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Supplementary material to

DISTRIBUTED TESTING AND ESTIMATION UNDER
SPARSE HIGH DIMENSIONAL MODELS

By Heather Battey∗† and Jianqing Fan∗ and Han Liu∗ and Junwei
Lu∗ and Ziwei Zhu∗

APPENDIX A: THE LOW-DIMENSIONAL LINEAR MODEL

As mentioned earlier, the infinity norm bound derived in Lemma 4.1 can
be used to do model selection, after which the selected support can be
shared across all the local agents. We significantly reduce the dimension of
the problem as we only need to refit the data on the selected model. The
remaining challenge is to implement the divide and conquer strategy in
the low dimensional setting, which is also of independent interest. Here we
focus on the linear model, while the generalized linear model is covered in
Appendix B.

In this section d still stands for dimension, but in contrast with the rest
of this paper in which d � n, here we consider d < n. More specifically,
we consider the linear model (3.2) with d < n and i.i.d sub-Gaussian noise
{εi}ni=1. It is well known that the ordinary least square (OLS) estimator

of β∗ is defined as β̂ = (XTX)−1XTY . In the massive data setting, the
communication cost of estimating and inverting covariance matrices is very
high (order O(kd2)). However, as pointed out by Chen and Xie (2012), this
estimator exactly coincides with the DC estimator,

β̂ =

 k∑
j=1

X(j)TX(j)

−1
k∑
j=1

X(j)TY (j).

In this section, we study the DC strategy to approximate β̂ with the com-
munication cost only O(kd), which implies that we can only communicate d
dimensional vectors.

The OLS estimator based on the subsample Dj is defined as β̂(Dj) =
(X(j)TX(j))−1X(j)TY (j). In order to estimate β∗, a simple and natural idea
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is to take the average of {β̂(Dj)}kj=1, which we denote by β. The question

is whether this estimator preserves the statistical error as β̂. The following
theorem gives an upper bound of the gap between β and β̂, and shows that
this gap is negligible compared with the statistical error of β̂ as long as k is
not too large.

Here we give intuitive discussion on the source of efficiency loss. According
to proof of Theorem A.1, we have

β − β̂ =
1

k

k∑
j=1

((
X(j)TX(j)/nk

)−1
− (XTX/n)−1

)
X(j)Tε(j)/nk.

Since {X(j)Tε(j)/nk}kj=1 are homogeneous and independent to each other
conditional on X, the efficiency loss incurred by the DC procedure, i.e., the
gap β−β̂, is characterized by the difference between ( 1

k

∑k
j=1

1
nk
X(j)TX(j)

)−1

and 1
k

∑k
j=1

(
1
nk
X(j)TX(j)

)−1
. The rate of β − β̂ is studied in detail in

subsequent theorems.

Theorem A.1. Consider the linear model (3.2). Suppose Conditions 3.1 and
3.2 hold and {εi}ni=1 are i.i.d sub-Gaussian random variables with ‖εi‖ψ2 ≤ σ1.
If the number of subsamples satisfies k = O(nd/(d ∨ log n)2), then for
sufficiently large n and d it follows that

(A.1) ‖β − β̂‖2 = OP

(√k(d ∨ log n)

n

)
, ‖β − β∗‖2 = OP

(√
d/n

)
.

Remark A.2. By taking k = o
(
nd/(d ∨ log n)2

)
, the loss incurred by the

divide and conquer procedure, i.e., ‖β − β̂‖2, converges at a faster rate than
the statistical error of the full sample estimator β̂. In another independent
work Rosenblatt and Nadler (2016), the authors also reveal a similar phe-
nomenon under the broad family of generative linear models. They show
that when k = o

(
n/d

)
, E‖β − β∗‖22/E‖β̂ − β∗‖22 → 1. In other words, there

is no first-order loss by divide and conquer.

We now take a different viewpoint by returning to the high dimensional
setting of Section 4.1 (d� n) and applying Theorem A.1 in the context of
a refitting estimator. In this refitting setting, the sparsity s of Lemma 4.1
becomes the dimension of a low dimensional parameter estimation problem
on the selected support. Our refitting estimator is defined as

(A.2) β
r

:=
1

k

k∑
j=1

(X
(j)T

Ŝ
X

(j)

Ŝ
)−1X

(j)T

Ŝ
Y (j),

where Ŝ := {j : |βdj | > 2C
√

log d/n} and C is the same constant as in (4.1).
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Corollary A.3. Suppose β∗min > 2C
√

log d/n, where β∗min := min1≤j≤d |β∗j |
and C is the same constant as in (4.1). Define the full sample oracle es-
timator as β̂o = (XT

SXS)−1XT
S Y , where S is the true support of β∗. If

k = O(
√
n/(s2 log d)), then for sufficiently large n and d we have

(A.3) ‖βr − β̂o‖2 = OP

(√k(s ∨ log n)

n

)
, ‖βr − β∗‖2 = OP

(√
s/n
)
.

We see from Corollary A.3 that β
r

achieves the oracle rate when the
minimum signal strength is not too weak and the number of subsamples k is
not too large.

APPENDIX B: THE LOW-DIMENSIONAL GENERALIZED LINEAR
MODEL

The next theorem quantifies the gap between β and β̂, where β is the
average of subsampled GLM estimators and β̂ is the full sample GLM
estimator. In Theorem B.1, ‖β − β̂‖2 is the distance between the divide
and conquer estimator and the full sample estimator, while ‖β − β∗‖2 is the
estimation error on each machine.

Theorem B.1. Under Condition 3.6, if k = O(
√
n/(d ∨ log n)), then we

have for sufficiently large d and n,

(B.1) ‖β − β̂‖2 = OP

(k√d(d ∨ log n)

n

)
, ‖β − β∗‖2 = OP

(√
d/n

)
.

Remark B.2. In analogy to Theorem A.1, by constraining the growth rate
of the number of subsamples according to k = o

(√
n/(d ∨ log n)

)
, the error

incurred by the divide and conquer procedure, i.e., ‖β − β̂‖2 decays at a
faster rate than that of the statistical error of the full sample estimator β̂.

We notice a recent independent work Liu and Ihler (2014) on distributed
estimation under curved exponential families with fixed dimensions. They
propose a KL-divergence-based combination method to aggregate MLEs from
multiple data repositories and show that it can achieve the best possible
approximation to the global MLE given the entire dataset. In the future
work, it will be interesting to extend their approach to the GLM setting
and characterize the statistical error rate of the correspondent distributed
estimator.

The less stringent scaling of k in the low dimensional linear model relative
to the generalized linear model comes from the fact that the Hessian matrix
depends on the estimator of β∗ in the GLM. This results in a larger variance
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relative to the linear model. Figures 3(A) and 4(A) indicate that the deduced
scaling is sharp for both cases.

As in the linear model, Lemma 4.6 together with Theorem B.1 allow
us to study the theoretical properties of a refitting estimator for the high
dimensional GLM. Estimation on the estimated support set is again a low
dimensional problem, thus the d of Theorem B.1 corresponds to the s of
Lemma 4.6 in this refitting setting. The refitted GLM estimator is defined as

(B.2) β
r

=
1

k

k∑
j=1

β̂r(Dj),

where β̂r(Dj) = argminβ∈Rd,β
Ŝc

=0 `
(j)
nk (β) and Ŝ := {j : |βdj | > 2C

√
log d/n}.

The following corollary quantifies the statistical rate of β
r
.

Corollary B.3. Suppose β∗min > 2C
√

log d/n, where β∗min := min1≤j≤d |β∗j |
and C is the same constant as Lemma 4.6. Define the full sample oracle
estimator as β̂o = argminβ∈Rd,βSc=0 `n(β), where S is the true support of

β∗. If k = O
(√

n/((s ∨ s1)2 log d)
)
, then for sufficiently large n and d we

have

(B.3) ‖βr − β̂o‖2 = OP

(k√s(s ∨ log n)

n

)
, ‖βr − β∗‖2 = OP

(√
s/n
)
.

We thus see that β
r

achieves the oracle rate when the minimum signal
strength is not too weak and the number of subsamples k is not too large.

APPENDIX C: SIMULATION FOR THE LOW-DIMENSIONAL LINEAR
MODEL

All n× d entries of the design matrix X are generated as i.i.d. standard
normal random variables and the errors {εi}ni=1 are i.i.d. standard normal as
well. The true regression vector β∗ satisfies β∗j = 10/

√
d for j = 1, . . . , d/2

and β∗j = −10/
√
d for j > d/2, which guarantees that ‖β∗‖2 = 10. Then we

generate the response variable {Yi}ni=1 according to the model (3.2). Denote
the full sample ordinary least-squares estimator and the divide and conquer
estimator by β̂ and β respectively. Figure 4(A) illustrates the change in the
ratio ‖β− β̂‖2/‖β̂−β∗‖2 as the sample size increases, where k assumes three
different growth rates and d =

√
n/2. Figure 4(B) focuses on the relationship

between the statistical error of β and log k under three different scalings of
n and d. All the data points are obtained based on average over 100 Monte
Carlo replications.
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(A) ‖β − β̂‖2/‖β̂ − β∗‖2 (B) ‖β − β∗‖2/‖β∗‖2
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Fig 4. (A) The ratio between the loss of the divide and conquer procedure and the statistical
error of the estimator based on the whole sample with d =

√
n/2 and different growth rates

of k. (B) Statistical error of the DC estimator against log k.

As Figure 4(A) demonstrates, when k = O(n1/3), O(n1/4) or O(1), the
ratio decreases with ever faster rates, which is consistent with the argument
of Remark A.2 that the ratio goes to zero when k = o(n/d) = o(

√
n). When

k = O(
√
n), however, we observe that the ratio is essentially constant, which

suggests the rate we derived in Theorem A.1 is sharp. We also report the
wall time of our proposed distributed approach and the naive average Lasso
in Table 1. The time is computed in a similar way as the testing part. A
comparison between these two approaches reveals the heavy computation
incurred by debiasing. However, we observe that as the splits grow, the time
consumption on individual data sample decreases since the local problem
size becomes smaller, which mitigates the time complexity problem if we
have a parallel computing system.

From Figure 4(B), we see that when k is not large, the statistical error of
β is very small because the loss incurred by the divide and conquer procedure
is negligible compared to the statistical error of β̂. However, when k is larger
than a threshold, there is a surge in the statistical error, since the loss of the
divide and conquer begins to dominate the statistical error of β̂. We also
notice that the larger the ratio n/d, the larger the threshold of log k, which
is again consistent with Remark A.2.

APPENDIX D: SIMULATION FOR THE LOW-DIMENSIONAL
LOGISTIC REGRESSION

In logistic regression, given covariates X, the response Y |X ∼ Ber(η(X)),
where Ber(η) denotes the Bernoulli distribution with expectation η and

η(X) =
1

1 + exp(−XTβ∗)
.
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(A) ‖β − β̂‖2/‖β̂ − β∗‖2 (B) ‖β − β∗‖2/‖β∗‖2
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Fig 5. (A) The ratio between the loss of the divide and conquer procedure and the statistical
error of the estimator based on the whole sample when d = 20. (B) Statistical error of the
DC estimator.

We see that Ber(η(X)) is in exponential dispersion family canonical form
(2.7) with b(θ) = log(1 + eθ), φ = 1 and c(y) = 1. The use of the canonical
link,

η(X) =
1

1 + e−θ(X)
,

leads to the simplification θ(X) = XTβ∗.
In our Monte Carlo experiments, all n× d entries of the design matrix X

are generated as i.i.d. standard normal random variables. The true regression
vector β∗ satisfies β∗j = 1/

√
d for j ≤ d/2 and β∗j = −1/

√
d for j > d/2,

which guarantees that ‖β∗‖2 = 1. Finally, we generate the response variables
{Yi}ni=1 according to Ber(η(X)). Figure 5(A) illustrates the change of the

ratio ‖β− β̂‖2/‖β̂−β∗‖2 as the sample size increases, where k assumes three
different growths rates and d = 20. Figure 5(B) focuses on the relationship
between the statistical error of β and log k under three different scalings of n
and d. All the data points are obtained based on an average over 100 Monte
Carlo replications.

