Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201800295

A Metal Chelator as a Plasmonic Signal-Generation Superregulator for Ultrasensitive Colorimetric Bioassays of Disease Biomarkers

Qian Zhao, Jiafang Piao, Weipan Peng, Jun wang, Weichen Gao, Xiaoli Wu, Hanjie Wang, Xiaoqun Gong, * Jin Chang, * and Bingbo Zhang *

Supporting Information

A Metal Chelator as a Plasmonic Signal-Generation Superregulator

for Ultrasensitive Colorimetric Bioassays of Disease Biomarkers[†]

Qian Zhao,[‡]^a Jiafang Piao,[‡]^a Weipan Peng,^a Jun wang,^b Weichen Gao,^a Xiaoli Wu,^a Hanjie Wang,^a Xiaoqun Gong,^{*a} Jin Chang^{*a} and Bingbo Zhang^{*b}

^a School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin University, Tianjin, 300072, China.

^b Institute of Photomedicine, Shanghai Skin Disease Hospital; The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China.

[‡] These authors contributed equally to this work.

†Electronic supplementary information (ESI) available. See DOI:

Correspondence and requests for materials should be addressed to X.G. (email: gongxiaoqun@tju.edu.cn), J.C. (email: jinchang@tju.edu.cn) or to B.B.Z. (email: bingbozhang@tongji.edu.cn)

Figure S1. TEM images of AuNPs synthesized with varying concentrations of $HAuCl_4$ in the solution of 2.0 mM trisodium citrate at 37 °C. a-i) The concentrations of $HAuCl_4$ were 0.25 mM, 0.5 mM, 0.6 mM, 0.9 mM, 1 mM, 1.25 mM, 1.5 mM, 1.75 mM and 2.5 mM, respectively.

Calculation of the chelating efficiency of EDTA•2Na@SiO₂ nanoparticles with Au³⁺ ions Theoretical Models:

$$N(SiO_2NPs) = \frac{m(SiO_2NPs)}{\rho(SiO_2NPs) \times \frac{4}{3}\pi(r_{SiO_2NP})^3}$$
$$= \frac{0.75mg}{2mg/cm^3 \times \frac{4}{3}\pi(250nm)^3}$$
$$= 5.74 \times 10^{12}$$

$$= \frac{m(Au)}{M(Au)} \times N_A = \frac{2.079\mu g}{197g/mol} \times 6.02 \times 10^{23}$$
$$= 6.36 \times 10^{15}$$
Eqn.2

Eqn.1

$$R_{\text{Au on one } SiO_2\text{NP}} = \frac{\text{N(Au)}}{\text{N(SiO_2\text{NPs})}} = \frac{6.36 \times 10^{15}}{5.74 \times 10^{12}}$$

= 1108.01 Eqn.3

 $N(SiO_2NPs) = SiO_2NP$ number

N(Au) = Au number

 $R_{Au \text{ on one } SiO_2NP}$ = the ratio of the Au number with a SiO_2NP

Figure S2. The UV-vis absorption spectra of Ab₂ (black line), EDTA•2Na @SiO₂ NPs (blue line) and the purified Ab₂-EDTA•2Na@SiO₂ NPs bioconjugates (red line).

Figure S3. Investigation the effect of diameters of SiO₂ NPs on the detection sensitivity of HBsAg. a) TEM images of SiO₂ NPs with different diameters (100 nm, 300 nm, 500 nm and 1000 nm). b) Δ A value of the generated AuNPs by Scadge-Diag. c) The size distribution of SiO₂ NPs (500 nm) by dynamic light scattering. The results showed that the SiO₂ NPs homogeneously dispersed in the solution and the real size of the SiO₂ NPs was 561.3±48 nm. 500 nm-sized was just used as a code for an easy recognition.

Figure S4. Conventional HRP based a commercial enzyme-linked immunosorbent assay (ELISA) kit for quantitative determination of HBsAg. a) Representative photographs taken from the detection solutions of HBsAg with various concentrations (0, 2.5×10^{-12} g/mL, 3.75×10^{-12} g/mL, 7.5×10^{-12} g/mL, 15×10^{-12} g/mL, 30×10^{-12} g/mL). b) Corresponding plots of A_{450nm} values *versus* different concentrations of HBsAg in ELISA with a limit of detection of 2.5×10^{-12} g/mL.

Figure S5. Detection of AFP by Scadge-Diag platform. a) Tonality images of detection solutions with different concentrations of AFP by naked-eye. b) Plotting absorbance values of AuNPs collected at 550 nm *versus* varying concentrations of AFP. c) Calibration curves between the

concentrations of $2.5 \times 10^{-19} \sim 5 \times 10^{-18}$ g/mL.

Table S1.	The cost	comparison	of HRP	and	EDTA•	2Na	obtained	from	manufactur	ers	abroad	and
domestic.												

		Monetary unit: RMB
	SIGMA	Chemart (tianjin) Chemical Technology Co., Ltd.
HRP	1302.21 (100 mg)	190 (10 mg)
EDTA•2Na	315.9 (5 g)	14 (25 g)