

Figure S1 Progression of *pat1*-induced meiosis and mass-spectrometry analysis of cohesin subunits.

(A) *pat1-114/pat1-114 mat-Pc* cells expressing Rec11-TAP were arrested by nitrogen starvation and released into meiosis at 34°C by inactivation of Pat1 (as described in Fig. 2A). Cells were harvested at the indicated time points (hours), fixed with ethanol and analysed by flow-cytometry. In parallel, fixed cells were stained with DAPI and nuclei were counted in 100 cells per time point. Shown are the fractions of cells that contained one nucleus (1n), two nuclei (2n) or more than two nuclei (3n or more) at the indicated time points.

(B) Cohesin subunits associated with Rec11-TAP were isolated and analysed by mass-spectrometry as described in Figure 1. Sequence coverage is indicated in yellow.

С	anaphase		metaphase		
		sister chromatids segregated	missegregation of sister chromatids	cohesed <i>cen2</i> -GFP	split <i>cen2</i> -GFP
	wild-typ	e 100%	0	43%	57%
	psm1 ^{K536A K1200}	^{0A} 100%	0	45%	55%
+0.02% MMS	wild-typ	e 100%	0	40%	60%
	psm1 ^{K536A K1200}	^A 100%	0	45%	55%

Figure S2. The levels of Psm1-K536me do not change in response to MMS treatment, Psm1-Pk is functional and chromosome segregation during mitosis is normal in *psm1*^{K536A K1200A} mutant cells.

(A) Psm1-Pk protein was immunoprecipitated (IP) from the indicated time points after adding 0.01% MMS (10 mg of total proteins were applied to 50 μ g of packed beads). Samples were analysed by Western blotting using anti-Psm1-K536me and anti-Pk antibodies. Cycling cells expressing Psm1-K536A-Pk were used as a negative control.

(B) Sensitivity of cells expressing Psm1-Pk and Psm1^{K536A K1200A}-Pk to methyl methanesulfonate (MMS). Serial dilutions of wild-type, $psm1^{K536A K1200A}$, psm1-Pk and $psm1^{K536A K1200A}$ -Pk strains were spotted on YES containing or lacking the MMS and grown for 2 days at 32°C. Psm1-Pk is functional as assayed by this MMS-sensitivity test.

(C) Segregation of chromosome 2 was scored in a wild-type and *psm1*^{K536A K1200A} strains carrying chromosome 2 marked by *cen2*-GFP. Strains were grown at 32°C for 3 hours in YES medium with or without 0.02% MMS. Cells were fixed and immunostained for tubulin and GFP. DNA was visualized by DAPI staining. At least 100 anaphase or metaphase cells were examined under the fluorescence microscope.

В

	% plating efficiency (± standard deviation)			
	YES	YES +0.001% MMS	YES +0.002% MMS	YES +0.004% MMS
wild-type	62.9 ± 9.7	62.6 ± 4.1	60.8 ± 5.6	61.8 ± 5.0
psm1 ^{K536A K1200A}	80.6 ± 2.7	78.1 ± 4.0	83.7 ± 4.4	78.7 ± 4.4
psm1 ^{K536R K1200R}	72.5 ±3.2	72.7 ± 3.1	71.1 ± 6.6	71.6 ± 4.1
mus81∆	40.4 ± 2.6	13.5 ± 2.6	0.6 ± 0.2	-
mus81∆ psm1 ^{K536A K1200A}	35.3 ± 2.0	12.3 ± 0.9	0.5 ± 0.3	-
mus81∆ psm1 ^{K536R K1200R}	40.3 ± 3.6	12.1 ± 2.2	0.3 ± 0.2	-
sfr1∆	68.4 ± 9.2	-	67.2 ± 5.2	65.1 ± 6.4
sfr1Δ psm1 ^{K536A K1200A}	75.1 ± 3.2	-	72.6 ± 8.7	2.6 ± 1.3

Figure S3. Genetic interactions between *psm1^{K536RA K1200A}*, *psm1^{K536R K1200R}* and mutations in DNA repair-related genes.

(A) Cells were grown on YES medium for one day, diluted in 5-fold steps, spotted onto YES plates containing the indicated amounts of methyl methanesulfonate (MMS) or camptothecin (CPT) and incubated for 3 days at 30°C.

(B) The plating efficiency indicates the percentage of cells plated onto a plate capable of forming colonies. To determine the plating efficiency, the number of cells plated on the freshly prepared YES plates containing the indicated concentrations of MMS was divided by number of colonies formed after 4 days of incubation. Data are means \pm standard deviation of at least four independent experiments.