Figure 5 reveals similar phenomena to those revealed in Figure 4 of
the previous subsection. More specifically, Figure 5(A) shows that when
k = O(n1/3), O(n1/4) or O(1), the ratio decreases with even faster rates,
which is consistent with the argument of Remark B.2 that the ratio converges
to zero when k = o(

√
n/d) = o(

√
n). When k = O(

√
n), however, we observe

that the ratio remains essentially constant when log n is large, which suggests
the rate we derived in Theorem A.1 is sharp.

As for Figure 5(B), we again observe that the statistical error of β is very
small when k is sufficiently small, but grows fast when k becomes large. The
reasoning is the same as in the linear model, i.e. when k is large, the loss
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incurred by the divide and conquer procedure is non-negligible as compared
with the statistical error of ‖β̂‖2. In addition, as Figure 5(B) reveals, the
larger is

√
n/d, the larger the threshold of k, which is again consistent with

the threshold rate pointed out in Remark B.2.

APPENDIX E: AUXILIARY LEMMAS AND THEOREMS FOR
TESTING

In this section, we provide the proofs of the technical lemmas and theorems
for the divide and conquer hypothesis testing.

Proof of Theorem 3.3. It remains to verify the Lindeberg’s Condition
for (7.1). By Lemma E.1,∣∣ξ(j)

iv

∣∣ ≤ n−1/2c−1
nk
|m(j)T

v X
(j)
i ||ε

(j)
i | ≤ n

−1/2c−1
nk
ϑ2|ε(j)

i |,

where lim infnk cnk = c∞ > 0, hence the event
{
|ξ(j)
iv | > εσ

}
is contained in

the event
{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}

and we have

1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{
|ξ(j)
iv | > εσ

}∣∣X]

≤ 1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}∣∣X]

=
1

σ2

1

k

k∑
j=1

1

nk

∑
i∈Ij

(m
(j)T
v X

(j)
i )2

m
(j)T
v Σ̂m

(j)
v

E
[
(ε

(j)
i )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}]

=
1

σ2
E
[
(ε

(j)
i )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
nk
√
k
}]
.

Taking expectation with respect to X on both sides above yields that

1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{
|ξ(j)
iv | > εσ

}]
≤ 1

σ2
E
[
(ε

(j)
i )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
nk
√
k
}]
.

Let δ = εσcnkϑ
−1
2

√
n. Then, for any η > 0,

(E.1)

E
[(
ε

(j)
i

)2
1
{∣∣ε(j)

i

∣∣ > δ
}]
≤ E

[(
ε

(j)
i

)2 ∣∣ε(j)
i

∣∣η
δη

1
{∣∣ε(j)

i

∣∣ > δ
}]
≤ δ−ηE

[∣∣ε(j)
i

∣∣2+η]
.
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Since ϑ2n
−1/2 = o(1) by the statement of the theorem, the choice η = 2

delivers

1

σ2
lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{∣∣ξ(j)
iv

∣∣ > εσ
}]

≤ lim
k→∞

lim
nk→∞

k−1n−1
k ϑ2c

−2
nk
ε−2σ−2E

((
ε

(j)
i

)4)
= 0(E.2)

by the bounded forth moment assumption. By the law of iterated expectations,
all conditional results hold in unconditional form as well. Hence, V n  
N(0, σ2) by the Lindeberg-Feller central limit theorem.

Proof of Corollary 3.9. We verify (A5)-(A9) of Lemma E.8 in the
Supplementary Material. (A5) is satisfied because Θ̃vv is consistent under
the required scaling by the statement of the corollary. (A6) is satisfied by
Condition 3.7. To verify (A7), first note that ∇`i(β∗) = (b′(XT

i β
∗)− Yi)Xi.

According to Lemma E.2 in the Supplementary Material, we know that
conditional on X, b′(XT

i β
∗)−Yi is a sub-Gaussian random variable. Therefore

Lemma F.6 in the Supplementary Material delivers

P

‖ 1

n

k∑
j=1

∑
i∈Ij

∇`i(β∗)‖∞ > t |X

 ≤ d exp

(
1− ct2

nM2

)
,

which implies that with probability 1− c/d,

(E.3) ‖
k∑
j=1

∑
i∈Ij

∇`i(β∗)‖∞ = C
√
n log d

It only remains to verify (A8). Let ξ
(j)
iv = Θ∗Tv ∇`

(j)
i (β∗)/

√
nΘ∗vv. By the

definition of the log likelihood,

E[ξ
(j)
iv ] =

Θ∗Tv E[∇`(j)i (β∗)]

(nΘ∗vv)
1/2

= 0

and by independence of {(Yi,Xi)}ni=1,

Var
( k∑
j=1

∑
i∈Ij

ξ
(j)
iv

)
=

k∑
j=1

∑
i∈Ij

Var
(
ξ

(j)
iv

)
=

k∑
j=1

∑
i∈Ij

E[(ξ
(j)
iv )2]

=
1

n

n∑
i=1

(Θ∗vv)
−1Θ∗Tv E

[(
∇`i(β∗)

)(
∇`i(β∗)

)T
]Θ∗v

=
1

n

n∑
i=1

(Θ∗vv)
−1[Θ∗J∗Θ∗]vv = 1.
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By Condition 3.6, θmin > 0, the event {|ξ(j)
iv | > ε} coincides with the event{∣∣Θ∗Tv ∇`i(β∗)∣∣ > ε

√
θminn

}
=
{∣∣Θ∗Tv Xi(Yi − b′(XT

i β
∗))
∣∣ > ε

√
θminn

}
. Fur-

thermore, since
∣∣Θ∗Tv Xi

∣∣ ≤M by Condition 3.7, this event is contained in
the event

{∣∣Yi − b′(XT
i β
∗)
∣∣ > δ

}
, where δ = ε

√
θminn/M . By an analogous

calculation to that of equation (E.1) in the Supplementary Material, we have

E
[(
Yi−b′(XT

i β
∗)
)2
1{|Yi−b′(XT

i β
∗)| > δ}|X

]
≤ δ−ηE

[(
Yi−b′(XT

i β
∗)
)2+η|X

]
.

Hence, setting η = 2 and noting that E
[
(Yi−b′(XT

i β
∗))2+η|X

]
≤ C
√

2 + ηφU2

by Lemma E.2 in the Supplementary Material, it follows that

lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
i,v )2 1{|ξ(j)

i,v | > ε}
]

≤ (θmin)−1 lim
k→∞

lim
nk→∞

n−1
k∑
j=1

∑
i∈Ij

Θ∗Tv E[XiX
T
i ]Θ∗vδ

−2

≤ (θmin)−1 lim
k→∞

lim
nk→∞

M3s2
1/(nε

2θmin) = 0,(E.4)

where the last inequality follows because ‖Σ‖max = ‖E[XiX
T
i ]‖max < M2 by

Condition 3.6. Similarly, we have for any ε > 0,

ε−3 lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
i,v )3 1{|ξ(j)

i,v | > ε}
]

= 0.

Applying the self-normalized Berry-Essen inequality, we complete the proof
of this corollary.

Lemma E.1. Under Condition 3.2,
(
m

(j)T
v Σ̂m

(j)
v

)−1/2 ≥ cnk for any j ∈
{1, . . . , k} and for any v ∈ {1, . . . , d}, where cnk satisfies lim infnk→∞ cnk =
c∞ > 0.

Proof. The proof appears in the proof of Lemma B1 of Zhao et al.
(2014b).

Lemma E.2. Under the GLM (2.7), we have

E exp(t(Y − µ(θ))) = exp(φ−1(b(θ + tφ)− b(θ)− φtb′(θ))),

and typically when there exists U > 0 such that b′′(θ) < U for all θ ∈ R, we
will have

E exp(t(Y − µ(θ))) ≤ exp

(
φUt2

2

)
,
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which implies that Y is a sub-Gaussian random variable with variance proxy
φU .

Proof.

E exp (t(Y − µ(θ)))

=

∫ +∞

−∞
c(y) exp

(
yθ − b(θ)

φ

)
exp(t(y − µ(θ)))dy

=

∫ +∞

−∞
c(y) exp

(
(θ + tφ)y − (b(θ) + φtb′(θ))

φ

)
dy

=

∫ +∞

−∞
c(y) exp

(
(θ + tφ)y − b(θ + tφ) + b(θ + tφ)− (b(θ) + φtb′(θ))

φ

)
dy

= exp
(
φ−1(b(θ + tφ)− b(θ)− φtb′(θ))

)
.

When b′′(θ) < U . the mean value theorem gives

E exp (t(Y − µ(θ))) = exp

(
b′′(θ̃)φ2t2

2φ

)
≤ exp

(
φUt2

2

)
.

Proof of Lemma 3.4. We first show that, for any j ∈ {1, . . . , k}, |σ̂2(Dj)
− σ2| = oP(k−1). To this end, letting

ε̂i = Y
(j)
i −X(j)T

i β̂λ(Dj) = Y
(j)
i −X(j)T

i β∗ −X(j)T
i

(
β̂λ(Dj)− β∗

)
,

we write

|σ̂2(Dj)− σ2| =
∣∣∣ 1

nk

∑
i∈Ij

ε̂2
i − σ2

∣∣∣ ≤ ∆
(j)
1 + 2∆

(j)
2 + ∆

(j)
3 ,

∆
(j)
1 :=

∣∣ 1

nk

∑
i∈Ij

ε2
i − σ2

∣∣, ∆
(j)
2 :=

∣∣(β̂λ(Dj)− β∗
)( 1

nk

∑
i∈Ij

X
(j)
i ε

(j)
i

)∣∣ and

∆
(j)
3 :=

∣∣(β̂λ(Dj)− β∗
)T( 1

nk

∑
i∈Ij

X
(j)
i X

(j)T
i

)(
β̂λ(Dj)− β∗

)∣∣
=

∥∥X(j)
(
β̂λ(Dj)− β∗

)∥∥2

2
/nk = OP(λ2s)

by Theorem 6.1 of Bühlmann and van de Geer (2011). Hence, with λ =

Cσ2
√
k log d/n, ∆

(j)
3 = oP(1) for k = o

(
(s log d)−1n

)
, a fortiori for k =
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o
(
(s log d)−1√n

)
. Letting

∆
(j)
21 =

∥∥β̂λ(Dj)− β∗
∥∥

1

∥∥∥ 1

nk

∑
i∈Ij

X
(j)
i ε

(j)
i − E[X

(j)
i ε

(j)
i ]
∥∥∥
∞
,

∆
(j)
22 =

∥∥β̂λ(Dj)− β∗
∥∥

1

∥∥E[X
(j)
i ε

(j)
i ]
∥∥
∞.

We obtain the bound

∆
(j)
2 =

∣∣∣(β̂λ(Dj)− β∗
)(( 1

nk

∑
i∈Ij

X
(j)
i ε

(j)
i − E[X

(j)
i ε

(j)
i ]
)

+ E[X
(j)
i ε

(j)
i ]
)∣∣∣

≤ ∆
(j)
21 + ∆

(j)
22 .

By the statement of the Lemma, E
[
X

(j)
i ε

(j)
i

]
= E

[
X

(j)
i E[ε

(j)
i |X

(j)
i ]
]

= 0,

hence ∆
(j)
22 = 0, while by the central limit theorem and Theorem 6.1 of

Bühlmann and van de Geer (2011),

∆
(j)
21 ≤ OP(λs)OP(n

−1/2
k ).

We conclude ∆
(j)
2 = OP

(
λsn

−1/2
k

)
, and with λ � σ2

√
k log d/n, ∆

(j)
2 = o(1)

with k = o
(
n(s log d)−2/3

)
, a fortiori for k = o

(√
n(s log d)−1

)
. Finally, noting

that σ2 = E[ε
(j)
i ], ∆

(j)
1 = OP(n

−1/2
k ) = oP

(
1
)

by the central limit theorem.
Combining the bounds, we obtain |σ̂2(Dj)−σ2| = oP(1) for any j ∈ {1, . . . , k}
and therefore |σ2 − σ2| ≤ k−1

∑k
j=1 |σ̂2(Dj)− σ2| = oP(1).

