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Inflow: full margination and constant particle number

In figure S1 we show the state of complete margination at the entrance of a bifurcating channel and a confluence,
respectively. The cross-sectional concentrations show the red blood cells accumulated around the channel center
and the microparticles close to the wall.

Figure S2 shows that after a short transient time the implemented particle inflow/outflow leads to a constant
number of red blood cells and microparticles in the system.
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Figure S1: At the entrance of the confluence system a),b) and the bifurcation system c),d) we have a state of full
margination: the red blood cells a),c) are located in the channel center, the microparticles b),d) near the wall.
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Figure S2: Total number of RBCs and microparticles within the confluence system depending on the simulation
time. Both numbers fluctuate around a constant value after initial filling of the system.

Concentration profiles of tracer particles

In order to model the behavior of red blood cells and microparticles we use passive point particles as tracers flowing
with the intrinsic velocity profile (1). We first start with the confluence. Homogeneously distributed particles exhibit
a similar concentration profile as the red blood cells. As a consequence, red blood cell behavior can be explained
by the intrinsic velocity profile. Doing the same calculations for tracers in the different regions resemble the labeled
red blood cells. It also fits the concentration profiles for the microparticles.
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Figure S3: Concentration of a) homogeneously distributed tracer particles and b) tracer particles flowing in the
distinct regions at system entrance within the confluence. c) Tracer particles flowing in the distinct regions at
system entrance within the diverging bifurcation. These figures are compared to cell and particle concentration in
figure 6, 11 and 13 in the main text.

In the diverging bifurcation starting at top the concentration profile of the point particles matches that of the
microparticles quite well. Also the point particles located right reproduce microparticle behavior. We note that
starting point particles top or bottom and left or right results in the same concentration due to symmetry. Red
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blood cell behavior is also similar to that of point particles, except the peak at the bifurcation apex. The differences
are effects due to the finite size and deformability of red blood cells.

Shear-induced diffusion
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Figure S4: Mean square displacement over time for a) red blood cells and b) microparticles located near the center
behind a confluence. By modeling the theoretical expectation we can extract a shear-induced diffusion coefficient.

Larger hematocrit

a) b)

Figure S5: 2D planar projection for red blood cells along the a) main channel and b) branches of the bifurcation
with larger hematocrit Ht = 20%. The cell-free layer decreases, but the behavior is qualitatively unchanged.

Anti-margination of platelet-shaped microparticles

In the main text we focus on spherical microparticles. Here, we show additional results for oblate spheroids – a
geometry that mimicks more closely that of real platelets. The platelets have a diameter of 3.9 µm along the two
long axes and 2.3 µm along the small axis and are illustrated in figure S6. Similar to the spherical particles of the
main text, about 14% of the spheroidal microparticles are anti-marginated directly behind the confluence.

Narrow confluence

In figure S7 we investigate the influence of the main vessel diameter. We perform simulations with radius 22.8 µm
and 14.3 µm of the main vessel, but with the same branch properties as in figure 1 a) of the main text. In figure S7 a)
the red blood cell concentration shows a more stable central cell-free layer for a wider vessel. In case of a narrow
vessel the central cell-free layer vanishes more quickly (figure S7 b). Correspondingly, the microparticles stay close
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Figure S6: (a) Simulation of microparticles with a platelet-like oblate shape flowing through a confluence. (b) Similar
to the spherical microparticles of the main text, these particles also undergo anti-margination.

to the center in the wider vessel (figure S7 c) and marginate faster within the narrow main vessel (figure S7 d). Both
observations can be explained by the shear-induced diffusion coefficient depending on the local cell concentration,
which increases with narrowing main vessel for the same inflow. Indeed, the red blood cell shear-induced diffusion
coefficient decreases in figure S7 a) to 15.5 µm2/s and increases in figure S7 b) to 45.4 µm2/s.

a) b)

c)

x = 158 µm

d)

x = 158 µm

Figure S7: a),b) Red blood cell distribuition and c),d) cross-sectional microparticle concentration 100 µm behind a
confluence with main vessel radius of a),c) 22.8 µm and b),d) 14.3 µm. While a wider vessel leads to a more stable
central cell-free layer a narrow vessel causes the cell-free layer to smear out faster. Correspondingly, in case of a
narrower main channel margination of microparticles takes place faster.
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Validation of the used IBM-LBM algorithm

In the following, we summarize and extend the validation for our Immersed Boundary method (IBM) and Lattice-
Boltzmann method (LBM). In ref. (2) the calculation of shear and bending forces has been validated for a capsule
in shear flow. In ref. (3) the hematocrit profile for tube flow and plane-Poiseuille flow has been shown to agree with
previous, established studies. Furthermore, the stability of the stiff spherical particles used has been demonstrated
and the flow profile past a sphere has been compared favorably to the analytical solution.

