
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This is an interesting and potentially very important study that uses “connectome -based predictive 

modeling” (CPM) to examine predictability of fluid intelligence (gF) in two large and independent 

cohorts (HCP and PNC). The main assertions are that (i) task-fMRI assessments of functional 

connectivity (FC) performs significantly better than resting-state fMRI in predicting traits related to 

intelligence; (ii) specific tasks differ in their trait predictiveness; and (iii) there are sex differences in 

which tasks perform best. More generally, the authors argue that their findings motivate ‘a paradigm 

shift’ from resting-state to task-based FC analyses. This is indeed a credible suggestion, but it makes 

it all the more important for the current study to be on as solid a footing as possible. 

While many of the results are associated with very low p-values (high significance) and are thus likely 

to be robust, this is not uniformly the case. Moreover, there are several methodological concerns that 

are important to address. 

Major concerns. 

1) HCP family structure. Based on the methods described in the current ms and also in the more

general approach described in Nature Protocols (Shen et al, 2017), it appears that the authors have

not taken into account the family structure of the HCP cohort (twins and non-twin siblings) in their

statistical analyses. Failure to account for family structure can lead to false positives and inflated

estimates of statistical significance Winkler et al. (Neuroimage, 2015). Taking family structure into

account is unlikely to have a dramatic effect in this particular study, but in this reviewer’s assessment

it is essential in order for the statistics to be on a solid footing. Moreover, since the authors are

promoting the CPM approach as a useful tool for other investigators to use, it is all the more

incumbent upon them to make the CPM tools more robust for the community at large. The authors

might find this URL helpful: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ExchangeabilityBlocks

#EBs_for_data_of_the_Human_Connectome_Project

2) In Fig. 1, the difference in trait predictability for tasks versus rest is reasonably clear and

impressive for most tasks in both HCP and PNC cohorts. The text (p. 6) states that the differences are

significant for all but the HCP relational task. However, the significance is borderline (p = .04) for the

HCP social vs R1. Besides the aforementioned concern about accounting for family structure, another

methodological issue is whether these p values were corrected for multiple comparisons. Item 14 in

the Additional Material indicates that this was indeed done; it should also be mentioned in the Methods

(I didn’t find it).

3) The contrast between task and rest is all the more impressive in view of the fact tha t for HCP, the

individual tasks were much shorter in duration than the rest scans. The authors later make a point of

this (Discussion, p. 14) but should give specifics in the Methods and also indicate whether the

apparent differences between tasks is correlated with individual task duration.

Much rides on the claims that there are convincing differences across tasks in trait predictiveness. The 

statement at the bottom of p. 6 that “certain tasks yielding better predictions than others” may be 

technically correct, but it appears to rest on one leg: HCP gambling is better than relational tasks. 

While this one contrast appears to be highly significant, it is critical to know how general this is. At this 

place in the ms, the conclusion seems overstated.  

4) The sex differences illustrated in Fig. 3 are fascinating and appropriately come later in the



presentation. However, the scatterplots in Fig. 1b-d and f-h offer an intriguing opportunity to plot M vs 

F subjects in different colors (e.g., red, green, and yellow where they overlap). This might prove to be 

quite informative without taking up additional figure space; discussion of the sex differences could still 

be postponed to later in the text. 

5) p. 7. Another possible control relates to whether the results depend specifically on use of regressing

“global” signals (gray and white matter plus CSF; cf. Methods, p. 19). This step forces a zero -mean

correlation and is controversial in the field. In the Shen (2017) paper the authors note in passing that

there are alternative approaches such as partial correlation and ICA-based spatial denoising (e.g.,

Smith et al, NN 2015). Ideally, the authors would be able to run partial correlation for at least some of

their tests to see if the results differ markedly. At a minimum they should justify their choices and

note these potential confounds.

6) Edge overlap. Fig. 2 provides a data-rich comparison of edge overlap and node degree within and

across models and cohorts. The edge overlap (Fig. 2a) is generally quite modest (~12% is the highest

and most are much lower). Of course, there is inherently a lot of noise in these datasets, but it leaves

this reviewer uneasy that the spatial patterns of connectivity appear to be pretty low in reproducibility.

The edge overlap is a binary measure that entails thresholding and discounting of edge weights. The

alternative of estimating overlap using weighted measures without thresholding might in principle

have greater sensitivity and should at least be considered and mentioned.

7) Node degree overlap. A striking observation (p. 9 and Fig. 2 b, c) is that CN and AN degree vectors

are highly correlated. A potential confound is that CNR/SNR is regionally variable and dependent on

the head coil and pulse sequence. Higher CNR regions should presumably tend to have higher degree

in general, related to data acquisition characteristics, not just neurobiological factors. This issue

warrants careful consideration.

8) Sex differences. p. 12, Fig. 3, and Table 2. Some of the sex differences for different tasks are

impressively large, highly significant, and consistent to some degree across HCP and PNC cohorts.

However, the M vs F difference for WM is very large for HCP but quite modest for PNC (and not stated

as to whether the latter difference is significant). Similarly, the M vs F difference for emotion is large

for the PNC cohort (but significance not stated) whereas there is hardly any difference for the HCP

cohort.

On p. 12, para. 3, the authors report ‘preliminary evidence for a sex -by-age interaction’ However, the

data in Table 2 appear distinctly underwhelming and not even a consistent trend for females, and the

claims about ‘outperforming’ noted in the table legend should either be tempered or buttressed by p -

values. This paragraph and table should perhaps be dropped or relegated to SI.

9) Somewhere in the discussion the authors should discuss whether some of the lower variance

explained for rest be related to differences in attention or arousal states, as the rest state may

associated with reduced arousal, drowsiness, and even overt sleep for part of the scan in some/many

subjects.

10) Limitations (pp. 17-18), parcellation (p. 20) and parcellation resolution (pp. 23-24).

The authors use a 268-node whole-brain parcellation (‘functional atlas’) from Shen et al. (2013),

which is based on a volume-based alignment across individuals. For the PNC data, they compare

results for a 600-node parcellation (Craddock et al., 2012) and find similar results. Their implicit

conclusion that the choice of parcellation and of alignment method doesn’t matter much is overstated.

Methods that achieve more accurate alignment of functional subdivisions (e.g., the areal-feature-

based alignment for cortical structures in the publicly released HCP data) and the associated

multimodal parcellation (Glasser et al, 2016) might well yield better predictive power. This issue



warrants mention so that readers are aware that alignment quality and parcellation accuracy are 

important issues that may impact and eventually contribute to improved CPM performance. 

11) Image reconstruction confound. p. 23. Another HCP-specific confound that needs to be addressed

(but seems to have been overlooked) is that early in the HCP the fMRI image reconstruction was

changed to an improved method. See

https://wiki.humanconnectome.org/display/PublicData/Ramifications

+of+Image+Reconstruction+Version+Differences. It should be straightforward to regress out this

confound.

Minor comments. 

p. 3, end of para. 1. “…ideal…” is not an ‘ideal’ word. “Attractive” would be better.

Fig. 1a and 3a. Please rotate the text to oblique or vertical and increase font size along x axis for 

legibility. On Fig. 1e, simply increase font size. 

Fig. 1i: The unfilled bars (WM to rest) are barely visible. Use a f ill shading that increases visibility 

while preserving contrast with Rest to WM bars. 

p. 7, para. 2, pp. 20-21, and Table S2: Clarify whether the two versions of the PMAT test refer to just

the PNC cohort. Was one of the PNC versions identical to the HCP PMAT24 version?

Fig. 2a, b. Can’t read units on scales. Please enlarge font. 

p. 11 para. 2. The FC measure is not directed, so please use ‘patterns of connectivity with’ rather than

‘…..to’ here and elsewhere. 

Methods. Please state key parameters for HCP and PNC scans: Spatial resolution, multiband factor, 

TR, scan durations, to spare readers from needing to look these up. 

Reviewer #2 (Remarks to the Author): 

“Task-induced brain state manipulation improves prediction of individual traits” is an  extension of the 

authors’ previously published study on resting state fMRI fingerprints. Here they examine whether 

models built from task fMRI data perform better than those built from resting-state fMRI data. This a 

nice direction, but neither the results nor approach is novel, as several previous studies have 

examined this question (Cole et al and others). Further, this study has several other major limitations: 

it is not theoretically motivated, tests no neural hypotheses, and the findings are incremental and 

inconsistent with respect to a previous publication from the authors (Finn et al., 2015 NN). 

Surprisingly, findings from that study are not discussed, although the authors employed almost 

exactly the same pipeline and investigated the same question “do individual connectivity profiles 

predict fluid intelligence”. Overall, the study is weak and findings generally uninterpretable. Other 

concerns include: 

(1) There is no theoretical justification for using gambling, motor, social, and emotion tasks to  predict

fluid intelligence. Gambling task activation turned out to a strong predictor of gF. I wonder what the

interpretation and theory here is.

(2) As in Finn et al., the results demonstrate that connectivity profiles can predict fluid intelligence.

However, if we compare Finn et al. Fig. 5a with current Fig. 1d, it appears that models built from the

previous small sample actually outperform those from the larger sample used here. This suggests that



predictive values of connectivity-features (or the effectiveness of the current pipeline) decreases with 

increasing sample size? Moreover, in Finn et al study, just using features from fronto-parietal 

networks achieved the same performance as using features from the whole brain (Fig. 5a vs. 5c). 