Lemma E.3. Under Condition 3.6, we have for any β,β′ ∈ Rd and any
i = 1, . . . , n,

∣∣`′′i (XT
i β)− `′′i (XT

i β
′)
∣∣ ≤ Ki|XT

i (β − β′)|, where 0 < Ki <∞.

Proof. By the canonical form of the generalized linear model (equation
(2.8)),∣∣`′′i (XT

i β)− `′′i (XT
i β
′)
∣∣ =

∣∣b′′(XT
i β)− b′′(XT

i β
′)
∣∣ ≤ |b′′′(η̃)||XT

i (β − β′)|

by the mean value theorem, where η̃ lies in a line segment between XT
i β and

XT
i β
′. |b′′′(η)| < U3 <∞ by Condition 3.6 for any η, hence the conclusion

follows with Ki = U3 for all i.

Lemma E.4. Under Conditions 2.6 and 2.1 (i), we have for any δ ∈ (0, 1)
such that δ−1 � d,

P
( 1

n

∥∥X(β̂λ − β∗)
∥∥2

2
& s

log(d/δ)

n

)
< δ
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Proof. Decompose the object of interest as

1

n

∥∥X(β̂λ − β∗)
∥∥2

2
= (β̂λ − β∗)T (Σ̂− Σ)(β̂λ − β∗) + (β̂λ − β∗)TΣ(β̂λ − β∗)

≤ ‖Σ̂− Σ‖max‖β̂λ − β∗‖21 + λmax(Σ)‖β̂λ − β∗‖22.

This gives rise to the tail probability bound

(E.5)
P
( 1

n

∥∥X(β̂λ − β∗)
∥∥2

2
> t
)

≤ P
(
‖Σ̂− Σ‖max‖β̂λ − β∗‖21 >

t

2

)
+ P

(
λmax(Σ)‖β̂λ − β∗‖22 >

t

2

)
.

Let M :=
{
‖Σ̂− Σ‖∞ ≤M

}
. Since {Xi}ni=1 is bounded, it is sub-Gaussian

as well. Suppose ‖Xi‖ψ2 < κ, then by Lemma F.3 we have,

P(Mc) ≤
d∑

p,q=1

P(|Σ̂(j)
pq − Σpq| > M) ≤ d2 exp

(
−Cn ·min

{M2

κ4
,
M

κ2

})
,

where C is a constant. Hence taking M = n−1 log(d/δ),

P(Mc) ≤ d2 exp

{
−Cnmin

{(log(d/δ))2

κ4n2
,
(log(d/δ))2

κ2n

}}
and the right hand side is less than δ for δ−1 � d. Thus by Condition 2.1,
the first term on the right hand side of equation (E.5) is

P
(∥∥Σ̂− Σ

∥∥
max

∥∥β̂λ − β∗∥∥2

1
&
s log(d/δ)

n

)
< 2δ.

Furthermore, by Condition 3.6 (i), the second term on the right hand side of
equation (E.5) is

P
(
λmax(Σ)

∥∥β̂λ − β∗∥∥2

2
& Cmax

s log(d/δ)

n

)
< δ.

Taking t as the dominant term, t � Cmaxn
−1s log(d/δ), yields the result.

Lemma E.5. Under Condition 3.6, we have for any i = 1, . . . , n,

|b′′(XT
i β1)− b′′(XT

i β2)| ≤MU3‖β1 − β2‖1,

and if we consider the sub-Gaussian design instead, we have

P
(
|b′′(XT

i β1)− b′′(XT
i β2)| ≥ hU3‖β1 − β2‖1

)
≤ nd exp

(
1− Ch2

s2
1

)
.
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Proof. For the bounded design, by Condition 3.6 (iii), we have

|b′′(XT
i β1)− b′′(XT

i β2)| ≤ U3|XT
i (β1 − β2)| ≤ U3‖Xi‖max‖β1 − β2‖1

≤MU3‖β1 − β2‖1.

For the sub-Gaussian design, denote the event {max1≤i≤n,1≤j≤d |Xij | ≤ h}
by C, where κ is a positive constant. Then it follows that,

P (Cc) ≤ nd exp

(
1− Ch2

s2
1

)
,

where C is a constant. Since on the event C, |b′′(XT
i β1) − b′′(XT

i β2)| ≤
hU3‖β1 − β2‖1, we reach the conclusion.

Remark E.6. For the sub-Gaussian design, in order to let the tail probability
go to zero, h� log((n ∨ d)).

Lemma E.7. Suppose, for any k � d satisfying k = o
(
((s∨ s1)logd)−1√n

)
,

the following conditions are satisfied. (A1) P
(
n−1
k

∥∥X(j)Θ̂(j)
∥∥

max
≥ H

)
≤ ξ,

where H is a constant and ξ = o(k−1). (A2) For any β,β′ ∈ Rd and
for any i ∈ {1, . . . , n},

∣∣`′′i (XT
i β) − `′′i (X

T
i β
′)
∣∣ ≤ Ki

∣∣XT
i (β − β′)

∣∣ with

P(Ki > h) ≤ ψ for ψ = o(k−1) and h = O(1). (A3) P
(
n−1
k

∥∥X(j)(β̂λ −

β∗)
∥∥2

2
& n−1sk log(d/δ)

)
< δ. (A4) P

(
max1≤v≤d

∣∣∣(Θ̂(j)T
v ∇2`

(j)
nk

(
β̂λ(Dj)

)
−

ev
)(
β̂λ(Dj)− β∗

)∣∣∣ & n−1sk log(d/δ)
)
< δ. Then

β
d
v − β∗v = −1

k

k∑
j=1

Θ̂(j)T
v ∇`(j)nk (β∗) + oP(n−1/2).

for any 1 ≤ v ≤ d.

Proof of Lemma E.7. β
d
v − β∗v = k−1

∑k
j=1

(
β̂v(Dj)− β∗v)

)
. By the def-

inition of β̂d(Dj),

β̂dv (Dj)− β∗v = β̂λv (Dj)− β∗v − Θ̂(j)T
v ∇`(j)nk (β̂λ(Dj)).

Consider a mean value expansion of ∇`(j)nk (β̂λ
(
Dj)
)

around β∗:

∇`(j)nk
(
β̂λ(Dj)

)
= ∇`(j)nk (β∗) +∇2`(j)nk (βα)

(
β̂λ(Dj)− β∗

)
,
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where βα = αβ̂λ(Dj) + (1− α)β∗, α ∈ [0, 1]. So

1

k

k∑
j=1

β̂dv (Dj)− β∗v = −1

k

k∑
j=1

Θ̂(j)T
v ∇`(j)nk (β∗)−∆,

where ∆ = 1
k

∑k
j=1

(
Θ̂

(j)T
v ∇2`

(j)
nk (βα)− ev

)
(β̂λ(Dj)− β∗). Note that |∆| ≤

1
k

∑k
j=1

(
|∆(j)

1 |+ |∆
(j)
2 |
)
, where∣∣∆(j)

1

∣∣ =
∣∣∣(Θ̂(j)T

v ∇2`(j)nk
(
β̂λ(Dj)

)
− ev

)(
β̂λ(Dj)− β∗

)∣∣∣.
By (A4) of the lemma, for t � n−1sk log(d/δ),

P
(
|
k∑
j=1

∆
(j)
1 | > kt

)
≤ P

(
∪kj=1|∆

(j)
1 | > t

)
≤

k∑
j=1

P(|∆(j)
1 | > t) < kδ.

Substituting δ = o(k−1) in the expression for t and noting that k � d, we

obtain k−1
∑k

j=1 ∆
(j)
1 = oP(n−1/2) for k = o

(
(s log d)−1√n

)
. By (A2),∣∣∆(j)

2

∣∣ =
∣∣∣Θ̂(j)T

v

(
∇2`(j)nk (βα)−∇2`(j)nk (β̂λ(Dj))

)(
β̂λ(Dj)− β∗

)∣∣∣
=
∣∣∣ 1

nk

∑
i∈Ij

Θ̂(j)T
v XiX

T
i

(
β̂λ(Dj)− β∗

)(
`′′i (X

T
i βα)− `′′i (XT

i β̂
λ(Dj))

)∣∣∣
≤
(

max
1≤i≤n

Ki

)( 1

nk
‖X(j)Θ̂(j)‖max

)∥∥∥ 1

nk
X(j)(β̂λ(Dj)− β∗)

∥∥∥2

2
,

therefore by (A1) and (A3) of the lemma, for t � n−1sk log(d/δ),

P
(
|
k∑
j=1

∆
(j)
2 | > kt

)
≤ P

(
∪kj=1|∆

(j)
2 | > t

)
≤

k∑
j=1

P(|∆(j)
2 | > t) < k(ψ + δ + ξ).

Substituting δ = o(k−1) in the expression for t and noting that k � d,

we obtain k−1
∑k

j=1 ∆
(j)
2 = oP(n−1/2) for sk log(d/δ) = o(

√
n), i.e. for k =

o
(
(s log d)−1√n

)
. Combining these two results delivers ∆ = oP(n−1/2) for

k = o
(
(s log d)−1√n

)
.

Lemma E.8. Suppose, in addition to Conditions (A1)-(A5) of Lemma E.7,
(A5)

∣∣Θ̃vv − Θ∗vv
∣∣ = oP(1) for all v ∈ {1, . . . , d}; (A6) 1/Θ∗vv = O(1) for

all v ∈ {1, . . . , d}; (A7) ‖
∑

1≤j≤k
∑

i∈Ij ∇`i(β
∗)‖∞ = OP(

√
n log d); (A8)
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For each v ∈ {1, . . . , d}, letting ξ
(j)
iv = Θ∗Tv ∇`

(j)
i (β∗)/

√
nΘ∗vv, E

[
ξ

(j)
iv

]
= 0,

Var
(∑k

j=1

∑
i∈Ij ξ

(j)
iv

)
= 1 and, for all ε > 0,

(E.6) lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Dj

E
[
(ξ

(j)
iv )2 1{|ξ(j)

iv | > ε}
]

= 0.

Then under H0 : β∗v = βHv , taking k = o(((s ∨ s1) log d)−1√n) delivers
Sn  N(0, 1), where Sn is defined in equation (3.14).

Proof. Rewrite equation (3.14) as

Sn =
√
n

1

k

k∑
j=1

[
β̂dv − βHv
(Θ∗vv)

1/2
+
β̂dv − βHv
(Θ∗vv)

1/2

(
(Θ∗vv)

1/2[
Θ̂(j)Ĥ(j)Θ̂(j)T

]1/2
vv

− 1

)]

=
k∑
j=1

∑
i∈Ij

(
∆

(j)
1,i + ∆

(j)
2,i

)
, where(E.7)

∆
(j)
1,i =

Θ̂
(j)T
v ∇`(j)i (β∗)

(nΘ∗vv)
1/2

, ∆
(j)
2,i =

Θ̂
(j)T
v ∇`(j)i (β∗)

(nΘ∗vv)
1/2

(
(Θ∗vv)

1/2

Θ
1/2
vv

− 1

)
.

Further decomposing the first term, we have

k∑
j=1

∑
i∈Ij

∆
(j)
1,i =

k∑
j=1

∑
i∈Ij

ξ
(j)
i,v+∆, where ∆ =

k∑
j=1

∑
i∈Ij

(
Θ̂(j)
v −Θ∗v

)T ∇`i(β∗)
(nΘ∗vv)

1/2

and
∑k

j=1

∑
i∈Ij ξ

(j)
i,v  N(0, 1) by the Lindeberg-Feller central limit theorem.

Then by Hölder’s inequality, Condition 3.7 and Assumption (A6) and (A7),

|∆| ≤ max
1≤j≤k

∥∥Θ̂(j)
v −Θ∗v

∥∥
1

‖
∑k

j=1

∑
i∈Ij ∇`i(β

∗)
∥∥
∞

(nΘ∗vv)
1/2

= OP

(
s1

√
k log d

n

)
OP(

√
log d) = oP(1),

where the last equation holds with the choice of k = o((s1 log d)−1√n).