В

С

Psm1-K536

Dm_SMC1 Hs_SMC1A X1_SMC1A Hs_SMC1B Mm_SMC1B	DRMINMCQPTHKRYNVAVTKVLGKFMEAIIVDTEKTARHCIQILKEQMLEVETFLPLDYL GRLIDLCQPTQKKYQIAVTKVLGKNMDAIIVDSEKTGRDCIQYIKEQRGEPETFLPLDYL GRLIDLCQPTQKKYQIAVTKVLGKNMDAIIVDSEKTGRDCIQYIKEQRGEPETFLPLDYL GRLFDLCHPIHKKYQLAVTKVFGRFITAIVVASEKVAKDCIRFLKEERAEPETFLALDYL GRLLDLCHPIHKKYQLAVTKLFGRYMVAIVVASEKIAKDCIRFLKAERAEPETFLALDYL	598 576 576 576 576
Sc_SMC1	GRIIDLCTPTOKKYESAIAAALGKNFDAIVVETQAVAKECIDYIKEQRIGIMTFFPMDTI GLVHDLCHPKKE <mark>K</mark> YGLAVSTILGKNFDSVIVENLTVAQECIAFLKKQRAGTASFIPLDTI	590
	Psm1-K1200	
Dm SMC1	APFFVLDEIDAALDNTNIGKVASYIRDHT-TNLQTIVISLKEEFYGHADALVGITPGEGD	1221
Hs SMC1A	APFFVLDEIDAALDNTNIGKVANYIKEQSTCNFQAIVISLKEEFYT <mark>K</mark> AESLIGVYPEQGD	1209
X1 SMC1A	SPFFVLDEIDAALDNTNIGKVANYIKEQSMSNFQAIVISLKEEFYT <mark>K</mark> AESLIGVYPEQGD	1209
Hs SMC1B	SSYIKEQTQDQFQMIVISLKEEFYSRADALIGIYPEYDD	1131
Mm SMC1B	APFFVLDEVDAALDNTNIGKVSSYIKEQSQEQFQMIIISLKEEFYS <mark>K</mark> ADALIGVYPEHNE	1204
Sp Psm1	SPFFVLDEIDAALDQTNVTKIANYIRQHASSGFQFVVISLKNQLFS <mark>K</mark> SEALVGIYRDQQE	1213
Sc_SMC1	SPFFVLDEVDAALDITNVQRIAAYIRRHRNPDLQFIVISLKNTMFE <mark>K</mark> SDALVGVYRQQQE	1210
_	**:******.*.	

whish the

Partint

(kDa)

180-130-100-

70-

55 -

40

Figure S4. Physical interactions between subunits of cohesin and Mus81-Eme1 complexes and conservation of Psm1 lysine residues 536 and 1200 in other organisms.

(A) Strains expressing Mus81 or Eme1 fused to the GAL4 transcription activation domain and Psm1, Psm3, Psc3 or Rad21 fused to the GAL4 DNA-binding domain were spotted at 10-fold serial dilutions on SD plates or SD plates supplemented with adenine and histidine (SD+ade+his). The empty vector pGADT7 containing GAL4 transcription activation domain was used as a negative control. Growth of the strain expressing Psm3 fused to the GAL4 DNA-binding domain and Mus81 fused to the GAL4 transcription activation domain on the plate without histidine and adenine (SD) indicates interaction between Psm3 and Mus81. A weak interaction between Psc3 and Eme1 was also detected. The interaction between Rad21 and Mus81 is a false positive because the control strain carrying Rad21 fused to the GAL4 DNA-binding domain and an empty vector containing GAL4 transcription activation domain for the gAL4 transcription domain was also able to grow on the plate without histidine and adenine (SD).

(B) Protein extracts were prepared from cycling cells expressing Psm1-Pk, Mus81-Myc or both Psm1-Pk and Mus81-Myc grown in YES or YES+0.01% MMS, as indicated. Proteins bound to anti-V5 agarose beads, which bind the Pk tag on Psm1, were analyzed for Mus81 by Western blotting with anti-Myc antibody. Ponceau staining of the membrane after protein transfer shows protein amounts loaded in inputs.

(C) ClustalW generated alignment of Smc1 protein sequences from *Drosophila melanogaster* (Dm_SMC1), human (Hs_SMC1A, Hs_SMC1B)), *Xenopus laevis* (Xl_SMC1A), mouse (Mm_SMC1B), *S. pombe* (Sp_Psm1) and *S. cerevisiae* (Sc SMC1). Positions of Psm1 lysines K536 and K1200 are indicated.