Although the authors did not test if this is the case in the current study, it appears that visuomotor 

regions are more highly predictive of fluid intelligence in the current study (Fig. 2d). Does this fit any 

cognitive theory or models of fluid intelligence? I doubt it. 

(3) Use of a developmental PNC cohort with a large age range is problematic.

(4) The authors employed a univariate approach to select features using connectivity features that

show a significant correlation with fluid intelligence. This is highly circular and problematic, and a likely

reason for the inflated findings in Finn et al. This is now quite problematic as the current results

suggest a failure to replicate original Finn et al. findings.

Reviewer #3 (Remarks to the Author): 

Review of: Task-induced brain state manipulation improves prediction of individual traits  

I read this article with great interest not least because I agree strongly with the central premise, 

which is that dynamic/task active connectivity should provide a better predic tor of cognitive ability 

than resting state connectivity. This notion makes a great deal of sense, given that we see patterns of 

large-scale network activity/coherences during the performance of g-loaded tasks. The analyses and 

results have a number of important strength, however, there are also a number of key points that I 

believe if addressed would greatly strengthen the article. 

1) The authors state that “By considering task-induced brain state and sex, the best-performing model

explains over 20% of the variance in fluid intelligence scores, as compared to less than 5% of variance

explained by rest-based models built using the whole sample.”

This is an intriguing result, particularly given the WM/emotional task dissociation. The replication of 

the task*gender interaction across the two studies is a strength. My main concern though is that the 

difference in variance explained when accounting for gender could relate to differences in cohort size. 

By definition, there must be fewer subjects in the trained datasets for the gender analyses, i.e., 

because the cohort has been split into two groups. Is it not the case that they will be more prone to 

overfit, and therefore, could give the illusion of explaining more variance? To be truly convincing, the 

trained model would really need to be validated by application to a further dataset. I also was curious 

why only gender was examined as opposed to other factors (handedness, age, education level, etc?)   

2) The main finding is that “brain state can be manipulated to better reveal brain-behavior

relationships, and that identifying and inducing the right brain state in a given group can improve trait

prediction”.

This seems sensible to me, g-loaded tasks involve activity/coherence across certain networks, it 

makes sense to examine those networks when they are expressing those active/synchronised states. 

The fact that “Results generalize across conditions and two large, independent datasets” is also a 

strength - the importance of reproducibility is finally coming to the fore in the imaging field at the 

moment, which is a good thing. A concern though, is how well balanced this comparison actually is? 

Specifically, were the rest and task acquisitions the same duration? I.e., did they have the same 

acquisition parameters, and were there the same type and number of EPI scans for task and rest? This 

is an important point to consider. Longer acquisition will allow for a more robust estimate of 

correlation strength between each pair of nodes. this results in a connectivity matrix that has greater 

signal vs noise. One should ensure that the rest vs task difference is not simply a consequence of 



differences in the reliability of these estimates. 

3) Relatedly to the above two points, when stating how much variance is actually explained, I would

have been more convinced if the headline value was for a cross validation. by this, I mean where the

model is trained on HCP data for one task, and then validated with more HCP data for that same task.

I don’t question that there is a connectivity-g relationship, but without such a step, the headline

estimates of actual variance explained are hard to interpret (I note, that this is a criticism that can be

levelled at a number of other high impact papers, and the authors at least apply a c ross validation

across studies, albeit with somewhat different tasks/acquisitions).

4) The comparison of rest vs. task seems well balanced and sensible (assuming the above condition

regarding number of TRs is met). A question is whether the authors also looked at measures taken of

dynamic connectivity relative to steady state (PPI for example), or were the average taken across

both rest and task for the task acquisitions? In a way it is critical to use the simple correlational as

opposed to PPI approach, as this is more balanced across task and rest conditions, making them more

comparable. Nonetheless, an obvious prediction of the authors hypothesis is that the PPI measures

(increased connectivity during task vs rest) should in fact give the best possible explanation of g.

5) I was somewhat confused by the description of supplementary analyses with more robust

compensation for movement artefacts. Does this mean that movement still had a component in the

connectivity-g relationship for the primary analyses as reported in the main text? if so, then really

these supplementary analyses should be presented as the main analyses, and headline statistics

altered accordingly. If not, and the minimal data cleaning pipeline was sufficient, then are these not

redundant?

6) The observation that models trained on rest data provide stronger prediction of ‘g’ when applied to

task data seems to be a strength - although I was not clear on how generally / consistently this was

the case - it would be good to clarify this in the text. Also, to clarify that the task and rest acquisitions

actually have the same amount of data as outlined above.

7) Repeating analyses with different parcellation resolutions is a strength of the paper.

8) It is surprising that leave-one-out approach was applied in such a large dataset - the gold standard

would be to use cross validation with train and test sub-groups.

9) I was unclear whether the number of edges that were feature selected in the male and female

populations was balanced? Obviously any differences in this would lead to a problem, whereby more

edges gives the model more degrees of freedom for fitting (and over-fitting) the data.

In summary this is an intriguing and potentially important paper with great potential. I hope that the 

above suggestions are helpful in strengthening it further. 



We thank the reviewers for their thoughtful comments. These comments motivated additional 
analyses and revisions that we feel substantially strengthened the manuscript, and we highlight 
these changes below. Corresponding changes in the manuscript are indicated using blue text. 

Reviewer 1: 
This is an interesting and potentially very important study that uses “connectome-based 
predictive modeling” (CPM) to examine predictability of fluid intelligence (gF) in two large 
and independent cohorts (HCP and PNC). The main assertions are that (i) task-fMRI 
assessments of functional connectivity (FC) performs significantly better than resting-state 
fMRI in predicting traits related to intelligence; (ii) specific tasks differ in their trait 
predictiveness; and (iii) there are sex differences in which tasks perform best. More 
generally, the authors argue that their findings motivate ‘a paradigm shift’ from resting-
state to task-based FC analyses. This is indeed a credible suggestion, but it makes it all the 
more important for the current study to be on as solid a footing as possible. 

While many of the results are associated with very low p-values (high significance) and are 
thus likely to be robust, this is not uniformly the case. Moreover, there are several 
methodological concerns that are important to address. 

Major concerns. 

1) HCP family structure. Based on the methods described in the current ms and also in the
more general approach described in Nature Protocols (Shen et al, 2017), it appears that the
authors have not taken into account the family structure of the HCP cohort (twins and
non-twin siblings) in their statistical analyses. Failure to account for family structure can
lead to false positives and inflated estimates of statistical significance Winkler et al.
(Neuroimage, 2015). Taking family structure into account is unlikely to have a dramatic
effect in this particular study, but in this reviewer’s assessment it is essential in order for
the statistics to be on a solid footing. Moreover, since the authors are promoting the CPM
approach as a useful tool for other investigators to use, it is all the more incumbent upon
them to make the CPM tools more robust for the community at large. The authors might
find this URL helpful:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ExchangeabilityBlocks#EBs_for_data_of_the_
Human_Connectome_Project

We agree that performing significance tests with clarity and rigor is of utmost importance, and 
thank the reviewer for pointing out the issue of restrictions on exchangeability. To address this 
issue, we have implemented the block permutation pipeline of Winkler and colleagues1,2 for 
main analyses in both the HCP and PNC data sets. In the latter, one subject out of the 571 was 
missing family information; because it seems unlikely that this information would have been 
collected from one family member but not another, we assumed that this subject did not have 
siblings in the cohort and coded this subject as such. A description of this approach has been 
added to Methods (Cognitive prediction, p24). Revised P values based on these permutation 
tests, as well as FDR-corrected q values, are reported in the text (Results, State manipulations 
improve trait predictions, p6).  



2) In Fig. 1, the difference in trait predictability for tasks versus rest is reasonably clear
and impressive for most tasks in both HCP and PNC cohorts. The text (p. 6) states that the
differences are significant for all but the HCP relational task. However, the significance is
borderline (p = .04) for the HCP social vs R1. Besides the aforementioned concern about
accounting for family structure, another methodological issue is whether these p values
were corrected for multiple comparisons. Item 14 in the Additional Material indicates that
this was indeed done; it should also be mentioned in the Methods (I didn’t find it).

The P values corresponding to results of main analyses in this manuscript (i.e., the CPM results 
depicted in Fig. 1a-h and described on page 6 of the main text) were FDR-corrected3; in the 
revised manuscript, in addition to stating overall q values at the beginning of the Results section 
entitled “State manipulations improve trait predictions” (p6), we have included both P and 
corrected q values throughout this section. We include both values for clarity and to facilitate 
comparison to our previous work4,5, in which only rest data were used, and correction was thus 
not necessary (i.e., to avoid the illusion that significance of rest-based model prediction is 
different from that described in our previous work). Because of the sheer number of follow-up 
and confound analyses, all other analyses were considered to be post-hoc, and P values are thus 
presented without correction, except as otherwise indicated. Methods (Cognitive prediction, p24) 
and Results (p5) have been revised to clarify this point. 

3) The contrast between task and rest is all the more impressive in view of the fact that for
HCP, the individual tasks were much shorter in duration than the rest scans. The authors
later make a point of this (Discussion, p. 14) but should give specifics in the Methods and
also indicate whether the apparent differences between tasks is correlated with individual
task duration.