Letting ∆
(j)

= (Θ∗vv)
1/2 −Θ

1/2
vv we have

k∑
j=1

∑
i∈Ij

∆
(j)
2,i =

k∑
j=1

∑
i∈Ij

(
Θ∗Tv ∇`

(j)
i (β∗)

(Θ∗vv)
1/2

∆
(j)

+
(
Θ̂(j)
v −Θ∗v

)T ∇`i(β∗)
(Θ∗vv)

1/2
∆

(j)

)

=
k∑
j=1

∑
i∈Ij

(
∆

(j)
21,i + ∆

(j)
22,i

)
,
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where
∣∣∣∑k

j=1

∑
i∈Ij ∆

(i)
21,i

∣∣∣ ≤ ∣∣∣∑k
j=1

∑
i∈Ij ξ

(j)
i,v

∣∣∣∣∣Θ1/2
vv −(Θ∗vv)

1/2
∣∣. Since Θ∗vv ≥

0, Θ
1/2
vv = |Θvv|1/2 = |Θvv −Θ∗vv + Θ∗vv|1/2 ≤ |Θvv −Θ∗vv|1/2 + (Θ∗vv)

1/2. Sim-
ilarly

(Θ∗vv)
1/2 = |Θ∗vv|1/2 = |Θ∗vv −Θvv + Θvv|1/2 ≤ |Θ∗vv −Θvv|1/2 + Θ

1/2
vv ,

yielding |Θ1/2
vv − (Θ∗vv)

1/2| ≤ |Θvv −Θ∗vv|1/2 and consequently, by assumption
(A5), ∣∣∆(j)∣∣ =

∣∣Θ1/2
vv − (Θ∗vv)

1/2
∣∣ = oP(1).

Invoking (A9) and the Lindeberg-Feller CLT,
∣∣∣ k∑
j=1

∑
i∈Ij

∆
(i)
21,i

∣∣∣ = oP(1). Simi-

larly

∣∣∣ k∑
j=1

∑
i∈Ij

∆
(j)
22,i

∣∣∣ ≤ max
1≤j≤k

‖Θ̂(j)
v −Θ∗v‖1

∣∣∆(j)∣∣∣∣∣(Θ∗Tv Θ∗v
)−1/2

k∑
j=1

∑
i∈Ij

ξ
(j)
iv

∣∣∣ = oP(1).

Combining all terms in the decomposition (E.7) delivers the result.

(B1)-(B5) of Condition E.9 are used in the proofs of subsequent lemmas.

Condition E.9. (B1) ‖w∗‖1 . s1, ‖J∗‖max <∞ and for any δ ∈ (0, 1),

P
(
‖β̂λ−v − β∗−v‖1 & n−1/2s

√
log(d/δ)

)
< δ

and
P
(
‖ŵ −w∗‖1 & n−1/2s1

√
log(d/δ)

)
< δ.

(B2) For any δ ∈ (0, 1),

P
(
‖∇−v`n(β∗v ,β

∗
−v)‖∞ & n−1/2

√
log(d/δ)

)
< δ.

(B3) Suppose β̂λ−v satisfies (B1). Define

Hv :=
(
∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
)
· (β̂λ−v − β∗−v).

Then for β−v,α = αβ∗−v + (1− α)β̂λ−v and for any δ ∈ (0, 1),

P

(
sup
α∈[0,1]

|Hv| & s1s
log(d/δ)

n

)
< δ.
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(B4) There exists a constant C > 0 such that C < I∗θ|γ < ∞, and for

v∗ = (1,−w∗T )T , it holds that

√
nv∗T∇`n(β∗v ,β

∗
−v)√

v∗TJ∗v∗
 N(0, 1).

(B5) For any δ, if there exists an estimator β̃ = (β̃Tv , β̃
T
−v)

T satisfying

‖β̃ − β∗‖1 ≤ Cs
√
n−1 log(d/δ) with probability > 1− δ, then

P
(∥∥∇2`n(β̃)− J∗

∥∥
max
& n−1/2

√
log(d/δ)

)
< δ.

The proof of Theorem 3.11 is an application of Lemma E.13. To apply
this Lemma, we must first verify (B1) to (B4) of Condition E.9. We do this
in Lemma E.10.

Lemma E.10. Under the requirements of Theorem 3.11, (B1) - (B4) of
Condition E.9 are fulfilled.

Proof. Verification of (B1). As stated in Theorem 3.11, ‖w∗‖1 =
O(s1) and ‖J∗‖max < ∞ by part (i) of Condition 3.6. The rest of (B1)
follows from the proof of Lemma C.3 of Ning and Liu (2014).

Verification of (B2). LetXi = (Qi,Z
T
i )T . Since ‖∇γ`n(β∗)‖∞ =

∥∥− 1
n

∑n
i=1(

Yi − b′(XT
i β
∗)
)
Zi
∥∥
∞, since the product of a sub-Gaussian random variable

and a bounded random variable is sub-Gaussian, and since E[∇γ`n(β∗)] = 0,
we have by Condition 3.6, Bernstein’s inequality and the union bound

P
(
‖∇γ`n(β∗)‖∞ > t

)
< (d− 1) exp{−nt2/M2σ2

b}.

Setting 2(d− 1) exp{−nt2/M2σ2
b} = δ and solving for t delivers the result.

Verification of (B3) Let β∗α = (θ∗,γα) and decompose the object of interest
as
(E.8)∣∣(∇2

v,−v`n(β∗v ,β−v,α)− ŵT∇2
−v,−v`n(β∗v ,β−v,α)

)
(β̂λ−v − β∗−v)

∣∣ ≤ 5∑
t=1

∣∣∆t

∣∣,
where the terms ∆1 - ∆5 are given by ∆1 = ∇2

v,−v`n(β∗α)−∇2
v,−v`n(β∗),

∆2 = ∇2
v,−v`n(β∗)−w∗TJ∗−v,−v, ∆4 = w∗T

(
∇2
−v,−v`n(β∗)−∇2

−v,−v`n(β∗α)
)
,

∆3 = w∗T
(
J∗−v,−v −∇2

−v,−v`n(β∗)
)
, ∆5 = (w∗T − ŵT )∇2

−v,−v`n(β∗α).
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We have the following bounds

|∆1| =
∣∣∣ 1
n

n∑
i=1

ZiZ
T
i (β̂λ−v − β∗−v)

(
`′′i (X

T
i β
∗
α)− `′′i (XT

i β
∗)
)∣∣∣

≤ max
1≤i≤n

Ki max
1≤i≤n

‖Xi‖∞
∥∥ 1

n
Z(β̂−v − β∗−v)

∥∥2

2
,

|∆2| ≤
∥∥∇2

v,−v`n(β∗)− J∗v,−v
∥∥
∞‖β̂

λ
−v − β∗−v‖1,

|∆3| ≤ ‖w‖1
∥∥J∗−v,−v −∇2

−v,−v`n(β∗)
∥∥

max
‖β̂λ−v − β∗v‖1,

|∆4| =
∣∣w∗T (∇2

−v,−v`n(β∗)−∇2
−v,−v`n(β∗v)

)
(γ̂λ − λ∗)

∣∣
≤ max

1≤i≤n
Ki‖w∗‖1

∥∥ 1

n
Z(β̂λ−v − β∗−v)

∥∥2

2
,

and |∆5| ≤ ‖w∗ − ŵ‖1
∥∥∇−v,−v`n(β∗v)

∥∥
max
‖β̂λ−v − β∗−v‖1. Let ε = δ/5. Then

by Condition 3.6 and Lemma E.4

P
(
|∆1| & s

log(d/ε)

n

)
< ε and P

(
|∆4| & ss1

log(d/ε)

n

)
< ε.

Noting the β∗ itself satisfies the requirements on β̃ in (B5), Lemma E.11
and Condition 2.1 together give

P
(
|∆2| & s1

log(d/ε)

n

)
< ε and P

(
|∆3| & s1s

log(d/ε)

n

)
< ε.

By (B1) verified above and noting that∥∥∇−v,−v`n(β∗v)
∥∥

max
≤
∥∥∇−v,−v`n(β∗v)−∇−v,−v`n(β∗)

∥∥
max

+
∥∥∇−v,−v`n(β∗)

∥∥
max

,

the proof of Lemma E.11 delivers P
(
|∆5| & s1s log(d/ε)/n

)
< ε. Combining

the bounds, we finally have

P
(

sup
α∈[0,1]

Hv & s1s
log(d/δ)

n

)
< δ.

Verification of (B4). See Ning and Liu (2014), proof of Lemma C.2.

In the following lemma, we verify (B5) under the same conditions.
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Lemma E.11. Under Conditions 3.6 and 2.1, (B5) of Condition E.9 is
fulfilled.

Proof. We obtain a tail probability bound for ∆1 and ∆2 in the decom-
position

‖∇2`n(β̃)− J∗‖max ≤ ‖∇2`n(β̃)−∇2`n(β∗)‖max + ‖∇2`n(β∗)− J∗‖max

= ∆1 + ∆2.

For the control over ∆1, note that by Condition 3.6 (ii) and (iii),∣∣[∇2`n(β∗)]jk
∣∣ ≤ ∣∣b′′(XT

i β
∗)
∣∣∣∣XijXik

∣∣ ≤ U2M
2.

Hence Hoeffding’s inequality and the union bound deliver

(E.9) P(∆2 > t) = P
(
‖∇2`n(β∗)− J∗‖max > t

)
≤ 2d2 exp

{
− nt2

8U2
2M

4

}
.

For the control over ∆1, we have by Lemma E.5,∣∣[∇2`n(β̃)−∇2`n(β∗)]jk
∣∣ =

∣∣(b′′(XT
i β̃)− b′′(XT

i β
∗)
)
XijXik

∣∣
≤ M3U3‖β̃ − β∗‖1 ≤M3U3s

√
n−1 log(d/δ)

with probability > 1− δ. Hoeffding’s inequality and the union bound again
deliver

(E.10)

P(∆1 > t) = P
(
‖∇2

ηη`n(β̃)−∇2
ηη`n(β∗)‖max > t

)
≤ 2d2 exp

{
− n2t2

8U2
3M

6s2 log(d/δ)

}
.

Combining the bounds from equations (E.9) and (E.10) we have

P
(
‖∇2`(β̃)− J∗‖max > t

)
≤ 2d2

(
exp
{
− nt2

8U2
3M

4

}
+ exp

{
− n2t2

8U2
3M

6s2 log(d/δ)

})
.

Setting each term equal to δ/2, solving for t and ignoring the relative mag-
nitude of constants, we have t = U3 max

{
n−1s log(d/δ), n−1/2

√
log(d/δ)

}
=

U3n
−1/2 log(d/δ), thus verifying (B5).



20 H. BATTEY, J. FAN, H. LIU, J. LU AND Z. ZHU

Lemma E.12. For each j ∈ {1, . . . , k}, let β−v,αj = αjβ̂
λ
−v(Dj) + (1 −

αj)β
∗
−v, for some αj ∈ [0, 1], where β̂λ−v(Dj) is defined in equation (2.2).

Define

∆
(j)
1 = (ŵ(Dj)−w∗)T∇−v`(j)nk (β∗v ,β

∗
−v) and

∆
(j)
2 =

(
∇2
v,−v`

(j)
nk

(β∗v ,β−v,αj )− ŵT∇−v,−v`(j)nk (β∗v ,β−v,αj )
)
(β̂λ−v − β∗−v).

Under (B1) - (B3) of Condition E.9,
∣∣∣k−1

∑k
j=1 ∆

(j)
1

∣∣∣ = oP
(
n−1/2

)
and∣∣∣k−1

∑k
j=1 ∆

(j)
2

∣∣∣ = oP
(
n−1/2

)
whenever k � d is chosen to satisfy k =

o
(
(s1 log d)−1√n

)
.

