model failure was not due to an incorrect initial estimate for the motor number. While the high 
stall force model with exponential kinetics gave a good fit with the initial estimate of 8 – 10 
motors, the in vitro model (with in vitro detachment kinetics) fared poorly over this entire range 
of parameters. However, the high stall force model with exponential kinetics fit the experimental 
data with minimal modification of the experimentally estimated parameters. We note that the 
results of model simulations were negligibly affected within the range of 110 – 120 nm for single 
dynein stall size.  

We also considered the assumption of 2 dyneins per 110 nm jump in our simulation which 
gives an initial estimate of ~16 active dyneins on the endosomes. This is beyond the range of the 
number of dyneins on neuronal vesicles reported by immunostaining studies so far. Further, for 
16 dyneins to be geometrically active they need to be clustered at least within one hemisphere of 
the endosome. Simulations with the in vitro model under these conditions offered no 
improvement over the assumption of 1 dynein per 110 nm. 
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3.2 In vitro model simulations (clustered dynein distribution): 
 

Figure S4: In vitro model simulations with clustered dynein distributions. Left Panel: Simulated 
trajectories, showing stalls and detachments, for different clustered geometries and detachment 
kinetics. Right Panel: The corresponding histograms of qmin, qmax, and qdet positions (as defined 
in Fig. 3A) from the endosome jumps in each simulated trajectory. The grey arrows highlight the 
bimodal distribution of qmin. The bimodality results from a) fast interruptions of the endosome 
recoil caused by the high number of geometrically active dyneins in the clustered geometry and 
b) the catchbond kinetics decreasing the frequency of complete motor detachment and thereby 
increasing the residence time of the endosome in the high load regime.  
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4. Statistical analysis of the peaks in experimental distributions 

  
Power spectrum analysis:  

We used the power spectrum analysis to determine if there were roughly evenly spaced peaks 
in the jump size and maximum frame velocity distributions, corresponding to discrete numbers 
of active motors (Fig. S4 A,B). A probability density function of the data was obtained using 
kernel density estimation with a normal kernel of width 5 nm for jump size (qd) and 0.6 μm/s for 
velocity (vd) distributions. As a null hypothesis, a unimodal Weibull function was fit to the data. 
Control distributions were generated by bootstrapping the null hypothesis and generating power 
spectra to estimate a 90% confidence interval for a unimodal distribution. Frequencies above the 
95th percentile of the null hypothesis were considered as statistically significant.  

Figure 1 demonstrates this method for the velocity distribution (Fig. 2C of main text). Figure 
1A shows simulated distributions of the velocity data by randomly sampling six evenly spaced 
Gaussian distributions with their means spaced 5.1 m/s apart. If the peak width is very narrow 
(top panel, 0.5 m/s) the peaks are clearly distinguishable, but as the peak width approaches the 
spacing, the peaks are harder to distinguish (bottom panel, 5 m/s). The power spectral densities 
as a function of peak width are shown in Fig. S4B with a very prominent peak at narrow peak 
widths (0.5 m/s, dark blue line) and no clear peak at large widths (5.0 m/s, dark red line). The 
power spectral density of the experimental velocity data (Fig. 2C of main text) is shown in black. 
The peak height of the experimental data is close to that of the 3.6 m/s wide peaks in the 
simulated data (middle panel of Figure 1A). 

Figure 1C shows the power spectral density of the experimental data overlaid on the power 
spectral density of the null hypothesis Weibull fit to this data (blue line, 90% confidence 
intervals in gray). The power at the frequency corresponding to 5.1 m/s is higher than the 95th 
percentile of the unimodal fit.  

The same analysis applied to the jump size distribution (Fig. 2B of main text) confirmed the 
statistical significance of peaks with an approximate spacing of 120 nm.  
 
Maximum likelihood estimation of peak spacing in vd and qd distributions: 

As a separate method for determining the peak spacing, the distributions of vd and qd were fit 
to a Gaussian mixture model where each Gaussian is defined by a position, width, and amplitude. 
In our model, each Gaussian represents the discrete number of motors pulling the endosome 
prior to the detachment, so the spacing between successive Gaussians is the contribution of a 
single motor unit. Therefore, instead of independently assigning a position, width, and amplitude 
to each peak in the distribution, we fit a single model to the whole distribution for each 
endosome.  

The model has six parameters: the spacing between peak centers (p), the position of the first 
peak (μo), the width of each peak (σo), and a noise term allowing for peak broadening as more 
motors participated in a given jump (η). These four parameters define the position and width of 
each Gaussian. Two additional parameters, λ and K define the amplitude by determining the 
probability of a given number of motors participating in each jump. λ and K are obtained by 
fitting the data to a Weibull distribution where K is the shape parameter and λ is the scale 
parameter. In the initial Weibull fit, λ is in units of velocity or distance (for vd and qd 
respectively), which can be converted to number of motors by dividing by the spacing parameter,  



 17

p (in units of velocity/motor or distance/motor for vd and qd respectively). It is this rescaled λ that 
is used in the Gaussian mixture model. 