We thank the reviewer for pointing out this oversight – we agree that the different durations of 
the conditions are important, and have included the length of each condition in the Methods 
sections entitled “Imaging parameters and preprocessing” (p21-22) for both the HCP and PNC 
data sets. To further explore the potential effects of condition duration on model performance, 
several additional analyses were performed. First, condition duration was correlated with model 
performance. For the HCP data, longer conditions yielded models with significantly worse 
performance (r = -0.78, P < 0.05), but this effect was dominated by the rest runs (correlation of 
duration and model performance for only task runs: r = 0.23, P = 0.6). For the PNC data, longer 
conditions yielded models with significantly better performance (r = 0.999, P < 0.05). That task-
based models outperformed rest-based models both when task runs were longer than rest runs 
(PNC) and when task runs were shorter than rest runs (HCP) suggests that this effect is not 
driven by condition duration. However, to further explore this potential confound, time courses 
from all conditions within each data set were truncated to include the same number of frames as 
the shortest condition (HCP: 176 frames; PNC: 124 frames). Connectivity matrices were 
recalculated and submitted to the CPM pipeline; the pattern of results was largely unchanged 
(i.e., task-based models outperformed rest-based models, with the gambling task yielding the 
best-performing model in the HCP data, and the WM task yielding the best-performing model in 
the PNC data). These analyses are described briefly in Results (Investigation of potential 
confounds, p8) and more extensively in Methods (Effects of condition duration, p26-27), and 
corresponding results (100r2) are presented in Supplementary Table 6 (reproduced below). 



Task Truncated time courses 

H
C

P 

Gam 13.8 
R1 2.5 
R2 0 

Lang 8.2 
Mot 8.9 
Rel 4.5 
Soc 5.7 
WM 5.9 
Emo 9.8 

PN
C

 WM 8.8 
Emo 7.7 
Rest 3.9 

Much rides on the claims that there are convincing differences across tasks in trait 
predictiveness. The statement at the bottom of p. 6 that “certain tasks yielding better 
predictions than others” may be technically correct, but it appears to rest on one leg: HCP 
gambling is better than relational tasks. While this one contrast appears to be highly 
significant, it is critical to know how general this is. At this place in the ms, the conclusion 
seems overstated. 

Our intention here was to demonstrate two points: task-based models outperformed rest-based 
models, and not all task-based models performed equally well. To avoid the many comparisons 
that would result from exhaustive comparison of each model pair, we chose to demonstrate the 
first point by comparing only the worst-performing task-based models and the best-performing 
rest-based model, and the second point by comparing only the best- and worst-performing task-
based models in each data set. However, we appreciate that this approach is confusing, and may 
not adequately demonstrate these two points. In the revised manuscript, we have chosen to focus 
on the difference between task- and rest-based models’ performance, and to this end, have 
replaced these analyses with a Mann-Whitney U test comparing all task-based models to all rest-
based models (pooled across both data sets). This clearly demonstrates that task-based models 
significantly outperformed rest-based models. These results are described on page 6 (“In both 
data sets, some tasks yielded better gF predictions than others, but in all cases, task-based models 
outperformed rest-based models (rank sum = 71, two-sided P = 0.018, Mann-Whitney U test).”), 
and this revised approach is described in Methods (Cognitive Prediction, p24). 

4) The sex differences illustrated in Fig. 3 are fascinating and appropriately come later in
the presentation. However, the scatterplots in Fig. 1b-d and f-h offer an intriguing
opportunity to plot M vs F subjects in different colors (e.g., red, green, and yellow where
they overlap). This might prove to be quite informative without taking up additional figure
space; discussion of the sex differences could still be postponed to later in the text.

The colors of the points on the scatterplots in Figure 1 have been colored by sex (red for females, 
and blue for males). For clarity given the sheer number of subjects and the broad regions of 
overlap, we chose to use only two colors and increase the transparency of all points, but we 



welcome additional suggestions about using a third color, should the reviewer feel that this 
would add helpful information to the figure. 

5) p. 7. Another possible control relates to whether the results depend specifically on use of
regressing “global” signals (gray and white matter plus CSF; cf. Methods, p. 19). This step
forces a zero-mean correlation and is controversial in the field. In the Shen (2017) paper
the authors note in passing that there are alternative approaches such as partial correlation
and ICA-based spatial denoising (e.g., Smith et al, NN 2015). Ideally, the authors would be
able to run partial correlation for at least some of their tests to see if the results differ
markedly. At a minimum they should justify their choices and note these potential
confounds.

Given evidence that global signal regression (GSR) effectively reduces motion artifact in fMRI6, 
we expected model performance to be improved by the inclusion of GSR in our preprocessing 
pipeline. Nevertheless, we appreciate the controversy surrounding the use of GSR; the most 
straightforward way to address the impact of this preprocessing choice on functional connectivity 
patterns and resulting CPM results is to repeat our main analyses using data that have not been 
subjected to GSR. We did so with the HCP data and found, as expected, that overall model 
performance decreased, but task-based models still outperformed rest-based models. This 
analysis is described in Methods (Effects of global signal regression, p27); results (100r2) are 
summarized in Results (Investigation of potential confounds, p9) and presented in full in 
Supplementary Table 8, reproduced below: 

Feature-selection threshold 
Task P < 0.01 (n = 514) P < 0.005 (n = 514) P < 0.001 (n = 514) 

H
C

P 

Gam 3.0 3.4 3.8 
R1 1.4 1.6 1.6 
R2 1.2 1.6 1.9 

Lang 4.4 4.8 5.5 
Mot 2.7 3.0 4.0 
Rel 3.1 3.6 4.2 
Soc 4.3 4.8 5.9 
WM 3.4 3.8 4.2 
Emo 3.5 2.9 2.8 

We share this reviewer’s interest in partial correlation-based calculation of functional 
connectivity, not only because these approaches obviate the need for GSR, but also because they 
offer a data-driven method to more directly7 and sensitively8 measure connectivity between each 
node pair. To investigate the effects of connectivity estimation method on the main findings 
reported in this manuscript, we recalculated connectivity matrices using partial, rather than full, 
correlation. That is, we calculated the partial correlation between the mean time courses of every 
node pair, computed without GSR, such that each entry in the resulting connectivity matrix 
reflects the functional connectivity between the given node pair, controlling for all other nodes’ 
mean time courses.  



While partial correlation-based functional connectivity measures have been compellingly 
validated8, we note that in many cases, including several of the conditions in these data sets, 
there are fewer observations (i.e., time points) than nodes. In such cases, regularization is 
required to estimate partial correlation matrices, which involves the selection of a tuning 
parameter that controls sparsity, or the degree of regularization. While this parameter is often 
selected empirically, the appropriate degree of regularization likely depends on the particularities 
of a given data set, and results have been found to vary substantially as this parameter is varied9. 
To our knowledge, there is as yet no standardized method for selection of this parameter, and a 
thorough exploration of this issue is beyond the scope of the current work; to avoid the potential 
pitfalls of arbitrary parameterization, we chose to calculate partial correlation-based functional 
connectivity only for those HCP conditions that yield full-rank time-by-node matrices (language 
task, motor task, social task, WM task, rest1, and rest2). Given the range in condition length and 
the sensitivity of partial correlation to data quantity, we truncated all time courses to the length 
of the shortest included condition (274 time points). We note that this number of time points is 
only slightly greater than the number of included nodes, which is likely to cause instabilities in 
results9. Further, to our knowledge, the use of partial correlation-based approaches to calculate 
task-based functional connectivity remains relatively unexplored. Given these concerns about the 
approach, we predicted that results would be noisy and unstable, and found this to be the case. 
These results (100r2) are presented below: 

Feature-selection threshold 
Task P < 0.01 (n = 514) P < 0.005 (n = 514) P < 0.001 (n = 514) 

H
C

P 

R1 0 9.3 7.3 
R2 0 0 2.0 

Lang 0 0 0 
Mot 3.1 0 3.3 
Soc 1.2 0 1.6 
WM 0 0 1.7 

6) Edge overlap. Fig. 2 provides a data-rich comparison of edge overlap and node degree
within and across models and cohorts. The edge overlap (Fig. 2a) is generally quite modest
(~12% is the highest and most are much lower). Of course, there is inherently a lot of noise
in these datasets, but it leaves this reviewer uneasy that the spatial patterns of connectivity
appear to be pretty low in reproducibility. The edge overlap is a binary measure that
entails thresholding and discounting of edge weights. The alternative of estimating overlap
using weighted measures without thresholding might in principle have greater sensitivity
and should at least be considered and mentioned.

To examine the potential impact of thresholding on quantification of model overlap, we 
performed an additional analysis in which we compared all edges’ correlations with gF across 
conditions. That is, for each condition, we correlated each edge’s strengths across all subjects 
with gF scores, yielding a single correlation coefficient for the given edge in that condition. We 
repeated this procedure for all edges and all conditions, yielding a 1xe vector of correlation 
coefficients for each condition, where e is the total number of edges. We then correlated these 
vectors to quantify the similarity of gF-related edge distributions across conditions. PNC 



correlations ranged from r = 0.37-0.51, HCP from r = 0.25-0.32, and cross-data set (within 
condition) from r = 0.12-0.19, and the pattern of results was similar to that identified in the 
overlap analyses (i.e., task-based models demonstrated the greatest similarity both within and 
between data sets). These results are presented in Supplementary Figure 5 (reproduced below), 
and the approach is described in Methods (Analysis of anatomic distribution of model edges, 
p27-28). We note that, by both accounts, this overlap is substantial (particularly given that there 
are over 30,000 unique edges in the brain), and far greater than would be expected by chance, 
highlighting the existence of core gF-related circuitry that is differentially perturbed by different 
tasks. 