Proof. By Hölder’s inequality,∣∣∆(j)
1

∣∣ =
∣∣(w∗ − ŵ(Dj)

)T∇−v`(j)nk (β∗v ,β
∗
−v)
∣∣

≤ ‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β
∗
−v)‖∞,

hence, for any t,{∣∣∆(j)
1

∣∣ > t
}
⊆
{
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > t

}
.

Take t = vq where v = Cn−1/2s1

√
k log(d/δ) and q = Cn−1/2

√
k log(d/δ).

Define two events E1 and E2 as following.

E1 :=
{
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > vq

}
,

E2 :=
{‖ŵ(Dj)−w∗‖1

v
≤ 1
}
.

Then we obtain that P(E1) = P(E1 ∩E2) + P(E1 ∩Ec2), which is not greater
than 2δ by (B1) and (B2) of Condition E.9. Hence the union bound delivers

P
(∣∣ k∑
j=1

∆
(j)
1

∣∣ > kvq
)
≤ P

(
∪kj=1

{∣∣∆(j)
1

∣∣ > vq
})
≤

k∑
j=1

P
(∣∣∆(j)

1

∣∣ > vq
)

≤ 2kδ = o(1)

for δ = o(k−1). Taking δ = k−1 for α > 0 arbitrarily small in the definition
of v and q, the requirement is ks1 log d = o

(√
n
)

and ks1 log k = o(
√
n)

for α > 0 arbitrarily small. Since k � d, k−1
∑k

j=1 ∆
(j)
1 = oP

(
n−1/2

)
with

k = o
(
(s1 log d)−1√n

)
. Next, consider |∆(j)

2 | ≤ supα∈[0,1] |Gv|, where

Gv := (∇2
v,−v`

(j)
nk

(β∗v ,β−v,α)− ŵT∇2
−v,−v`

(j)
nk

(β∗v ,β−v,α)
)
(β̂λ−v(Dj)− β∗−v).



DISTRIBUTED TESTING AND ESTIMATION 21

By (B3) of Condition E.9, P
(∣∣∆(j)

2

∣∣ ≥ t) < δ for t � s1sn
−1k log(d/δ), hence,

proceeding in an analogous fashion to in the control over k−1
∑k

j=1 ∆
(j)
1 , we

obtain

P
(∣∣∣ k∑
j=1

∆
(j)
2

∣∣∣ > kt
)
≤ P

(
∪kj=1

∣∣∆(j)
2

∣∣ > t
)
≤

k∑
j=1

P
(∣∣∆(j)

2

∣∣ > t
)
≤ kδ = o(1)

for δ = o(k−1). Hence k−1
∑k

j=1 ∆
(j)
2 = oP

(
n−1/2

)
with k = o

(
(s1s log d)−1 ·

n3/2
)
. Since (s1 log d)−1√n = o

(
(s1s log d)−1n3/2

)
, k−1

∑k
j=1

(
∆

(j)
1 +∆

(j)
2

)
=

oP
(
n−1/2

)
requires k = o

(
(s1 log d)−1√n

)
.

Lemma E.13. Under (B1) - (B4) of Condition E.9, with k � d chosen to
satisfy the scaling k = o

(
((s ∨ s1) log d)−1√n

)
,

1

k

k∑
j=1

Ŝ(j)(β∗v , γ̂
λ(Dj)) =

1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) + oP(n−1/2) and

lim
n→∞

sup
t
|P((J∗v|−v)

−1/2√n1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) < t)− Φ(t)| → 0.

Proof. Recall

S(j)(β∗v ,β
∗
−v) = ∇v`(j)nk (β∗v ,β

∗
−v)−w∗T∇−v`(j)nk (β∗v ,β

∗
−v).

Through a mean value expansion of Ŝ(j)(β∗v , β̂
λ
−v(Dj)) around β∗−v, we have

for each j ∈ {1, . . . , k},

Ŝ(j)
(
β∗v , β̂

λ
−v(Dj)

)
= ∇v`(j)nk

(
β∗v , β̂

λ
−v(Dj)

)
− ŵ(Dj)T∇−v`(j)nk

(
β∗v , β̂

λ
−v(Dj)

)
= S(j)(β∗v ,β

∗
−v) + ∆

(j)
1 + ∆

(j)
2 ,

for some β−v,α = αβ̂−v(Dj) + (1− α)β∗−v, where

∆
(j)
1 =

(
w∗ − ŵ(Dj)

)T∇−v`(j)nk (β∗v ,β
∗
−v)

∆
(j)
2 =

[
∇2
v,−v`

(j)
nk

(β∗v ,β−v,α)− ŵ(Dj)T∇2
−v,−v`

(j)
nk

(β∗v ,β−v,α)
]
(β̂λ−v(Dj)− β∗−v).

Here hv = ∇2
v,−v`

(j)
nk (β∗v ,β−v,α) − ŵ(Dj)T∇2

−v,−v`
(j)
nk (β∗v ,β−v,α). It follows
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that
(E.11)

1

k

k∑
j=1

Ŝ(j)
(
β∗v , β̂

λ
−v(Dj)

)
=

1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) +

1

k

k∑
j=1

(
∆

(j)
1 + ∆

(j)
2

)
=

1

k

k∑
j=1

S(j)(θ∗,γ∗) + oP(n−1/2)

by Lemma E.12 whenever k = o
(
(s1 log d)−1√n

)
. Observe

√
n
(
k−1

k∑
j=1

S(j)(β∗v ,β
∗
−v)
)

=
√
n(1,−w∗T )

(1

k

k∑
j=1

∇`(j)nk (β∗v ,β
∗
−v)
)

and

J∗v|−v = (1,−w∗T )J∗(1,−w∗T )T .

So
√
n 1
k

∑k
j=1 S

(j)(β∗v ,β
∗
−v)  N(0, J∗v|−v) by Condition (B4). Similar to

Corollary 3.9, we apply the Berry-Essen inequality to show that

sup
t
|P(
√
n

1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) < t)− Φ(t)| → 0.

Lemma E.14. Under Condition (B1), for any δ ∈ (0, 1),

P
(
‖w −w∗‖1 > Cn−1/2s1

√
k log(d/δ)

)
< kδ,

P
(
‖β−v − β∗−v‖1 > Cn−1/2s

√
k log(d/δ)

)
< kδ.

Proof. Set t = Cs1

√
n−1(k log(d/δ)) and note

P
(
‖

k∑
j=1

(ŵ(Dj)−w∗)‖1 > kt
)
≤

k∑
j=1

P
(
‖w −w∗‖1 > t

)
.

by the union bound. Then by Condition (B1),

P
(
‖w −w∗‖1 > Cn−1/2s1

√
k log(d/δ)

)
< kδ.

The proof of the second bound is analogous, setting t = Cs
√
n−1(k log(d/δ)).



DISTRIBUTED TESTING AND ESTIMATION 23

Lemma E.15. Suppose (B5) of Condition E.9 is satisfied. For any δ, if there
exists an estimator β̃ = (β̃Tv , β̃

T
−v)

T satisfying ‖β̃−β∗‖1 ≤ Cs
√
n−1 log(d/δ)

with probability 1− δ, then

P
(∥∥∥1

k

k∑
j=1

∇2`(j)nk (β̃)− J∗
∥∥∥

max
> Cn−1/2

√
k log(d/δ)

)
< kδ.

Proof. The proof follows from (B5) in Condition E.9 via an analogous
argument to that of Lemma E.14, taking t = C

√
n−1(k log(d/δ)).

Lemma E.16. Suppose (B1)-(B5) of Condition E.9 are fulfilled. Then for
any k � d satisfying k = o

(
((s ∨ s1) log d)−1√n

)
, |Jθ|γ − J∗v|−v| = oP(1).

Proof. Recall that J∗v|−v = J∗v,v − J∗v,−vJ∗−1
−v,−vJ

∗
−v,v and

Jv|−v =
1

k

k∑
j=1

(
∇v,v`(j)nk (β

d
v,β−v)− wT∇2

−v,v`
(j)
nk

(β
d
v,β−v),

so
∣∣Jv|−v − J∗v|−v∣∣ = δ1 + δ2, where

∆1 =
∣∣1
k

k∑
j=1

∇v,v`(j)nk (β
d
v,β−v)− J∗v,v

∣∣ and

∆2 =
∣∣wT

(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)−w∗TJ∗−v,v

)∣∣.
Let β̃ = (β

d
v,β−v) and note that ‖β̃ − β∗‖1 satisfies the clause in (B5) of

Condition E.9 by Lemma E.14 when k = o
(
((s ∨ s1) log d)−1√n

)
. Hence

∆1 = oP(1) by Lemma E.15.

∆2 ≤
∣∣∣(w −w∗)T(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

)∣∣∣︸ ︷︷ ︸
∆21

+
∣∣(w −w∗)TJ∗−v,v∣∣︸ ︷︷ ︸

∆22

+
∣∣∣w∗T(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

)∣∣∣︸ ︷︷ ︸
∆23

.
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By the fact that ‖J∗‖max <∞ and ‖w∗‖1 ≤ Cs1 by (B1) of Condition E.9,
an application of Lemmas E.14 and E.15 delivers

∆21 ≤ ‖w −w∗‖1
∥∥1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

∥∥
∞ = oP(1),

∆22 ≤ ‖w −w∗‖1‖J∗−v,v‖∞ = oP(1),

∆23 ≤
∥∥1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

∥∥
∞‖w

∗‖1 = oP(1)

for k = o
(
(s1 log d)−1n

)
, a fortiori for k = o

(
((s ∨ s1) log d)−1√n

)
. Hence∣∣Jv|−v − J∗v|−v∣∣ = oP(1).

APPENDIX F: AUXILIARY LEMMAS FOR ESTIMATION

In this section, we provide the proofs of the technical lemmas and theorems
for the divide and conquer estimation. Using Lemma 7.1 we can derive Lemma
F.1, which serves as a crucial step in establishing Lemma 4.1.

Lemma F.1. Suppose Conditions 3.1 and 3.2 are fulfilled. Let λ �
√
k log d/n

and ϑ1 �
√
k log d/n. With k = o((s log d)−1√n),

√
n(β

d − β∗) = Z + ∆,

where Z = 1√
k

∑k
j=1

1√
nk
M (j)X(j)Tε(j) and ‖∆‖∞ = oP(1).

Proof of Lemma F.1. For notational convenience, we write β̂λLasso(Dj)
simply as β̂λ(Dj). Decompose β

d − β∗ as

β
d − β∗ =

1

k

k∑
j=1

(
β̂λ(Dj)− β∗ +

1

nk
M (j)X(j)TX(j)

(
β∗ − β̂λ(Dj)

))

+
1

k

k∑
j=1

1

nk
M (j)X(j)T ε(j)

=
1

k

k∑
j=1

(
I −M (j)Σ̂(j)

)(
β̂λ(Dj)− β∗

)
+

1

k

k∑
j=1

1

nk
M (j)X(j)T ε(j),

hence
√
n(β

d − β∗) = Z + ∆, where

Z =
1√
k

k∑
j=1

1
√
nk
M (j)X(j)T ε(j) and ∆ =

√
n

k

k∑
j=1

(
I−M (j)Σ̂(j)

)(
β̂λ(Dj)−β∗

)
.
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Defining ∆(j) =
(
I −M (j)Σ̂(j)

)(
β̂λ(Dj)− β∗

)
, we have

‖∆(j)‖∞ ≤ ‖∆(j)‖1 ≤ ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1

by Hölder’s inequality, where ‖I −M (j)Σ̂(j)‖max ≤ ϑ1 by the definition of
M (j) and, for λ = Cσ2

√
log d/nk,

(F.1) P
(∥∥β̂λ(Dj)− β∗

∥∥2

1
> C

s2 log(2d)

nk
+ t

)
≤ exp

(
− cnkt
s2σ2

)
by Bühlmann and van de Geer (2011). We thus bound the expectation of
the `1 loss by

E
[∥∥β̂λ(Dj)− β∗

∥∥2

1

]
≤ 2Cs2 log(2d)

nk
+

∫ ∞
0

exp

(
− cnkt
s2σ2

)
dt(F.2)

≤ 2Cs2 log(2d)

nk
+
s2σ2

cnk
.