In addition, we here calculate the Stokes drag 1/(6πηa) that relates the force on a sphere of radius a to its
velocity in a suspending fluid of viscosity η for a sphere with two different particle resolutions in figure S8. We
performed simulations with the resolution used in the main text (81 nodes of the inner stiff grid) and an increased
resolution (485 nodes of the inner grid). We note that for the former the number of fluid nodes per particle does
not change compared to the main text. Both resolutions show good agreement with the theoretical prediction and
convergence to the theory for increasing grid resolution.
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Figure S8: Velocity of a spherical particle pulled through a fluid with a given force. Simulations with two different
particle resolutions are compared to the theoretical prediction given by the Stokes drag. The resolution given in
the legend denotes the node number of the stiff inner grid.

In order to provide another quantitative validation of stiff particle behavior we simulate a spheroid with aspect
ratio ε = 3 subjected to shear flow, as sketched in figure S9 a). Ref. (4) provides an analytical solution for the
spheroid inclination angle θ over time t

θ(t) = tan−1
(
ε tan

(
tγ̇

ε+ 1
ε

))
, (S1)

with γ̇ being the shear rate. In figure S9 b) we compare our numerical results (2562 nodes and 5120 triangles for
the outer membrane of the spheroid) to the theoretical prediction and find very good agreement.

In order to validate the red blood cell behavior, we present a detailed investigation of a single red blood cell
flowing through a cylindrical channel. In figure S10 we show the red blood cell shape obtained for a confinement
- effective red blood cell diameter divided by the channel diameter - of 0.55, which can directly be compared to
literature data in figure 1 of Fedosov et al. (5). From left to right we increased the dimensionless shear γ̇∗ = ¯̇γτ
with the averaged shear rate ¯̇γ defined by the averaged velocity over the channel diameter and τ the relaxation
time of a red blood cell. Since in this setup the focus is on the single cell behavior we performed our simulations
with a membrane mesh resolution of 5120 triangles. With increasing velocity we first observe a tumbling discocyte,
a tank-treading slipper, and eventually a croissant. The shapes are in very good agreement with the shapes shown
in figure 1 of ref. (5).

Furthermore, we compare the single cell behavior for different resolutions of the red blood cell mesh with sim-
ulations using the Boundary Integral method (BIM) in a rectangular channel of cross-section 10 µm x 12 µm in
figure S11. The BIM simulations are part of an extensive study on single cell behavior in rectangular channels which
demonstrated quantitative agreement with detailed experiments (6). The presently used LBM-IBM method leads
to the same shapes as the more sophisticated BIM simulations.

We further validate our method considering the red blood cell behavior in a setup strongly related to those of
the main text: we investigate the Zweifach-Fung effect and compare the results with literature data for a bifurcation
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Figure S9: a) A rigid spheroid subjected to a shear flow. b) The orientation angle of the spheroid θ(τ) over time
τ = γ̇t for simulations with different time steps compared to the analytical solution of ref. (4).

a) b) c)

Figure S10: Red blood cell shapes in a cylinder for different flow rates obtained with LBM-IBM simulations. The
confinement is 0.55.We observe a) a tumbling discocyte for a shear rate γ̇∗ = 5, b) a slipper for γ̇∗ = 22.5 and c) a
croissant for γ̇∗ = 60. These shapes are in very good agreement with the shapes shown in figure 1 of ref. (5) for a
confinement of 0.58 and γ̇∗ = 5, γ̇∗ = 24.8, and γ̇∗ = 59.6, respectively, that are obtained using Dissipative Particle
Dynamics (5).