Supplementary Figure 5. Similarity of edges’ correlations with gF between 
conditions, demonstrating substantial overlap between models both within data 
sets (PNC data: upper triangle; HCP data: bottom triangle) and between data 
sets (main diagonal). Values indicate Spearman’s correlation coefficients. 

7) Node degree overlap. A striking observation (p. 9 and Fig. 2 b, c) is that CN and AN
degree vectors are highly correlated. A potential confound is that CNR/SNR is regionally
variable and dependent on the head coil and pulse sequence. Higher CNR regions should
presumably tend to have higher degree in general, related to data acquisition
characteristics, not just neurobiological factors. This issue warrants careful consideration.

This is an interesting and important potential issue that we have investigated in several ways. 
First, we leveraged previous analyses of temporal SNR (tSNR) in the HCP data10, and compared 
the resulting tSNR map (which was reportedly similar across the various tasks) to our maps of 
node degree. By visual inspection, the maps are quite distinct (e.g., inferior temporal (IT) cortex 
has low tSNR; in contrast, several hubs are found in IT cortex). Further, if SNR were driving 
node degree, degree correlation across conditions (Fig. 2b) would be expected to be quite high.  



Comparison of HCP node degree (bottom; adapted from Fig. 2c) to a representative HCP 
tSNR map (top; adapted from Barch, D. M. et al. Function in the human connectome: task-
fMRI and individual differences in behavior. NeuroImage 80, 169–189 (2013)). [Editorial 
Note: This figure is reproduced with permissions from Elsevier (2013). All rights 
reserved.] 

Next, as a proxy for SNR at the node level, we computed mean node reliability (i.e., the mean of 
reliability measured for every edge incident to the given node) in the HCP data4 and calculated 
the Spearman’s correlation between this measure and node degree for conditions shared across 
data sets (using a feature-selection threshold of P < 0.01 to facilitate comparison to Fig. 2b,c). 
The results are presented below, and demonstrate that degree was not significantly correlated 
with mean node reliability in any condition; insofar as reliability reflects SNR, this further 
suggests that node degree is not driven by SNR. 

Correlated network Anti-correlated network 
Working memory r = 0.106, P = 0.09 r = 0.035, P = 0.57 
Emotion r = 0.020, P = 0.74 r = 0.117, P = 0.06 
Rest 1 r = 0.052, P = 0.40 r = -0.022, P = 0.72 

8) Sex differences. p. 12, Fig. 3, and Table 2. Some of the sex differences for different tasks 
are impressively large, highly significant, and consistent to some degree across HCP and 
PNC cohorts. However, the M vs F difference for WM is very large for HCP but quite 
modest for PNC (and not stated as to whether the latter difference is significant). Similarly, 
the M vs F difference for emotion is large for the PNC cohort (but significance not stated) 
whereas there is hardly any difference for the HCP cohort.

We thank the reviewer for pointing out this important point and apologize for any confusion 
caused by the presentation of these results. The primary goal of these analyses was to investigate, 
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among the conditions shared across data sets, whether the condition that yields the best gF 
predictions varies by sex. Overall, we found that CPMs performed better in HCP males than in 
HCP females (𝑟(males) = 0.32 versus 𝑟(females) = 0.22). This main effect caused scaling 
differences that complicate the comparison of model performance for a given task between the 
sex groups (e.g., WM task-based model performance in males and females, as this reviewer 
suggests). Instead of pursuing this comparison, then, we chose to focus on the interaction 
between sex and condition (i.e., does the comparison between WM and emotion task-based 
models differ by sex?) to demonstrate that, for each group, a different task best perturbs circuitry 
relevant to the cognitive measure of interest.  
 
On p. 12, para. 3, the authors report ‘preliminary evidence for a sex-by-age interaction’ 
However, the data in Table 2 appear distinctly underwhelming and not even a consistent 
trend for females, and the claims about ‘outperforming’ noted in the table legend should 
either be tempered or buttressed by p-values. This paragraph and table should perhaps be 
dropped or relegated to SI.  
 
Given our shared concerns about the preliminary and inconsistent sex-by-age interaction in 
model performance, these results have been removed from the manuscript. 
 
9) Somewhere in the discussion the authors should discuss whether some of the lower 
variance explained for rest be related to differences in attention or arousal states, as the 
rest state may associated with reduced arousal, drowsiness, and even overt sleep for part of 
the scan in some/many subjects.  
 
We see differences in arousal and attention during rest to be important examples of the 
unconstrained nature of the resting “state,” and have added a brief exploration of this topic to the 
Discussion (p16):  
 

That task-based models outperform rest-based models likely reflects, in large 
part, the unconstrained nature of the resting state11. Functional connectivity 
variability is greater during rest than tasks, a finding that has been suggested to 
demonstrate increased mind wandering at rest12; recent experiences and brain 
states significantly alter patterns of resting-state functional connectivity13–15; and 
in contrast to the task-relevant16, distinct patterns of connectivity identified during 
task states, resting-state connectivity patterns are better characterized by the joint 
expression of many states17. In short, rest is messy, and patterns of functional 
connectivity derived from it reflect many influences – arousal, attention, high-
level processes associated with conscious thought – that remain difficult to 
measure. Conversely, tasks offer a controlled manipulation of brain state that 
taps into relevant circuitry16; any individual differences in this circuitry will be 
amplified, facilitating the prediction of related traits. 

 
10) Limitations (pp. 17-18), parcellation (p. 20) and parcellation resolution (pp. 23-24). 
The authors use a 268-node whole-brain parcellation (‘functional atlas’) from Shen et al. 
(2013), which is based on a volume-based alignment across individuals. For the PNC data, 
they compare results for a 600-node parcellation (Craddock et al., 2012) and find similar 



results. Their implicit conclusion that the choice of parcellation and of alignment method 
doesn’t matter much is overstated. Methods that achieve more accurate alignment of 
functional subdivisions (e.g., the areal-feature-based alignment for cortical structures in 
the publicly released HCP data) and the associated multimodal parcellation (Glasser et al, 
2016) might well yield better predictive power. This issue warrants mention so that readers 
are aware that alignment quality and parcellation accuracy are important issues that may 
impact and eventually contribute to improved CPM performance.  
 
We agree that improved registration and parcellation may, in turn, improve model performance. 
We clarify in Results (Investigation of potential confounds, p8) and Methods (Effects of 
parcellation resolution and scan coverage, p26) that the comparison of results generated using the 
268-node parcellation to results generated using the 600-node parcellation is solely an 
investigation of the potential effect of parcellation resolution on model performance. We have 
also added the following paragraph to the Discussion (p20): 
 

Further, while the application of a 600-node parcellation to the PNC data 
suggested that parcellation resolution does not substantially affect model 
performance, other improvements in registration and parcellation – such as the 
use of individualized parcellations18, and of areal features for alignment and 
parcellation19 – may improve the delineation of functionally homogeneous 
regions, as recently demonstrated in the HCP data19, and correspondingly 
improve CPM performance. The impact of alignment and parcellation 
approaches on predictive model performance thus remains an important area for 
future investigation. 

 
11) Image reconstruction confound. p. 23. Another HCP-specific confound that needs to be 
addressed (but seems to have been overlooked) is that early in the HCP the fMRI image 
reconstruction was changed to an improved method. 
See https://wiki.humanconnectome.org/display/PublicData/Ramifications+of+Image+Reco
nstruction+Version+Differences. It should be straightforward to regress out this confound. 
 
We thank the reviewer for pointing out this important potential confound that we indeed 
overlooked. To account for this difference in reconstruction algorithm, we performed three 
additional analyses (Results, Investigation of potential confounds, p7 and Methods, Effects of 
HCP reconstruction method and quality control issues, p26). First, we excluded those subjects 
for whom the r227 algorithm was not available, leaving 402 subjects on whom to perform the 
main CPM analyses. Next, we incorporated algorithm version into the feature-selection (via 
partial correlation) and model building (via multilinear regression) steps. These analyses are 
analogous to our exploration of the effects of head motion, sex, and gF measurement technique. 
CPM results were not substantially affected by these efforts to account for image reconstruction 
method; given the substantial number of subjects affected and the apparent lack of impact on our 
main results, we chose not to exclude subjects from analyses reported in the main text on the 
basis of reconstruction algorithm, but present these results in Supplementary Table 3. As an 
additional control, we re-ran the main CPM analyses after excluding all HCP subjects (40 in 
total) with QC Issues B, C, and D (for a description of these issues, see Methods, Effects of HCP 
reconstruction method and quality control issues, p26) or without gradient-recalled echo field 



maps. Results (100r2) were largely unchanged, and are presented in Supplementary Table 3, 
reproduced below: 
 

 Task No QC issues (n 
= 475) 

r227 only (n = 
402) 

Partial 
correlation 

Multilinear 
regression 

H
C

P 

Gam 14.0 10.2 11.3 12.6 
R1 2.6 1.9 3.2 2.8 
R2 0 0 0 0 

Lang 9.3 7.7 8.4 8.5 
Mot 8.2 6.5 9.0 8.6 
Rel 7.3 2.9 4.8 3.3 
Soc 6.2 6.0 6.1 6.2 
WM 11.1 11.6 10.6 10.5 
Emo 9.0 6.8 10.8 9.5 

 
Minor comments. 
 
p. 3, end of para. 1. “…ideal…” is not an ‘ideal’ word. “Attractive” would be better. 
 