Define the event E(j) :=
{∥∥β̂λ(Dj) − β∗

∥∥
1
≤ s

√
C log(2d)/nk

}
for j =

1, . . . , k. ‖∆(j)‖∞ ≤ ∆
(j)
1 + ∆

(j)
2 + ∆

(j)
3 where

∆
(j)
1 = ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)}

− E
[
‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)}

]
∆

(j)
2 = ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}

− E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}] and

∆
(j)
3 = E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1].

Consider ∆
(j)
1 , ∆

(j)
2 and ∆

(j)
3 in turn. By Hoeffding’s inequality, we have for

any t > 0,
(F.3)

P

1

k

k∑
j=1

∆
(j)
1 > t

 ≤ exp

(
− nkkt

2

Cs2ϑ2
1 log(2d)

)
≤ exp

(
− nknt

2

Cs2 log2(2d)

)
.
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By Markov’s inequality,

P

1

k

k∑
j=1

∆
(j)
2 > t

 ≤ ∑k
j=1 E[∆

(j)
2 ]

kt

≤ 2t−1E
[
‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}

]
(F.4)

≤ 2t−1ϑ1

√
E
[
‖β̂λ(Dj)− β∗‖21

]
P(E(j)c)

≤ Ct−1

√
log d

nk
· s

2 log(2d)

nk
d−c ≤ Ct−1sn−1

k d−c/2 log d,(F.5)

where the penultimate inequality follows from Jensen’s inequality. Finally,
by Jensen’s inequality again,

1

k

k∑
j=1

∆
(j)
3 = E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1]

≤ ϑ1

√
E
[∥∥β̂λ(Dj)− β∗

∥∥2

1

]
≤ C s log d

nk
.(F.6)

Combining (F.3), (F.5) and (F.6),

P
(
‖∆‖∞ > 3C

√
n · s log d

nk

)
≤

3∑
u=1

P

1

k

k∑
j=1

∆(j) > C
√
n · s log d

nk


≤ exp(−ckn) + d−c/2 → 0,(F.7)

and taking k = o
(
(s log d)−1√n

)
delivers ‖∆‖∞ = oP(1).

Proof of Theorem A.1.

(F.8)

β − β̂ =
1

k

k∑
j=1

((X(j))TX(j))−1(X(j))TY (j) − (XTX)−1XTY

=
1

k

k∑
j=1

((
X(j)TX(j)/nk

)−1
− (XTX/n)−1

)
X(j)Tε(j)/nk

=
1

k

k∑
j=1

((
X(j)TX(j)/nk

)−1
− Σ−1

)
X(j)Tε(j)/nk

+
(
Σ−1 − (XTX/n)−1

)
XTε/n.
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For simplicity, denote X(j)TX(j)/nk by S
(j)
X , XTX/n by SX , (S

(j)
X )−1−(Σ)−1

by D
(j)
1 and (Σ)−1 − SX−1 by D2. For any τ ∈ R, define an event E(j) =

{‖(S(j)
X )−1‖2 ≤ 2/Cmin}∩{‖S(j)

X −Σ‖2 ≤ (δ1∨δ2
1)} for all j = 1, . . . , k, where

δ1 = C1

√
d/nk + τ/

√
nk, and an event E = {‖(SX)−1‖2 ≤ 2/Cmin}∩{‖SX −

Σ‖2 < (δ2 ∨ δ2
2)}, where δ2 = C1

√
d/n + τ/

√
n. Note that by Lemma F.2

and F.5, the probability of both (E(j))c and Ec are very small. In particular

P(Ec) ≤ exp(−cn)+exp(−c1τ
2) and P((E(j))c) ≤ exp(−cn/k)+exp(−c1τ

2).

Then, letting E0 :=
k⋂
j=1
E(j), an application of the union bound and Lemma

F.9 delivers

P
(
‖β − β̂‖2 > t

)
≤ P

∥∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk

∥∥∥
2
> t/2

 ∩ E0


+ P

({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)

+ P(Ec0) + P(Ec)

≤ 2 exp

(
d log(6)− t2C3

minn

32C3σ2
1δ

2
1

)
+ k exp(−cn/k) + (k + 1) exp(−c1τ

2).

When d → ∞ and log n = o(d), choose τ =
√
d/c1 and δ1 = O(

√
kd/n).

Then there exists a constant C such that

P

(
‖β − β̂‖2 > C

√
kd

n

)
≤ (k + 3) exp(−d) + k exp(−cn

k
).

Otherwise choose τ =
√

log n/c1 and δ1 = O(
√
k log n/n). Then there exists

a constant C such that

P

(
‖β − β̂‖2 > C

√
k log n

n

)
≤ k + 3

n
+ k exp(−cn

k
).

Overall, we have

P

(
‖β − β̂‖2 > C

√
k(d ∨ log n)

n

)
≤ ck exp(−(d ∨ log n)) + k exp(−cn/k),

which leads to the final conclusion.

Proof of Corollary A.3. Define an event

E = {‖βd − β∗‖∞ ≤ 2C
√

log d/n},
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then by the condition on the minimal signal strength and Lemma 4.1, for
some constant C ′ we have

P

(
‖βr − β̂o‖2 > C ′

√
k(s ∨ log n)

n

)

≤ P

({
‖βr − β̂o‖2 > C ′

√
k(s ∨ log n)

n

}
∩ E

)
+ P(Ec)

≤ P

({
‖βo − β̂o‖2 > C ′

√
k(s ∨ log n)

n

}
∩ E

)
+ c/d

≤ ck exp(−(s ∨ log n)) + k exp(−cn/k) + c/d.

where β
o

= 1
k

k∑
j=1

(X
(j)T
S X

(j)
S )−1X

(j)T
S Y (j), which is the average of the oracle

estimators on the subsamples. Then the conclusion can be easily validated.

Proof of Theorem B.1. The following notation is used throughout the
proof.

S(β) := ∇2`n(β) =
1

n
XTD(Xβ)X, S

(j)
X :=

1

nk
X(j)TX(j)

S(j)(β := ∇2`(j)nk (β) =
1

nk
X(j)TD(X(j)β)X(j), SX :=

1

n
XTX.

For any j = 1, . . . , k, β̂(j) satisfies

∇`(j)nk (β̂(j)) =
1

nk
X(j)T (Y (j) − µ(X(j)β̂(j))) = 0.

Through a Taylor expansion of the left hand side at the point β = β∗, we
have

1

nk
X(j)T (Y (j) − µ(X(j)β∗))− S(j)(β̂(j) − β∗)− r(j) = 0,

where the remainder term r(j) is a d dimensional vector with gth component

r(j)
g =

1

6nk
(β̂(j) − β∗)T∇2

β[(X(j)
g )Tµ(X(j)β)](β̂(j) − β∗)

=
1

6nk
(β̂(j) − β∗)TX(j)Tdiag{X(j)

g ◦ µ′′((X(j)β̃(j)))}X(j)(β̂(j) − β∗),

where β̃(j) is in a line segment between β̂(j) and β∗. It therefore follows that

β̂(j) = β∗ + (S(j))−1[X(j)T (Y (j) − µ(X(j)β∗)) + nkr
(j)].
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A similar equation holds for the global MLE β̂:

β̂ = β∗ + S−1[XT (Y − µ(Xβ∗)) + nr],

where for g = 1, . . . , d,

rg =
1

6n
(β̂ − β∗)TXTdiag{Xg ◦ µ′′((Xβ̃(j)))}X(β̂ − β∗).

Therefore we have

1

k

k∑
j=1

β̂(j) − β̂ =
1

k

k∑
j=1

{
(S(j))−1 − Σ−1

}
X(j)T (Y (j) − µ(X(j)β∗))

−
{
S−1 − Σ−1

}
XT (Y − µ(Xβ∗)) +R = B +R,

where R = (1/k)
k∑
j=1

(S(j))−1r(j) − S−1r. We next derive stochastic bounds

for ‖B‖2 and ‖R‖2 respectively, but to study the appropriate threshold, we
introduce the following events with probability that approaches one under
appropriate scaling. For j = 1, . . . , k and κ, τ, t > 0,

E(j) := {‖(S(j))−1‖2 ≤ 2/Cmin} ∩
{‖S(j) − Σ‖2

δ1 ∨ δ2
1

≤ 1
}
∩ {‖S(j)

X ‖2 ≤ 2Cmax},

E := {‖S−1‖2 ≤ 2/Lmin} ∩
{
‖S − Σ‖2 ≤ (δ2 ∨ δ2

2)
}
∩ {‖SX‖2 ≤ 2Cmax},

F (j) :=
{
‖β̂(j) − β∗‖2 > t

}
, F :=

{
‖β̂ − β∗‖2 > t

}
,

where δ1 = C1

√
d/nk + τ/

√
nk and δ2 = C1

√
d/nk + τ/

√
n. Denote the

intersection of all the above events by A. Note that Condition 3.6 implies

that
√
b′′(XT

i β)Xi are i.i.d. sub-Gaussian vectors, so by Lemmas F.2, F.5,

F.4 and F.11, we have

P(Ac) ≤ (2k + 1) exp
(
−cn
k

)
+ (k + 1) exp(−c1τ

2)

+ 2k exp

(
d log 6− nC2

minL
2
mint

2

211CmaxU2φk

)
We first consider the bounded design, i.e., Condition 3.6 (ii). In order to

bound ‖R‖2, we first derive an upper bound for r
(j)
g . Under the event A, by

Lemma E.5 we have

max
1≤g≤d,1≤j≤k

r(j)
g ≤

1

3
MU3Cmaxt

2 and max
1≤g≤d

rg ≤
1

3
MU3Cmaxt

2.
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It follows that, under A,

(F.9) ‖R‖2 ≤
2

3
M
√
dU3Cmaxt

2.

Note that B is very similar to the RHS of Equation (F.8). Now we use
essentially the same proof strategy as in the OLS part to bound ‖B‖2.

Following similar notations as in OLS, we denote (S(j))−1 − Σ−1 by D
(j)
1 ,

S−1 − Σ−1 by D2, Y (j) − µ(X(j)β∗) by ε(j) and Y − µ(Xβ∗) by ε. For
concision, we relegate the details of the proof to Lemma F.10, which delivers
the following stochastic bound on ‖B‖2.

(F.10) P({‖B‖2 > t1} ∩ A) ≤ 2 exp

(
d log(6)− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Combining Equation (F.10) with (F.9) leads us to the following inequality.

P
(
‖β − β̂‖2 >

2

3
M
√
dU3Cmaxt

2 + t1

)
≤ (2k + 1) exp

(
−cn
k

)
+ (k + 1) exp(−c1τ

2) + (k + 1) exp

(
d log 6− C2

minL
2
minnt

2

211CmaxU2φk

)
+ 2 exp

(
d log 6− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Choose t = t1 =
√
d/nk and, when d � log n, choose τ =

√
d/c1 and

δ1 = O(
√
kd/n). Then there exists a constant C > 0 such that

P

(
‖β − β̂‖2 > C

kd3/2

n

)
≤ (2k + 1) exp(−cn

k
) + 2(k + 2) exp(−d).

When it is not true that d � log n, choose τ =
√

log n/c1 and δ =
O(
√
k log n/n). Then there exists a constant C > 0 such that

P

(
‖β − β̂‖2 > C

k
√
d log n

n

)
≤ (2k + 1) exp(−cn

k
) +

k + 3

n
.

Overall, we have

P

(
‖β − β̂‖2 > C

k
√
d(d ∨ log n)

n

)
≤ ck exp(−cn/k)+ck exp(−c(d∨ log n)),

which leads to the final conclusion.
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Proof of Corollary B.3. Define an event

E = {‖βd − β∗‖∞ ≤ 2C
√

log d/n},

then by the conditions of Corollary B.3 and results of Lemma 4.6 and
Theorem B.1,

P
(
‖βr − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

)
≤ P

({
‖βr − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

}
∩ E
)

+ P(Ec)

≤ P
({
‖βo − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

}
∩ E
)

+ c/d

≤ ck exp(−(s ∨ log n)) + k exp(−cn/k) + c/d.

where β
o

= 1
k

k∑
j=1
β̂o(Dj), β̂o(Dj) = argmaxβ∈Rd,βSc=0 `

(j)(β) and C ′ is a

constant. Then it is not hard to see that the final conclusion is true.