Strain	Genotype	Used in Figure
JG16384	h ⁻ /h ⁻ ade6-M210/ade6-M216 pat1-114/pat1-114 Rec11- TAP::kanMX6/Rec11-TAP::kanMX6 mat-Pc::lys1	1, S1
JG17622	h ⁻ ade6-210 psm1::psm1-pk9::kanMX6	2B, S2A, S2B
JG17624	h ⁻ ade6-210 psm1::psm1-K536A K1200A-pk9::kanMX6	2B, S2A, S2B
JG17680	h ⁺ /h ⁻ ade6-M210/ade6-M216 psm1+/psm1::psm1-K536A K1200A-hphMX4	3A
JG16543	h ⁺ /h ⁻ ade6-M210/ade6-M216 psm1+/psm1::natMX4 lys1-37/lys1+	3A
JG17331	h ⁺ ade6-M216 lys1-37	2C, 3, 4, S3
JG17184	h ⁺ psm1::psm1-K536A::hphMX4	3B
JG17187	h ⁻ psm1::psm1-K1200A::hphMX4	3B
JG17189	h ⁻ psm1::psm1-K536A K1200A::hphMX4	2C, 3, 4, S3, S2B
JG17179	h ⁺ psm1::psm1 ⁺ ::hphMX4	3B
JG17543	h ⁹⁰ rqh1::kanMX4	4A
JG17879	psm1::psm1-K536A K1200A::hphMX4 rqh1::kanMX4	4A
JG17792	h ⁹⁰ srs2::kanMX4	4A, S3
JG17875	psm1::psm1-K536A K1200A::hphMX4 srs2::kanMX	4A
JG17827	h ⁹⁰ eme1::kanMX4	4A
JG17869	psm1::psm1-K536A K1200A::hphMX4 eme1::kanMX4	4A
JG17884	h ⁹⁰ mus81::kanMX4	4A, S3
JG17924	h ⁻ psm1::psm1-K536A K1200A::hphMX4 mus81::kanMX4	4A, S3
JG17551	h ⁺ ade6-52 slx1::kanMX6	4A
JG17877	psm1::psm1-K536A K1200A::hphMX4 slx1::kanMX6	4A
JG17468	h ⁺ ura4-D18 leu1-32 rad57::kanMX4	4A
JG17863	h ⁻ psm1::psm1-K536A K1200A::hphMX4 rad57::kanMX4	4A
JG17469	h⁺ ura4-D18 leu1-32 rad55::kanMX4	4A, S3
JG17861	psm1::psm1-K536A K1200A::hphMX4 rad55::kanMX4 clone 1	4A
JG17862	psm1::psm1-K536A K1200A::hphMX4 rad55::kanMX4 clone 2	4A
JG17823	h ⁺ ura4-D18 leu1-32 rad52::kanMx4	4A
JG17865	h ⁻ psm1::psm1-K536A K1200A::hphMX4 rad52::kanMX4	4A
JG17746	h ⁹⁰ sfr1::natMX4	4A, S3
JG17871	psm1::psm1-K536A K1200A::hphMX4 sfr1::natMX4	4A, S3
JG17680	h ⁻ /h ⁺ ade6-M210/ade6-M216 psm1+/psm1::psm1-K536A K1200A::hphMX4	3A
JG16543	h ⁻ /h ⁺ ade6-M210/ade6-M216 psm1+/psm1::natMX4	3A
JG16539	h [*] /h ⁺ ade6-M210/ade6-M216	3A
JG18082	psm1::psm1-K536R K1200R::hphMX4 mus81::kanMX4 clone1	S3
JG18083	psm1::psm1-K536R K1200R::hphMX4 mus81::kanMX4 clone2	S3
JG18092	psm1::psm1-K536R K1200R::hphMX4 srs2::kanMX4 clone1	S3
JG18093	psm1::psm1-K536R K1200R::hphMX4 srs2::kanMX4 clone2	S3
JG18096	psm1::psm1-K536R K1200R::hphMX4 rad55::kanMX4 clone1	S3
JG18097	psm1::psm1-K536R K1200R::hphMX4 rad55::kanMX4 clone2	S3
JG18168	h ⁻ psm1::psm1-K536R K1200R::hphMX4	S3
JG17214	h ⁹⁰ ade6-216 ura4-D18 cen2(D107)[:: kanr-ura4+-lacOp] his7+::lacl-GFP	S2C
	psm1::phygUra4Tpsm1+	
JG17254	h ⁺ cen2(D107):Kan-ura4+-lacO his7+::lacl-GFP psm1::pHygUra4T	S2C
	psm1K536A K1200A	
JG11363	h ⁺ rad21-K1-ura4+ leu1-32 ura4D18 ade6-210	4B
JG18180	h ⁻ rad21-K1-ura4+ leu1-32 ura4D18 ade6-210	4B
JG18178	rad21-K1 mus81::kanMX4	4B
JG18182	rad21-K1 eme1::kanMX4	4B
JG18183	rad21-K1 rad55::kanMX4	4B
JG18184	rad21-K1 rqh1::kanMX4	4B
JG18140	h ⁺ ade6-M210 psm1-pk9::kanMX4	S4B
JG18186	h ⁻ leu1 ura4 mus81-myc::kanMX6	S4B
JG18196	psm1-pk9::kanMX4 mus81-myc::kanMX6	S4B

(other auxotrophic markers have not been scored)