The word “ideal” has been replaced with the phrase “well suited.” 
 
Fig. 1a and 3a. Please rotate the text to oblique or vertical and increase font size along x 
axis for legibility. On Fig. 1e, simply increase font size. 
 
The x axis labels on Figs. 1a and 3a have been rotated, and the font enlarged. The x axis labels 
on Figs. 1e and 3c have been enlarged. 
 
Fig. 1i: The unfilled bars (WM to rest) are barely visible. Use a fill shading that increases 
visibility while preserving contrast with Rest to WM bars. 
 
The fill has been changed to light gray to ensure that the legend is still clear while enhancing 
visibility of the bars. 
 
p. 7, para. 2, pp. 20-21, and Table S2: Clarify whether the two versions of the PMAT test 
refer to just the PNC cohort. Was one of the PNC versions identical to the HCP PMAT24 
version? 
 
It has been clarified that the two versions of the Penn Matrix Reasoning Test used to measure 
Pmat apply only to the PNC data in Results (p7; “because two versions of the Penn Matrix 
Reasoning Test were used to measure gF in the PNC…”), and a “PNC” label has been added to 
Supplementary Table 2. The differences in gF measures used in each data set have also been 
clarified in Methods (Cognitive prediction, p23):  
 

In both data sets, fluid intelligence was quantified using matrix reasoning tests. In 
the HCP data set, a 24-item version of the Penn Progressive Matrices test was 
used; this test is an abbreviated form of Raven’s standard progressive matrices20. 



In the PNC data set, 24- and 18-item versions of the Penn Matrix Reasoning Test 
were used21,22. 

 
Fig. 2a, b. Can’t read units on scales. Please enlarge font. 
 
The colorbar font has been enlarged. 
 
p. 11 para. 2. The FC measure is not directed, so please use ‘patterns of connectivity with’ 
rather than ‘…..to’ here and elsewhere. 
 
“To” has been replaced with “with” when discussing “patterns of connectivity,” “connections,” 
and regions that are “connected” with other regions.  
 
Methods. Please state key parameters for HCP and PNC scans: Spatial resolution, 
multiband factor, TR, scan durations, to spare readers from needing to look these up. 
 
Key imaging parameters have been added to Methods for both the HCP data set (Imaging 
parameters and preprocessing, p21: “In brief, all fMRI data were acquired on a 3T Siemens 
Skyra using a slice-accelerated, multiband, gradient-echo, echo planar imaging (EPI) sequence 
(TR = 720 ms, TE = 33.1 ms, flip angle = 52 degrees, resolution = 2.0 mm3, multiband factor = 
8)”) and the PNC data set (Imaging parameters and preprocessing, p22: “In brief, all fMRI data 
were acquired on a 3T Siemens TIM Trio using a multi-slice, gradient-echo EPI sequence (TR = 
3,000 ms, TE = 32 ms, flip angle = 90 degrees, resolution = 3 mm3)”). Scan durations for each 
condition have also been added to these sections. 
 
Reviewer #2 (Remarks to the Author): 
 
“Task-induced brain state manipulation improves prediction of individual traits” is an 
extension of the authors’ previously published study on resting state fMRI fingerprints. 
Here they examine whether models built from task fMRI data perform better than those 
built from resting-state fMRI data. This a nice direction, but neither the results nor 
approach is novel, as several previous studies have examined this question (Cole et al and 
others).  
 
While others have investigated the group-level similarities, differences, and transitions23–30 
among “intrinsic” and task-related patterns of functional connectivity, to our knowledge, the few 
studies that have used task-based functional connectivity for prediction have focused on the 
prediction of state variables directly related to the given task (e.g., 31,32). Our work demonstrates 
not only the existence of meaningful differences between rest- and task-based functional 
connectivity patterns, but also the utility of these differences to reveal brain-behavior 
relationships (see Introduction, p4 and Discussion, p15). That is, we show that task data can be 
used to improve prediction of stable traits, not only task-relevant states, suggesting an 
opportunity to use specific tasks to make meaningful behavioral and clinical predictions about 
individuals, and to deepen our understanding of the neural bases of such individual traits. These 
results thus provide strong motivation for a shift from resting-state functional connectivity to 



task-based functional connectivity for the study of brain-behavior relationships, using 
thoughtfully selected tasks appropriate for the traits of interest. 
 
Further, this study has several other major limitations: it is not theoretically motivated, 
tests no neural hypotheses, and the findings are incremental and inconsistent with respect 
to a previous publication from the authors (Finn et al., 2015 NN). Surprisingly, findings 
from that study are not discussed, although the authors employed almost exactly the same 
pipeline and investigated the same question “do individual connectivity profiles predict 
fluid intelligence”.  
 
First, this study is intentionally data driven, a choice that permits identification of gF-relevant 
circuitry that would likely not be studied in a hypothesis-driven study (see response to Reviewer 
2, comment 1 below). Second, the findings of this study are consistent with previous work from 
our lab4,5 and others’33,34: a significant amount of variance in gF is explained by gF-relevant 
network strength at rest. We note that the sample used by Finn et al.5 was smaller than the 
sample used in the current study, which likely contributed to better rest-based model 
performance in that study (see response to Reviewer 2, comment 2), but the main finding is 
replicated here. Finally, we emphasize that we applied connectome-based predictive modeling in 
this study not to further develop the pipeline, itself, which has already been extensively 
validated4,5,31,35, but rather to demonstrate a key, generalizable point: cognitive tasks, by taxing 
trait-relevant neural circuitry, amplify individual differences in this circuitry and correspondingly 
permit more complete and robust characterization of brain-behavior relationships. This point has 
been clarified in the manuscript (see Discussion, p15). 
 
Overall, the study is weak and findings generally uninterpretable. Other concerns include:  
 
(1) There is no theoretical justification for using gambling, motor, social, and emotion tasks 
to predict fluid intelligence. Gambling task activation turned out to a strong predictor of 
gF. I wonder what the interpretation and theory here is.  
 
The incentive processing, social cognition, and emotion processing tasks are complex tasks that 
activate broad swaths of the brain10, and it is unsurprising that motor task-based models perform 
relatively well given this task’s robust activation of motor cortices10 and the finding that edges in 
the motor network tend to contribute disproportionately to gF predictive models (e.g., Fig. 2d; 
this is a discovery, we note, that likely would not have been made in a hypothesis-driven study). 
The consistently high performance of the incentive processing, or gambling, task-based model is 
perhaps also unsurprising given the high-level cognitive functions into which this task taps (e.g., 
reward processing, decision-making), the broad distribution of regions (both related and 
unrelated to reward) it activates10,36, and the well-documented individual differences in striatal 
reward response that it elicits10,37. Again, however, given the extensive literature highlighting the 
overlap between intelligence- and working memory-related networks (for a summary of this 
work, see38), a hypothesis-driven study would likely have overlooked the incentive processing 
task, limiting our capacity to identify and understand the most effective perturbations for 
amplification of individual differences in gF-related circuitry. To clarify these points, a statement 
about the complexity of these tasks and the data-driven nature of this work has been added to 
Results (p5). 



 
(2) As in Finn et al., the results demonstrate that connectivity profiles can predict fluid 
intelligence. However, if we compare Finn et al. Fig. 5a with current Fig. 1d, it appears that 
models built from the previous small sample actually outperform those from the larger 
sample used here. This suggests that predictive values of connectivity-features (or the 
effectiveness of the current pipeline) decreases with increasing sample size?  
 
First, we highlight that, despite differences in sample size, feature-selection thresholds, and 
statistical procedures, this study replicates the core finding of several recent studies, including 
that of Finn and colleagues4,5,33: patterns of functional connectivity at rest can be used to predict 
individual measures of gF. That this finding generalizes across large, independent samples with 
different age ranges (i.e., HCP and PNC) is further evidence of its robustness. 
 
Nevertheless, we appreciate that the differences between results in this manuscript and that of 
Finn et al. may at first appear counterintuitive and confusing. These differences are likely 
explained, in large part, by the difference in sample size, as this reviewer suggests. The results of 
Finn et al. were based on a smaller sample (n = 118) than is used in this study (n = 515). 
Overfitting is well known to be more likely and problematic when the number of predictors is 
large and the number of samples, small39, such that a smaller effect in a larger sample often 
reflects a more accurate estimate of the true effect size, rather than a failure to replicate a larger 
effect in a smaller sample. This conclusion – that a larger sample size has allowed us to more 
accurately estimate the percent of gF variance explained by functional connectivity strength in 
gF-related networks – is further supported by the consistency of these results with other recent 
work using patterns of functional connectivity to predict gF4,33. We have revised the Discussion 
(p17-18) to clarify this issue.  
 
Moreover, in Finn et al study, just using features from fronto-parietal networks achieved 
the same performance as using features from the whole brain (Fig. 5a vs. 5c). Although the 
authors did not test if this is the case in the current study, it appears that visuomotor 
regions are more highly predictive of fluid intelligence in the current study (Fig. 2d). Does 
this fit any cognitive theory or models of fluid intelligence? I doubt it.  
 