Proof of Lemma 4.1. According to Lemma F.1, we have
√
n(β

d−β∗) =
Z + ∆, where Z = 1√

k

∑k
j=1

1√
nk
M (j)X(j)Tε(j). In (F.7), we prove that

‖∆‖∞/
√
n ≤ Csk log d/n with probability larger than 1 − exp(−ckn) −

d−c/2 ≥ 1 − c1/d for some constant c1. Since β̂d is a special case of β
d

when k = 1, we also have
√
n(β̂d − β∗) = Z + ∆1, where (F.7) gives

‖∆‖∞/
√
n ≤ Cs log d/n. Therefore, we have ‖βd − β̂d‖∞ ≤ Csk log d/n

with high probability.
It only remains to bound the rate of ‖Z‖∞/

√
n. By Condition 3.2, condi-

tioning on {Xi}ni=1, we have for any ` = 1, . . . , d,
(F.11)

P
(
|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
= P

(∣∣∣ 1
n

k∑
j=1

M
(j)T
` X(j)Tε(j)

∣∣∣ > t
∣∣∣ {Xi}ni=1

)
≤ 2 exp

(
− cnt2

κ2Q`

)
,

where κ is the variance proxy of ε defined in Condition 3.2 and

Q` =
1

n

k∑
j=1

‖X(j)M
(j)T
` ‖22.
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Let Qmax = max1≤`≤dQ`. Applying the union bound to (F.11), we have

P
(
‖Z‖∞/

√
n > t

∣∣∣ {Xi}ni=1

)
≤ P

(
max

1≤`≤d
|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
≤

d∑
`=1

P
(
|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
≤ 2d exp

(
− cnt2

κ2Qmax

)
.

Let t =
√

2κ2Qmax log d/(cn), then with conditional probability 1− 2/d,

(F.12) ‖Z‖∞/
√
n ≤

√
κ2Qmax log d/(cn).

The last step is to bound Qmax. By the definition of Q`, we have

(F.13)

Q` =
1

k

k∑
j=1

M
(j)T
` Σ̂(j)M

(j)
` ≤ 1

k

k∑
j=1

[Ω]T` Σ̂(j)[Ω]`

=
1

k

k∑
j=1

1

nk

∑
i∈Dj

(XT
i [Ω]`)

2 =
1

n

n∑
i=1

(XT
i [Ω]`)

2,

where Ω = Σ−1. The inequality is due to the fact that M
(j)
` is the minimizer

in (3.4). By condition (3.2) and the connection between sub-Gaussian and
subexponential distributions, the random variable (XT

i Ω`)
2 satisfies

sup
q≥1

q−1
(
E|(XT

i Ω`)
2|q
)1/q ≤ 4κ2Ω``.

Therefore, by Bernstein’s inequality for subexponential random variables, we
have

P
(∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2−E[XT
1 [Ω]`]

2
∣∣∣ > t

)
≤ 2 exp

(
−c
( nt2

16κ4Ω2
``

)
∧
( nt

4κ2Ω``

))
.

Applying the union bound again, we have

P
(

max
1≤`≤d

∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2 − E[XT
1 [Ω]`]

2
∣∣∣ > 8κ2Ω``

√
log d

cn

)
≤

d∑
j=1

P
(∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2 − E[XT
1 [Ω]`]

2
∣∣∣ > 8κ2Ω``

√
log d

cn

)
≤ 2/d.
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Therefore, with probability 1− 2/d, there exist a constant C1 such that

Qmax = max
1≤`≤d

Q` ≤ max
1≤`≤d

∣∣∣ 1
n

n∑
i=1

(XT
i Ω`)

2 − E[XT
1 Ω`]

2
∣∣∣+ E[XT

1 Ω`]
2

≤ 8κ2Ωjj

√
log d

cn
+ Ωjj ≤ C1,

where the last inequality is due to Condition 3.1. By (F.12), we have with
probability 1 − 4/d, ‖Z‖∞/

√
n ≤

√
κ2C1 log d/(cn). Combining this with

the result on ‖∆‖∞ delivers the rate in the lemma.

Proof of Lemma 4.6. The strategy of proving this lemma is similar to
the proof of Lemma 4.1. In the proof of Lemma E.7 and Theorem 3.8, we
have shown that

(β
d − β∗) = −1

k

k∑
j=1

Θ̂
(j)T∇`(j)nk (β∗)︸ ︷︷ ︸
T

+
1

k

k∑
j=1

∆j ,

where the remainder term for each j is

∆j =

(
I − Θ̂(j)T 1

nk

∑
i∈Ij

b′′(η̃i)XiX
T
i

)
(β̂λ(Dj)− β∗)

and η̃i = tXT
i β
∗ + (1− t)XT

i β̂
λ(Dj) for some t ∈ (0, 1). We bound ∆j by

decomposing it into three terms:

‖∆j‖∞ ≤
∥∥∥(I −Θ∗

1

nk

∑
i∈Ij

b′′(XT
i β
∗)XiX

T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I1

+
∥∥∥Θ∗

1

nk

∑
i∈Ij

(b′′(XT
i β̂

λ(Dj))− b′′(XT
i β
∗))XiX

T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I2

+
∥∥∥(Θ̂(j) −Θ∗)T

1

nk

∑
i∈Ij

b′′(XT
i β̂

λ(Dj))XiX
T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I3

.

By Hoeffding’s inequality and Condition 3.3, the first term is bounded by

|I1| ≤
∥∥∥I −Θ∗

1

nk

∑
i∈Ij

b′′(XT
i β
∗)XiX

T
i

∥∥∥
max

∥∥∥β̂λ(Dj)− β∗
∥∥∥

1
≤ C sk log d

n
,

(F.14)
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with probability 1−c/d. By Condition 3.6 (iii), Condition 3.7 (iv) and Lemma
E.4, we have with probability 1− c/d,

|I2| ≤ max
i

∥∥Θ∗Xi

∥∥
∞

1

nk

∑
i∈Ij

U3[Xi(β̂
λ(Dj)− β∗)]2 ≤ C

sk log d

n
.(F.15)

Finally, we bound I3 by with probability 1− c/d,
(F.16)

|I3| ≤
√
U2

nk

√∑
i∈Ij

b′′(XT
i β̂

λ(Dj))[XT
i (Θ̂(j) −Θ∗)]2

√∑
i∈Ij

[Xi(β̂λ(Dj)− β∗)]2

≤ C (s1 ∨ s)k log d

n
,

where the last inequality is due to Lemma E.4 and Lemma C.4 of Ning and
Liu (2014).

Combining (F.14) - (F.16) and applying the union bound, we have

∥∥∥1

k

k∑
j=1

∆j

∥∥∥
∞
≤ max

j
‖∆j‖∞ = OP

((s1 ∨ s)k log d

n

)
.

Therefore, we only need to bound the infinity norm of the leading term T.
By Condition 3.7 and equation (E.3), we have with probability 1− c/d,

(F.17)

max
1≤j≤k

max
1≤v≤d

‖Θ̂(j)
v −Θ∗v‖1 ≤ Cs1

√
log d/n and

∥∥∥1

k

k∑
j=1

∇`(j)nk (β∗)
∥∥∥
∞
≤ C

√
log d/n.

This, together with Condition 3.6 and Condition 3.7 give the bound,

‖T‖∞ ≤
(
M max

v,j
‖Θ̂(j)

v −Θ∗v‖1 + max
i
‖XT

i Θ∗‖∞
)∥∥∥1

k

k∑
j=1

∇`(j)nk (β∗)
∥∥∥
∞

≤ C
(√ log d

n
+
s1 log d

n

)
,

with probability 1 − c/d. Since β̂d is a special case of β
d

when k = 1, the
proof of the lemma is complete.

We borrow the following two lemmas on concentration inequalities from
Vershynin (2010) for the proof later.
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Lemma F.2. SupposeX is a n×dmatrix that has independent sub-Gaussian
rows {Xi}ni=1. Denote E(XiX

T
i ) by Σ, then we have

P
(
‖ 1

n
XTX − ΣX‖2 ≥ (δ ∨ δ2)

)
≤ exp(−c1t

2),

where t ≥ 0, δ = C1

√
d/n+t/

√
n and C1 and c1 are both constants depending

only on ‖Xi‖ψ2 .

Proof. See Theorem 5.39 and Remark 5.40 in Vershynin (2010).

Lemma F.3. (Bernstein-type inequality) Let X1, . . . , Xn be independent
centered sub-exponential random variables, and M = max

1≤i≤n
‖Xi‖ψ1 . Then

for every a = (a1, . . . , an) ∈ Rn and every t ≥ 0, we have

P

(
n∑
i=1

aiXi ≥ t

)
≤ exp

(
−C2 min

(
t2

M2‖a‖22
,

t

M‖a‖∞

))
.

Proof. See Proposition 5.16 in Vershynin (2010).

Lemma F.4. Suppose X is a n×d matrix that has independent sub-gaussian
rows {xi}ni=1. If λmax(Σ) ≤ Cmax and d� n, then for all M > Cmax, there
exists a constant c > 0 such that when n and d are sufficiently large,

P
(∥∥∥ 1

n
XTX

∥∥∥
2
≥M

)
≤ exp(−cn).

Proof. Apply Lemma F.2 with t =
√
cn/c1, where (

√
c/c1 ∨ c/c1) <

M − Cmax, and it follows that

P
(∥∥∥ 1

n
XTX − Σ

∥∥∥
2
≥ (δ ∨ δ2)

)
≤ exp(−cn).

Since d� n, we obtain (δ ∨ δ2)→
√
c/c1, which completes the proof.

Lemma F.5. SupposeX is a n×dmatrix that has independent sub-Gaussian
rows {Xi}ni=1. EXi = 0, λmin(Σ) ≥ Cmin > 0 and d� n. For all m < Cmin,
there exists a constant c > 0 such that when n and d are sufficiently large,

P
(∥∥∥( 1

n
XTX

)−1∥∥∥
2
≥ 1

m

)
= P

(
λmin

( 1

n
XTX

)
≤ m

)
≤ exp(−cn).
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Proof. It is easy to check the following inequality. For any two symmetric
and semi-definite d× d matrices A and B, we have

λmin(A) ≥ λmin(B)− ‖A−B‖2 ,

because for any vector x satisfying ‖x‖2 = 1, we have

‖Ax‖2 = ‖Bx+ (A−B)x‖2 ≥ ‖Bx‖2−‖(A−B)x‖2 ≥ λmin(B)−‖A−B‖2.

Then it follows that

P
(∥∥∥( 1

n
XTX

)−1∥∥∥
2
≥ 1

m

)
= P

(
λmin

( 1

n
XTX

)
≤ m

)
≤ P

(∥∥∥ 1

n
XTX − ΣX

∥∥∥
2
≥ Cmin −m

)
≤ exp(−cn),

where c satisfies (
√
c/c1 ∨ c/c1) < Cmin −m and the last inequality is an

application of Lemma F.2 with t =
√
cn/c1.

Lemma F.6. (Hoeffding-type Inequality). Let X1,. . . ,Xn be independent
centered sub-Gaussian random variables, and let K = max

i
‖Xi‖ψ2 . Then for

every a = (a1, . . . , an) ∈ Rn and every t > 0, we have

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2‖a‖22

)
.

Lemma F.7. (Sub-exponential is sub-Gaussian squared). A random vari-
able X is a sub-Gaussian if and only if X2 is sub-exponential. Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2ψ2

.

Proof. See Lemma 5.14 in Vershynin (2010).

Lemma F.8. Let X1,. . . ,Xn be independent centered sub-Gaussian random
variables. Let κ = maxi ‖Xi‖ψ2 and σ2 = maxi EX2

i . Suppose σ2 > 1, then
we have

P

(
1

n

n∑
i=1

X2
i > 2σ2

)
≤ exp

(
−C2

σ2n

κ2

)
.