Figure S11: Single red blood cell in a rectangular channel with cross-section 10 µm x 12 µm simulated with the
Boundary Integral method from (6), LBM-IBM with 1280 triangles and LBM-IBM 5120 triangles (from left to
right). For a centroid velocity of 0.5 mm/s (top) a tank-treading slipper shape is observed and for 1.5 mm/s
(bottom) a croissant shape.

of a vessel into two daughter vessels followed by a confluence, as sketched in figure S12 a). In contrast to the main
text, here we use periodic boundary conditions. We construct our setup in a way that the cross-sections of the
cylindrical branches match with the setup consisting of rectangular vessels of ref. (7), namely the main branch with
radius 6.84 µm, the bottom branch with 5.86 µm, and the top branch varied in the range of 3.26 µm to 5.35 µm.
We simulate a suspension of 50 red blood cells with a membrane mesh consisting of 642 nodes and 1280 triangles
being the same as in the main text. The fluid grid is chosen such that the number of fluid nodes per cell is also the
same as in the main text. With varying flow rate ratio between the bottom branch and the main branch (achieved
by varying the diameter of the top branch) a disproportional partitioning of the red blood cells takes place, known
as the Zweifach-Fung effect (7–9). In order to quantify this behavior in simulations we calculate the fraction of
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the flow rate in the bottom branch Qbot and in the main branch Qm without any cells present. This is done by
integrating the axial velocity vx over the cross-section C of the branch

Qm =
∫
C

vm
x dA, Qbot =

∫
C

vbot
x dA. (S2)

As a measure for the red blood cell flux we calculate the number of red blood cells per time Ṅ(t) passing through
the mid-plane of main branch and bottom branch, respectively, and average over all T time steps

n = 〈Ṅ(t)〉t =

T∑
i=1

Ṅ(ti)∆t

T∑
i=1

∆t
. (S3)

We compare the fraction of red blood cell flux in bottom and main branch nbot/nm to data from the literature in
figure S12 b). As done in ref. (7) we compare our results with experimental values from Pries et al. (8) and Yang
et al. (10) as well as with the numerical values from Balogh and Bagchi (7). Overall, we find very good agreement
and our simulations show the expected half-sigmoidal variation collapsing with literature data over a wide range of
flow rate fractions. We note that varying the overall velocity does not affect the results in figure S12.
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Figure S12: Red blood cells flowing through a bifurcation followed by a confluence. a) Simulation snapshot of one
setup: main branch with radius 6.84 µm, bottom branch with radius 5.86 µm, and top branch with radius 5.35 µm.
b) Fraction of cells flowing through the bottom branch nbot and the main branch nm depending on the fraction of
flow rate in bottom Qbot and main branch Qm. Despite some deviations at low flow rate fraction our simulations
lead to the expected half-sigmoidal dependency and match literature data at large fractions.

Next, in order to prove mesh insensitivity we reduced the resolution of the membrane mesh of the red blood cells
to 258 nodes and 512 triangles and the resolution of the stiff particles to 66 nodes and 128 triangles. In the same
way the fluid mesh changes from 288x110x58 to 200x82x42. The red blood cell distribution behind a confluence and
the cross-sectional microparticle concentration are compared to the results of the manuscript in figure S13 a),b) and
d),e), respectively. The results are in very good agreement. Small discrepancies may be caused by slightly different
inflow concentrations.

Finally, in figure S13 c), f) we provide evidence that the repulsion force among the cells and particles does not
affect our results. For this, we show the red blood cell distribution behind a confluence (corresponding to figure
S13 b) and the cross-sectional microparticle concentration (corresponding to figure S13 e) for a simulation without
repulsion force. We observe very similar behavior and are thus able to conclude that our main results are robust
with respect to the repulsion force.
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a) b) c)

d) e) f)

Figure S13: The main results for different mesh resolutions: The cell free-layer in a), b), c) and the micropar-
ticle anti-margination in d), e), f). a),d) resolution used in the main text (RBC: 1280, microparticle: 320, fluid:
288x110x58) and b), c), e), f) decreased resolution (RBC: 512, microparticle: 128, fluid: 200x82x42). Both reso-
lutions lead to similar results for central cell free layer stability (in a) and b)) and fraction of anti-marginated
microparticles (d) 15.8% and e) 16.2%). In figure c) and f) we provide evidence that without any repulsive force
between cells, particles, and the vessel wall our main results do not change (16.7% antimarginated microparticles
in f). Figures a) and d) are from the main text.

Taken together, our LBM-IBM method gives accurate results for stiff particles and red blood cells in simple
tube flow, but also within a more complex system such as a bifurcation followed by a confluence. We provided
evidence that neither the resolution of cell membrane mesh nor the fluid mesh nor the introduced repulsive force
for additional stability affect our main results and conclusions.
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