We apologize for our conflation of the terms “predictive” and “overrepresented” in the 
manuscript, and note here that the goal of the localization analyses (Results, Model features are 
spatially distributed and overlapping, p11-13) was to identify regions that were overrepresented 
in gF-related circuitry; this does not require that these regions and networks be more predictive 
of gF than others, particularly given that we normalized results (i.e., cells in Fig. 2d) by network 
size, such that small networks may contribute few edges in absolute terms, but may be relatively 
overrepresented in a given model. We have replaced the term “predictive” throughout this 
section of the manuscript to clarify this point.  
 
To demonstrate this distinction, we performed a virtual “lesion” analysis, removing from 
connectivity matrices all nodes in motor and visual networks; patterns of model performance 
were largely unchanged, as shown below (results presented as 100r2 for each model): 
 
 



 
  Feature-selection threshold 
 Task P < 0.01 P < 0.005 P < 0.001 

H
C

P 

Gam 11.8 10.7 10.5 
R1 0.6 2.9 3.0 
R2 0 1.1 0 

Lang 9.4 10.3 10.0 
Mot 8.0 8.8 9.4 
Rel 7.2 6.8 6.3 
Soc 7.0 6.1 5.1 
WM 11.0 11.1 10.3 
Emo 6.7 3.7 8.5 

PN
C

 WM 10.1 10.6 12.2 
Emo 5.4 7.0 9.2 
Rest 4.7 4.8 3.6 

 
Further, the finding of widely distributed gF-related networks is consistent with an extensive 
literature documenting the neural underpinnings of gF40–42 and general intelligence38,43–47. The 
overrepresentation of motor and visual regions in predictive models of gF is similarly 
unsurprising as, in most cases, tasks used in the HCP and PNC data sets are visually complex 
and require motor responses10,48. Representations of task strategy, engagement, and performance 
may thus be expected to be found in visual and motor regions, and it is likely that individual 
differences in these processes relate to individual differences in gF. Discussion in the main text 
of how these results fit into previous efforts to characterize the neural underpinnings of 
intelligence has been expanded (Discussion, p18-19). 
 
In sum, our findings are consistent with an extensive literature documenting the distributed 
networks underlying gF and reasonable given the nature of the tasks. This study’s data-driven 
approach has allowed us to look beyond oversimplified neural accounts of gF to interrogate this 
distributed circuitry and access additional insights into meaningful individual differences in it. 
 
(3) Use of a developmental PNC cohort with a large age range is problematic.  
 
It is of course true that there are meaningful differences between the brains of adults and 
children, but these differences make our results all the more compelling. That is, by using such 
different samples, we take external validation to its logical extreme: that a model built in adults 
can be applied to children and adolescents, and vice versa, is a strong endorsement of the 
generalizability of these models and their relative performance (see Discussion, p18). Further, in 
both data sets, task-based models outperformed rest-based models, and emotion task-based 
models outperformed WM task-based models in females while WM task-based models 
outperformed emotion task-based models in males; this replication in independent, very different 
data sets indicates that these results are robust and generalizable. We are excited to present such 
sample-invariant results that can guide future efforts to reveal and study brain-behavior 
relationships in a wide range of populations. 
 



(4) The authors employed a univariate approach to select features using connectivity 
features that show a significant correlation with fluid intelligence. This is highly circular 
and problematic, and a likely reason for the inflated findings in Finn et al. This is now 
quite problematic as the current results suggest a failure to replicate original Finn et al. 
findings.  
 
The use of a single measure (here, gF) for feature selection and prediction is neither circular nor 
problematic in our analyses because we use cross-validation to ensure that data used for training 
and testing the models are kept strictly separate (see Discussion, p17). That is, features are 
selected and each model is built using gF scores and edge strengths in n – 1 subjects; this model 
is then tested in the unseen nth subject. This standard, leave-one-out cross-validation approach to 
prediction is described in Methods (Cognitive prediction, p23-24). This separation is even more 
conservative – and the demonstration of generalizability more compelling49 – in the cross-data 
set analyses (Methods, p25), which show that models, particularly those built using task data, 
generalize from one data set to another, entirely independent data set (Results, p10-11). These 
procedures explicitly avoid the “double-dipping”50 that could inflate findings, as this reviewer 
suggests, and thus do not explain differences between these results and those presented by Finn 
et al.5 We note, again, that this work does replicate the main prediction results of Finn et al., with 
several sample and analysis differences that likely account for decreased rest-based model 
performance in this work (see response to Reviewer 2, comment 2). 
 
Reviewer #3 (Remarks to the Author): 
 
Review of: Task-induced brain state manipulation improves prediction of individual traits 
 
I read this article with great interest not least because I agree strongly with the central 
premise, which is that dynamic/task active connectivity should provide a better predictor of 
cognitive ability than resting state connectivity. This notion makes a great deal of sense, 
given that we see patterns of large-scale network activity/coherences during the 
performance of g-loaded tasks. The analyses and results have a number of important 
strength, however, there are also a number of key points that I believe if addressed would 
greatly strengthen the article. 
 
1) The authors state that “By considering task-induced brain state and sex, the best-
performing model explains over 20% of the variance in fluid intelligence scores, as 
compared to less than 5% of variance explained by rest-based models built using the whole 
sample.” 
 
This is an intriguing result, particularly given the WM/emotional task dissociation. The 
replication of the task*gender interaction across the two studies is a strength. My main 
concern though is that the difference in variance explained when accounting for gender 
could relate to differences in cohort size. By definition, there must be fewer subjects in the 
trained datasets for the gender analyses, i.e., because the cohort has been split into two 
groups. Is it not the case that they will be more prone to overfit, and therefore, could give 
the illusion of explaining more variance? To be truly convincing, the trained model would 



really need to be validated by application to a further dataset. I also was curious why only 
gender was examined as opposed to other factors (handedness, age, education level, etc?) 
 
We chose to examine sex because it is a salient group feature that has received much attention in 
the human neuroimaging – and, more specifically, functional connectivity – literature. Sex was 
also a sound choice because it provides a natural measure for dividing the subject pool into only 
two subgroups, as opposed to other features, such as age or education level, that don’t provide 
such clean separation, or that separate the sample into even smaller subgroups. We present these 
sex differences both because we believe them to be an important indication that the neural 
representations of fluid intelligence vary by sex, and – perhaps even more importantly – because 
they provide proof of the principle that predictive modeling may be most successful when 
appropriate models are defined for a given group. Finally, the sex difference work demonstrates 
that brain state manipulations may not all have the same efficacy for every group. A more 
complete characterization of the features by which groups should be defined to maximize model 
performance is certainly of interest, as is a method to identify such features in a data-driven 
manner, and we consider these to be important questions for future research (see Discussion, 
p20).  
 
As discussed elsewhere in this response, we share this reviewer’s concern about overfitting, and 
recognize that any decrease in sample size increases the risk of overfitting39, but we offer several 
key observations that mitigate this concern in the sex differences analysis. First, even after 
splitting the samples by sex, the groups are still quite large (each includes over 200 subjects). 
Second, with greater overfitting, average model performance would be expected to improve; this 
is not the case when the sample is split by sex (HCP whole sample mean r2 = 7.1% versus HCP 
split sample mean r2 = 6.4%; PNC whole sample mean r2 = 8.7% versus PNC split sample mean 
r2 = 6.8%). This suggests that overfitting is not more problematic in the sex differences analysis 
than in the whole-sample analysis. Finally, this analysis demonstrates a meaningful condition-
by-sex interaction, but we make no claims about absolute model performance (see response to 
Reviewer 1, comment 8). If differences in model performance when the sample is split by sex 
were attributable to overfitting, alone, all models would demonstrate comparable changes in 
performance, as there is no reason to expect that overfitting would affect one condition more 
than others, and the pattern of model performance across conditions would be preserved and 
similar in males and females. This is not the case (i.e., the relative performance of emotion and 
WM task-based models in males is opposite that in females), further evidence that the sex 
difference in which brain state most improves gF prediction is not the product of overfitting. We 
do, however, agree with this reviewer that it will be productive and interesting to explore this 
effect in additional data sets, and we look forward to doing so in the future. 
 
2) The main finding is that “brain state can be manipulated to better reveal brain-behavior 
relationships, and that identifying and inducing the right brain state in a given group can 
improve trait prediction”. 
 
This seems sensible to me, g-loaded tasks involve activity/coherence across certain 
networks, it makes sense to examine those networks when they are expressing those 
active/synchronised states. The fact that “Results generalize across conditions and two 



large, independent datasets” is also a strength - the importance of reproducibility is finally 
coming to the fore in the imaging field at the moment, which is a good thing.  
 
We thank the reviewer for these supportive comments. 
 
A concern though, is how well balanced this comparison actually is? Specifically, were the 
rest and task acquisitions the same duration? I.e., did they have the same acquisition 
parameters, and were there the same type and number of EPI scans for task and rest? This 
is an important point to consider. Longer acquisition will allow for a more robust estimate 
of correlation strength between each pair of nodes. this results in a connectivity matrix that 
has greater signal vs noise. One should ensure that the rest vs task difference is not simply 
a consequence of differences in the reliability of these estimates. 
 