Negative log likelihood was estimated by convolving the model with each data point and its 
error estimated from the fitting of individual jumps, thereby accounting for differences in error 
across different jumps. 
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Where N is the normal distribution; μi, σi are from equations S11, S12; and μj, σj are the jth data 
point from the experiment and its associated standard error with J total data points (i.e. J total 
jumps). This construction allows for calculation of p from all the data at once. It also means that 
the number of parameters in the model is fixed, irrespective of the number of peaks in the 
distribution. This is in contrast to a conventional Gaussian mixture model where the number of 
parameters grows with the number of Gaussians fit.  

We found that expectation maximization was sensitive to the initial guess of p, as can often 
be in the case of maximum likelihood approaches. Therefore, to avoid overfitting, we performed 
the fit with several initial guesses of p. The initial values and upper and lower bounds are set 
such that the distribution is fit by increasing integer number of Gaussians starting from one going 
up to p = 2μm/s or p = 25nm for vd and qd respectively. For each fit, we computed the Akaike 
information criterion (AIC) taking the number of Gaussians in the mixture as the number of 
parameters.  

We then used the parameter value at the AIC minimum as the initial guess for the fit, and 
then maximized the likelihood without the upper and lower bound constraints in MATLAB. We 
found that this approach worked well to avoid overfitting the distributions of vd and qd for the 
simulated trajectories where the number of motors is known. The confidence intervals of the fit 
were computed from the inverse of the information matrix calculated at the maximum likelihood 
parameter values.  

Using this approach, we found the peak spacing of 119 (107, 131) nm for the jump sizes and 
4.7 (4.2, 5.1) m/s for detachment velocities (numbers in parentheses represent the 95% 
confidence interval). Fig. S4D,E show the Gaussian mixture model fits overlaid on the 
experimental distributions of jump size and maximum frame velocities (Fig. 2 of main text).  
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Figure S5: A) Simulated multimodal velocity distributions using the indicated peak width and a 
peak fixed at 5.1 m/s. Colors correspond to colored curves in (B). B) Simulated distributions 
were generated with a peak spacing of 5.1 m/s and peak widths ranging from 0.5 to 5 m/s. For 
each peak width, 50 independent distributions were generated with 500 data points each and the 
average power spectrum for each is plotted with the indicated color. Overlaid on top in black is 
the power spectrum of experimental velocity distribution (Fig. 2C of main text). C) The 
experimental power spectrum (black) is over overlaid on the mean power spectrum of a 
unimodal fit to data (blue curve, gray indicating 90% confidence interval by bootstrapping). D) 
Gaussian mixture model fit curve with a peak spacing of 119 nm (red) overlaid on the jump size 
distribution (black, Fig. 2B in main text). Red asterisks indicate the modes found statistically 
significant by the nonparametric test and the p values are shown. E) Gaussian mixture model fit 
curve (red) overlaid on the velocity distribution (black, Fig. 2C in main text). Red asterisks 
indicate the statistically significant modes and the p values are shown. 



 19

 

 
Statistical significance of modes: 

We then used two different established methods to ascertain the statistical significance of the 
possible modes in the data. First, we then used a nonparametric approach (10, 11) to specifically 
test the statistical significance of the modes in the data. This approach found statistically 
significant peaks (p value < 0.05) in the jump size data at the following locations: 246 nm, 392 
nm, 487 nm, 603 nm, 679 nm, 827 nm. A red asterisk indicates the location of each peak in Fig. 
S4D and the corresponding p values are listed above each peak. We note that this peak 
identification approach is nonparametric and the exact peak locations are sensitive to noise in the 
data. However, the peak locations are close to the modes identified in the above analysis and 
gave a mean peak spacing of 116 nm. Similarly, for the maximum frame velocity distribution, 
we find significant peaks at 5.4, 10.5, 15.6, and 31.3 m/s (Fig. S4E) and the mean peak spacing 
is 5.1 m/s.  

Next, we used the Silverman’s test for multimodality (12), which identified the three most 
prominent peaks in the distribution located at 486, 601, and 682 nm for the jump size distribution 
at a level of p < 0.05. For the velocity distribution, three peaks are also identified at 10.6, 19.5, 
and 31.1 m/s. We note that the Silverman’s test has been found to be quite conservative, and 
can miss peaks particularly in the case of variable peak amplitudes (10, 13), as is the case in the 
data herein. 
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