Proof. Combining Lemma F.3 and Lemma F.7 yields the result.
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Lemma F.9. Following the same notation as in the beginning of Proof of
Theorem A.1,

P

∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)

nk

∥∥
2
>
t

2

 ∩ E0

 ≤ 6d exp

(
− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)

and

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ2 ∨ δ2

2)2

)
.

Proof.

E
(

exp
(
λ(D

(j)
1 v)T (X(j)Tε(j)/nk)

)
|X(j)

)
=

nk∏
i=1

E

(
exp
(
(
λX

(j)
i

nk
)T (D(j)v)εi

)
|X(j)

)
≤ exp

(
C3λ

2s2
1

n∑
i=1

(
A

(j)
i

nk
)2

)
,

(F.18)

(F.19)

E
(
exp

(
λ(D2v)T (XTε/n)

)
|X
)

=

N∏
i=1

E
(
exp

(
(λXi/N)T (D2v)εi

)
| X
)

≤ exp

(
C3λ

2s2
1

N∑
i=1

A2
i /n

2

)
,

where we write A
(j)
i and Ai in place of (X

(j)
i )TD

(j)
1 v and (Xi)

TD2v respec-
tively C3 is an absolute constant, and the last inequality holds because εi

are sub-Gaussian. Next we provide an upper bound on
nk∑
i=1

(A
(j)
i )2 and

n∑
i=1

A2
i .

Note that

n∑
i=1

(A
(j)
i )2 = vTD

(j)
1 XTXD

(j)
1 v

= vT ((S
(j)
X )−1 − (Σ)−1)nkS

(j)
X ((S

(j)
X )−1 − (Σ)−1)v

= nkv
TΣ−1(Σ− S(j)

X )(S
(j)
X )−1(Σ− S(j)

X )Σ−1v,

and similarly,

n∑
i=1

A2
i = nvTΣ−1(Σ− SX)(SX)−1(Σ− SX)Σ−1v.
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For any τ ∈ R, define the event E(j) = {‖(S(j)
X )−1‖2 ≤ 2/Cmin} ∩ {‖S(j)

X −
Σ‖2 ≤ (δ1 ∨ δ2

1)} for all j = 1, . . . , k, where δ1 = C1

√
d/nk + τ/

√
nk, and

the event E = {‖(SX)−1‖2 ≤ 2/Cmin} ∩ {‖SX − Σ‖2 < (δ2 ∨ δ2
2)}, where

δ2 = C1

√
d/n+ τ/

√
n. On E(j) and E , we have respectively

nk∑
i=1

(A
(j)
i )2 ≤ 2nk

C3
min

(δ1 ∨ δ2
1)2 and

n∑
i=1

A2
i ≤

2n

C3
min

(δ2 ∨ δ2
2)2.

Therefore from Equation (F.18) and (F.19) we obtain

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk))1{E(j)}

)
≤ exp

(
2C3λ

2s2
1

C3
minnk

(δ1 ∨ δ2
1)2

)
and

E
(
exp(λ(D2v)T (XTε/n))1{E}

)
≤ exp

(
2C3λ

2s2
1

C3
minN

(δ2 ∨ δ2
2)2

)
.

In addition, according to Lemma F.2 and F.5, the probability of both
(E(j))c and Ec are very small. More specifically,

P(Ec) ≤ exp(−cn)+exp(−c1τ
2) and P((E(j))c) ≤ exp(−cn/k)+exp(−c1τ

2).

Let E0 :=
k⋂
j=1
E(j). An application of the Chernoff bound trick leads us to the

following inequality.

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/2

 ∩ E0


≤ exp(−λt/2)

k∏
j=1

E
(

exp

(
λ

k
(D

(j)
1 v)T (X(j)Tε(j)/nk)

)
1{E(j)}

)

≤ exp

(
−λt/2 +

2C3λ
2s2

1

C3
minn

(δ1 ∨ δ2
1)2

)
.

Minimize the right hand side by λ, then we have

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))

nk
>
t

2

 ∩ E0

 ≤ exp

(
− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)
.
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Consider the 1/2−net of Rp, denoted by N (1/2). Again it is known that
|N (1/2)| < 6p. Using the maximal inequality, we have

P

∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk

∥∥
2
> t/2

 ∩ E0


= sup
‖v‖2=1

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/2

 ∩ E0


≤ sup

v∈N (1/2)
P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/4

 ∩ E0


≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)
.

Proceeding in an analogous fashion, we obtain

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ2 ∨ δ2

2)2

)
.

Lemma F.10. Following the same notation as in the proof of Theorem B.1,

P({‖B‖2 > t1} ∩ A) ≤ 2 exp

(
d log(6)− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Proof. By Lemma E.2, for any λ ∈ R and v such that ‖v‖2 = 1, we have

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk)) | X(j)

)
=

nk∏
i=1

E
(

exp((λX
(j)
i nk)

T (D(j)v)εi) | X(j)
)
≤ exp

(
φUλ2

nk∑
i=1

(A
(j)
i )2/n2

k

)

and

E
(
exp(λ(D2v)T (XTε/n)) | X

)
=

n∏
i=1

E
(
exp((λXi/n)T (D2v)εi) | X

)
≤ exp

(
φUλ2

n∑
i=1

A2
i /n

2

)
,
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where we write A
(j)
i and Ai in place of (X

(j)
i )TD

(j)
1 v and (Xi)

TD2v respec-

tively. Next we give a upper bound on
nk∑
i=1

(A
(j)
i )2 and

n∑
i=1

A2
i . Note that

nk∑
i=1

(A
(j)
i )2 = vTD

(j)
1 XTXD

(j)
1 v

= vT ((S(j))−1 − Σ−1)nSX((S(j))−1 − Σ−1)v

= nvTΣ−1(Σ− S(j))(S(j))−1S
(j)
X (S(j))−1(Σ− S(j))Σ−1v.

Similarly,

n∑
i=1

A2
i = nvTΣ−1(Σ− S)S−1SXS

−1(Σ− S)Σ−1v.

On E(j) and E , we have respectively

nk∑
i=1

(A
(j)
i )2 ≤ 8Cmaxnk

C4
minL

2
min

(δ1 ∨ δ2
1)2 and

n∑
i=1

A2
i ≤

8Cmaxn

C4
minL

2
min

(δ2 ∨ δ2
2)2.

Then it follows that

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk))1{E(j)}

)
≤ exp

(
8φUCmaxλ

2

C4
minL

2
minnk

(δ1 ∨ δ2
1)2

)
and

E
(
exp(λ(D2v)T (XTε/n))1{E}

)
≤ exp

(
8φUCmaxλ

2

C4
minL

2
minn

(δ2 ∨ δ2
2)2

)
.

Now we follow exactly the same steps as in the OLS part. Denote ∩kj=1Ej
by E0. An application of the Chernoff bound technique and the maximal
inequality leads us to the following inequality.

P

‖1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk‖2 > t/2

 ∩ E0


≤ exp

(
d log(6)− C4

minL
2
minnt

2

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

and

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− C4

minL
2
minnt

2

128φU2Cmax(δ2 ∨ δ2
2)2

)
.
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We have thus derived an upper bound for ‖B‖2 that holds with high proba-
bility. Specifically,

P({‖B‖2 > t1} ∩ A) ≤ P

‖1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk‖2 >

t1
2

 ∩ E0


+ P

({
‖(XD2)Tε

n
‖2 >

t1
2

}
∩ E
)
≤ 2 · 6d exp

(
− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Lemma F.11. Under Condition 3.6, for τ ≤ Lmin/(8MCmaxU3

√
d) and

sufficiently large n and d we have

P(‖β̂ − β∗‖2 > τ) ≤ exp

(
d log 6− nC2

minL
2
minτ

2

211CmaxU2φ

)
+ 2 exp(−cn).

Proof. The notation is that introduced in the proof of Theorem B.1. We
further define Σ(β) := E(b′′(XTβ)XXT ) as well as the event H := {`n(β∗) >
maxβ∈∂Bτ `n(β)}, where Bτ = {β : ‖β − β∗‖2 ≤ τ}. Note that as long as
the event H holds, the MLE falls in Bτ , therefore the proof strategy involves
showing that P(H) approaches 1 at certain rate. By the Taylor expansion,

`n(β)− `n(β∗) = (β − β∗)Tv − 1

2
(β − β∗)TS(β̃)(β − β∗) = A1 +A2,

where S(β) = (1/n)XTD(Xβ)X, β̃ is some vector between β and β∗,
v = (1/n)XT (Y −µ(Xβ∗)), A1 = (β−β∗)Tv−(1/2)(β−β∗)TS(β∗)(β−β∗)
and A2 = −(1/2)(β − β∗)T (S(β̃)− S(β∗))(β − β∗).

Define the event E := {λmin [S(β∗)] ≥ Lmin/2}, where Lmin is the same

constant in Condition 3.6. Note that by Condition 3.6 (ii),
√
b′′(XT

i β)Xi is

a sub-Gaussian random vector. Then by Condition 3.6 (iii) and Lemma F.5,
for sufficiently large n and d we have P (Ec) ≤ exp(−cn). Therefore on the
event E ,

A1 ≤ τ(‖v‖2 −
Lmin

4
τ).

We next show that, under an appropriate choice of τ , |A2| < Lminτ
2/8

with high probability. We first consider Condition 3.6 (ii). Define F :=
{‖XTX/n‖2 ≤ 2Cmax}. By Lemma F.4, we have P(Fc) ≤ exp(−cn). By
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Lemma E.5, on the event F , we have

A2 ≤ max
1≤i≤n

|b′′(XT
i β̃)− b′′(XT

i β
∗)|Cmaxτ

2

≤MU3

√
d‖β̃ − β∗‖2 · Cmaxτ

2

≤MCmaxU3

√
dτ3 ≤ Lminτ

2

8
,

where the last inequality holds if we choose τ ≤ Lmin/(8MCmaxU3

√
d). Now

we obtain the following probabilistic upper bound on Hc, which we later
prove to be negligible.

(F.20)

P(Hc) ≤ P(Hc ∩ E ∩ F) + P(Ec) + P(Fc)

≤ P
({
‖v‖2 ≥

Lminτ

8

}
∩ E ∩ F

)
+ P(Ec) + P(Fc).

Since each component of v is a weighted average of i.i.d. random variables, the
effect of concentration tends to make ‖v‖2 very small with large probability,
which inspires us to study the moment generating function and apply the
Chernoff bound technique. By Lemma E.2, for any constant u ∈ Rd, ‖u‖2 = 1
and let ai = uTXi, then we have for any t ∈ R,

E (exp(t〈u,v〉) |X) =

n∏
i=1

E
(

exp

(
tai
n

(Yi − µ(XT
i β))

)
|X
)

≤ exp

(
φU2t

2

2n2

n∑
i=1

a2
i

)

= exp

(
φU2t

2

2n
· u

TXTXu

n

)
.

It follows that

E exp(t〈u,v〉1{E ∩ F}) ≤ exp

(
φCmaxU2t

2

2n

)
.

By the Chernoff bound technique, we obtain

P({〈u,v〉 > ε} ∩ E ∩ F) ≤ exp

(
− nε2

8CmaxU2φ

)
.

Consider a 1/2−net of Rd, denoted by N (1/2). Since

‖v‖2 = max
‖u‖2=1

〈u,v〉 ≤ 2 max
u∈N (1/2)

〈u,v〉,
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it follows that

P({‖v‖2 >
Lminτ

8
} ∩ E ∩ F) ≤ P

({
max

u∈N (1/2)
〈u,v〉 > Lminτ

16

}
∩ E ∩ F

)
≤ 6d exp

(
− nL2

minτ
2

210φCmaxU2

)
= exp

(
d log 6− nC2

minL
2
minτ

2

211CmaxU2φ

)
.

Finally combining the result above with Equation (F.20) delivers the conclu-
sion.

Remark F.12. Simple calculation shows that when d = o(
√
n), ‖β̂−β∗‖2 =

OP(
√
d/n). When d is a fixed constant, ‖β̂ − β∗‖2 = OP(

√
1/n).
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