Methods (Imaging parameters and preprocessing, p21-22) have been revised to clarify that all 
fMRI data in a given data set were acquired using the same imaging protocol, and relevant 
imaging parameters48,51 have been added to Methods (Imaging parameters and preprocessing, 
p21-22). Condition duration did differ for each condition; lengths of each condition have been 
added to Methods (p21-22). In the HCP data, rest runs were substantially longer than task runs 
(WM, 5:01; gambling, 3:12; motor, 3:34; language, 3:57; social, 3:27; relational, 2:56; emotion, 
2:16; rest, 14:33), while in the PNC data, the opposite was true (WM, 11:39; emotion, 10:36; 
rest, 6:18). We appreciate that condition duration may affect the reliability of functional 
connectivity measures and, in turn, the success of predictive modeling, and note that, for this 
reason, the poor performance of HCP rest-based models is particularly impressive given the 
longer duration of the rest runs (Discussion, p15). To further investigate the potential effects of 
condition duration on model performance, we performed several additional analyses, described 
in detail in our response to Reviewer 1, comment 3; we found no clear relationship between 
condition duration and resulting model performance, and task-based models still outperformed 
rest-based models after connectivity matrices were recalculated using the same number of frames 
from each condition. In the manuscript, these analyses are described in Methods (Effects of 
condition duration, p26-27), and corresponding results are presented in Supplementary Table 6 
and summarized in Results (Investigation of potential confounds, p8). We also investigated a 
potential relationship between reliability at the node level and model node degree, and found no 
significant relationship (see response to Reviewer 1, comment 7). 
 
3) Relatedly to the above two points, when stating how much variance is actually explained, 
I would have been more convinced if the headline value was for a cross validation. by this, I 
mean where the model is trained on HCP data for one task, and then validated with more 
HCP data for that same task. I don’t question that there is a connectivity-g relationship, 
but without such a step, the headline estimates of actual variance explained are hard to 
interpret (I note, that this is a criticism that can be levelled at a number of other high 
impact papers, and the authors at least apply a cross validation across studies, albeit with 
somewhat different tasks/acquisitions).  
 
We agree that cross-validation is critical to avoid overfitting and stringently test model 
generalizability, and clarify that, for this reason, we used a leave-one-out cross-validation 
approach when training and testing all CPM models, with the exception of the cross-data set 



analysis, such that data used for training and testing were always kept strictly separate. This 
ensures that all prediction results presented in the manuscript are cross-validated. These methods 
are described in full in Methods (Cognitive prediction, p23-24 and Validation of the models, 
p24-25). We also recognize the benefits and potential pitfalls of leave-one-out and k-fold cross-
validation approaches, and have re-run our analyses using k-fold cross-validation for model 
training and testing. This analysis and corresponding results are discussed below (see response to 
Reviewer 3, comment 8). 
 
4) The comparison of rest vs. task seems well balanced and sensible (assuming the above 
condition regarding number of TRs is met). A question is whether the authors also looked 
at measures taken of dynamic connectivity relative to steady state (PPI for example), or 
were the average taken across both rest and task for the task acquisitions? In a way it is 
critical to use the simple correlational as opposed to PPI approach, as this is more balanced 
across task and rest conditions, making them more comparable. Nonetheless, an obvious 
prediction of the authors hypothesis is that the PPI measures (increased connectivity 
during task vs rest) should in fact give the best possible explanation of g.  
 
We apologize for the confusion regarding our approach and note that we chose to use the simple 
correlational approach – that is, correlating time courses across entire task runs without 
accounting for task design – for several reasons: to make models derived from task and rest 
conditions more comparable, as suggested by this reviewer; to permit identification of stable, 
core gF-related circuitry in all conditions (including at rest; PPI would ignore any such 
connections that fail to meaningfully change across conditions, i.e., connections that are part of 
an “intrinsic” functional architecture23); and to treat each task as a separate and continuous brain 
state.  
 
We are also interested in the performance of PPI measures, with the caveat, as noted above, that 
such measures may fail to capture stable gF-related circuitry; nevertheless, this remains an 
important question for future work, and we look forward to investigating it further to more 
comprehensively and mechanistically characterize task-induced brain states. 
 
5) I was somewhat confused by the description of supplementary analyses with more robust 
compensation for movement artefacts. Does this mean that movement still had a 
component in the connectivity-g relationship for the primary analyses as reported in the 
main text? if so, then really these supplementary analyses should be presented as the main 
analyses, and headline statistics altered accordingly. If not, and the minimal data cleaning 
pipeline was sufficient, then are these not redundant? 
 
While we employed a conservative threshold for motion exclusion in both data sets (mean frame-
to-frame displacement less than 0.1 mm, and maximum frame-to-frame displacement less than 
0.15 mm), gF remained correlated with motion in 3 out of 21 runs (Methods, p21-22). Given 
this, as well as the finding that model predictions were in many cases correlated with mean 
frame-to-frame displacement, we were concerned that motion could be confounding the primary 
analyses, as this reviewer suggests. To ensure that this was not the case, we undertook several 
additional analyses (incorporation of mean frame-to-frame displacement into feature-selection 
and model building steps; Methods, Effects of head motion, p25-26). We predicted that these 



analyses would be redundant, indicating that the variance in true and predicted gF that can be 
explained by motion is relatively non-overlapping with the variance in these measures explained 
by network strength. This was indeed the case, as model performance was not substantially 
changed by these additional analyses (Supplementary Table 4). In sum, we agree that these 
analyses are redundant, but feel that this redundancy is important to highlight, as it addresses 
concerns that models may be based on or predictive of participant motion, rather than gF; that is, 
these supplementary analyses indicate that motion is not a meaningful confound in our primary 
analyses.  
 
6) The observation that models trained on rest data provide stronger prediction of ‘g’ when 
applied to task data seems to be a strength - although I was not clear on how generally / 
consistently this was the case - it would be good to clarify this in the text. Also, to clarify 
that the task and rest acquisitions actually have the same amount of data as outlined 
above.  
 
We have clarified in the text that in ten out of twelve tested cases, models trained on rest data 
and tested on WM task data outperformed models trained and tested on rest data:  
 

In fact, in all but 2 out of 12 tested cases, the rest-based models performed better 
when applied to the WM data than when applied to the rest data on which they 
were built (Results, p10). 

 
See responses to Reviewer 3, comment 2 and Reviewer 1, comment 3 for a discussion of the 
relationship between condition duration and model performance. 
 
7) Repeating analyses with different parcellation resolutions is a strength of the paper.  
 
We thank the reviewer for this supportive comment. 
 
8) It is surprising that leave-one-out approach was applied in such a large dataset - the gold 
standard would be to use cross validation with train and test sub-groups. 
 
We appreciate the bias-variance trade-off inherent in selecting a cross-validation approach39; to 
empirically address this concern, we re-ran main analyses using k-fold cross-validation, with k = 
10, for both the HCP and PNC data sets. This analysis approach is described in Methods (Effects 
of cross-validation method, p27); corresponding results (100r2) are presented in Supplementary 
Table 7, reproduced below, and summarized in Results (Investigation of potential confounds, 
p8). Of note, these results demonstrate no substantial differences in absolute or relative model 
performance compared to models generated using a leave-one-out cross-validation approach. 
 
 
 
 
 
 
 



  Feature-selection threshold 
 Task P < 0.01 P < 0.005 P < 0.001 

H
C

P 
Gam 13.0 12.9 13.0 
R1 3.4 4.2 4.9 
R2 1.0 0.4 0 

Lang 8.1 8.2 8.4 
Mot 8.3 8.2 8.3 
Rel 4.8 4.8 4.8 
Soc 8.7 8.6 6.8 
WM 11.4 11.3 10.0 
Emo 6.7 6.9 7.0 

PN
C

 WM 10.4 11.0 10.8 
Emo 8.8 9.3 9.7 
Rest 4.4 4.3 3.9 

 
9) I was unclear whether the number of edges that were feature selected in the male and 
female populations was balanced? Obviously any differences in this would lead to a 
problem, whereby more edges gives the model more degrees of freedom for fitting (and 
over-fitting) the data. 
 
We thank the reviewer for this important question, and note that it touches upon several points of 
great interest to us. 
 
First, we demonstrate in the main analyses that P value-based thresholds and sparsity thresholds 
for feature-selection yield models with comparable absolute and relative performance 
(Supplementary Table 1). Additionally, when considering models generated using P value-based 
feature-selection thresholds, we find that better-performing models include more edges 
(Supplementary Fig. 2), a finding that lends further support to the idea that task-induced brain 
states improve gF prediction by amplifying and revealing individual differences in patterns of 
functional connectivity, such that more edges are significantly related to gF and thus leveraged 
for its prediction. We therefore suggest that allowing models to include varying numbers of 
edges is informative, and present analyses using P value-based thresholds in the manuscript and 
figures (for both whole-sample and sex differences analyses).  
 
As discussed above, we are generally concerned and careful about potential overfitting, but 
because models are trained and tested on summary statistics – that is, on unweighted sums of 
selected edges’ strengths – the number of edges included in the model should not change the 
model’s degrees of freedom or the likelihood of overfitting. 
 
Nevertheless, we believe that it is important to employ sparsity thresholds as a control to ensure 
that the number of edges included in the models does not have any unforeseen effects on model 
performance. It is for this reason that we used both P value-based and sparsity thresholds in the 
main analyses, and in the same spirit, we re-ran CPM on males and females separately using 
sparsity, rather than P value-based, thresholds. Below, we present results (i.e., 100r2) for the 
sparsity thresholds that select numbers of edges closest to those selected using a feature-selection 



threshold of P < 0.01. For comparison, we also present results of models generated using a 
feature-selection threshold of P < 0.01 (as presented in the manuscript), and note that the same 
trends hold (i.e., WM task-based models outperformed emotion task-based models in males, 
while the opposite was true in females): 
 
  P < 0.01 Top 1% Top 2.5% 
 Task M F M F M F 

H
C

P 

Gam 14.4 7.6 15.0 6.8 13.8 7.2 

R1 0.7 0.1 5.0 0 1.9 0 

R2 1.9 0.4 2.7 0 2.2 0.9 

Lang 6.2 7.9 6.2 7.8 5.5 8.4 

Mot 9.0 5.3 9.0 4.7 11.5 5.0 

Rel 3.8 5.9 3.6 5.7 4.1 4.0 

Soc 14.6 4.2 13.3 3.6 14.7 3.0 

WM 20.3 0.5 15.5 0.5 21.3 3.4 

Emo 7.3 5.9 8.5 6.2 9.0 5.0 

PN
C

 WM 9.7 6.3 10.9 4.6 9.3 8.0 

Emo 4.0 11.8 4.6 12.0 3.4 12.3 

Rest 5.3 3.7 5.4 5.0 6.2 6.7 

 
 
In summary this is an intriguing and potentially important paper with great potential. I 
hope that the above suggestions are helpful in strengthening it further. 
 
Additional Note 
 
We note one additional change to the manuscript: in the process of revising its contents, we 
discovered that there were several HCP subjects lacking coverage in 9/268 nodes. As in the PNC 
data set, we adopted the conservative approach of excluding these nodes from all subjects. We 
re-ran all analyses with these nodes excluded and revised the manuscript accordingly; there were 
no substantial changes in revised results or their interpretation. 
 
Once again, we thank the reviewers for their helpful comments, and look forward to continuing 
to explore many of these important ideas. 
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Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have been very responsive to the issues raised by all three reviewers, and the manuscript 

is substantially improved. I have one comment that may warrant additional analysis:   

 

In Fig. 2c, visual inspection of the complex spatial patterns suggests a reasonable degree of bilateral 

symmetry. It would be very informative if this could be quantified. This might be challenging if there 

are not good node correspondences between the left and right hemispheres in the 268-node 

parcellation. But given the high degree of bilateral symmetry in functional organization, it is important 

to know how symmetric are these results.  

 

The other comments are relatively minor:  

1) The black square in Fig. 1i was confusing until I realized it signified four solid colors. Can it be 

converted to a square made up of four appropriately colored triangles?  

2) P. 12, fig. 2d. This figure shows the fraction of edges belonging to different internetwork pairs. But 

since there are 268 nodes and 10 networks, that’s 27 nodes/network. What fraction of the edges in 

this analysis are intra-network and not inter-network? If that’s been analyzed/reported, I missed it 

(but perhaps didn’t read the methods closely enough).  

3) Line 271. Can the 10 networks be shown in a supplemental figure for easy reference? If not, please 

point to the specific figure in an earlier publication.  

4) Para. starting line 276. Include the network numbers in the main text when describing ‘visual’ etc. 

so the reader isn’t forced to jump to the legend to follow the description of fig. 2d.   

5) Line 394 “some overfitting is almost inevitable51” Is that really true? Would it be better to say 

“overfitting is difficult to eliminate completely”?  

6) Line 545 and Figs S3 and S4. The statement that ‘the scan volume was too restricted’ is puzzling. 

Fig. S4 seems to imply that the HCP fMRI data lacked full coverage of the cerebellum, but that is not 

the case. This should be clarified/corrected so that readers don’t get an incorrect impression and so 

that the actual explanation is more clear.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have done a good job of addressing the several detailed issues raised in the previous 

revision. However, several major concerns remain as noted below.  

 

1. In terms of overall claims and rationale, I appreciate the sentiment that “…there is a strong 

motivation for a shift from resting-state functional connectivity to task-based functional connectivity 

for the study of brain-behavior relationships”. But relating task-based functional connectivity to 

cognition and behavior, and predicting them, are precisely what researchers have been doing for over 

15 years before resting-state fMRI turned it into a cottage industry correlating everything with 

everything in the most atheoretical ways imaginable! Are we now not just circling back albeit with 

more brain features – some justified and many largely not? As such, the use of “paradigm shift” in the 

Abstract and manuscript is not warranted.  

2. It appears that key aspects, especially feature selection in the previous study (Finn et al. 2015), 

could not be replicated here. This is a major concern in our field, and especially so for claims of 

predictive modeling. The authors attributed better rest-based model in Finn et al to overfitting but I 

remain concerned that the same issues may hold for the present study because the methods used 

may not be robust or stable. It would be important to do a proper validation study with multiple 

repeats and stability analysis. E.g. randomly split the data into subsets (e.g., 258 subjects in training 



set and 257 subjects in testing set) and do prediction, feature selection analyses and repeat this 

procedure several (~ 1000) times to test for robustness and stability.  

3. The use of the CV procedures is problematic for univariate feature selection. It is important not to 

claim these as predictive features and the manuscript needs to be revised accordingly.   

4. Interpretation of features remains problematic: the authors’ justification for using gambling, motor, 

social and emotion tasks to predict fluid intelligence is still weak, and this aspect has not been 

improved. The authors have not discussed what the features mean and how they contribute to fluid 

intelligence. Instead, they note that it is unsurprising that e.g. motor task-based models perform 

relatively well. Similarly, explaining fluid intelligence from gambling task features is not quite 

meaningful or interpretable. If the goal is solely prediction and the features are essentially 

uninterpretable, why discuss the features and tasks at such length?  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have addressed all of my comments thoroughly. I have no further suggestions . 



We thank the reviewers for these additional comments, which have motivated analyses and 
revisions that we believe substantially strengthened the manuscript. These revisions are 
described below, and are highlighted in the manuscript using blue text. 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have been very responsive to the issues raised by all three reviewers, and the 
manuscript is substantially improved. I have one comment that may warrant additional 
analysis: 
 
In Fig. 2c, visual inspection of the complex spatial patterns suggests a reasonable degree of 
bilateral symmetry. It would be very informative if this could be quantified. This might be 
challenging if there are not good node correspondences between the left and right 
hemispheres in the 268-node parcellation. But given the high degree of bilateral symmetry 
in functional organization, it is important to know how symmetric are these results.  
 
We thank the reviewer for this interesting question. To quantify model symmetry while 
accounting for parcellation asymmetry, we used the centroid of each node to assign it to its 
homolog in the opposite hemisphere. That is, for each node, we calculated the distance between 
its centroid and the centroids of all nodes in the opposite hemisphere after reflecting them over 
the midline; the node in the reflected hemisphere that was closest to the given node was assigned 
as its match. This procedure was performed for all nodes in the right hemisphere (i.e., matching 
them with nodes in the reflected left hemisphere; “Right to Left”), and again for all nodes in the 
left hemisphere (i.e., matching them with nodes in the reflected right hemisphere; “Left to 
Right”). Nodes that lacked coverage – along with their paired nodes – were excluded from 
further analyses. Degree values of nodes in a given hemisphere were correlated with degree 
values of their assigned homologs using Spearman’s correlation for both the correlated and anti-
correlated networks (CN and AN, respectively). Correlations indicate substantial bilateral 
symmetry of degree maps, as predicted. This symmetry is increased in models that yielded more 
accurate predictions of gF, further suggesting better resolution of gF-relevant circuitry using 
task- than rest-based functional connectivity. A description of this analysis has been added to 
Methods (p28-29), and results are summarized on p11-12 and presented in Supplementary Table 
9 (reproduced below): 
 
  CN AN 
 Task Right to Left Left to Right Right to Left Left to Right 

PN
C

 WM 0.55 (5.0E-11) 0.56 (7.4E-12) 0.57 (8.6E-12) 0.62 (1.4E-14) 
Emotion 0.57 (6.3E-12) 0.54 (1.1E-10) 0.51 (2.5E-9) 0.45 (1.8E-7) 

Rest 0.29 (0.001) 0.31 (3.7E-4) 0.38 (1.3E-5) 0.40 (4.0E-6) 

H
C

P WM 0.32 (2.3E-4) 0.40 (3.2E-6) 0.38 (1.3E-5) 0.37 (1.9E-5) 
Emotion 0.27 (0.002) 0.27 (0.002) 0.32 (2.1E-4) 0.31 (3.3E-4) 

Rest1 0.17 (0.052) 0.19 (0.034) 0.31 (3.4E-4) 0.30 (6.5E-4) 
Results presented as r(P); models generated using an edge-selection threshold of P < 0.01 for 
consistency with main degree analyses. 
 
The other comments are relatively minor: 



1) The black square in Fig. 1i was confusing until I realized it signified four solid colors. 
Can it be converted to a square made up of four appropriately colored triangles? 
 
The figure legend has been modified accordingly. 
 
2) P. 12, fig. 2d. This figure shows the fraction of edges belonging to different internetwork 
pairs. But since there are 268 nodes and 10 networks, that’s 27 nodes/network. What 
fraction of the edges in this analysis are intra-network and not inter-network? If that’s 
been analyzed/reported, I missed it (but perhaps didn’t read the methods closely enough). 
 
We thank the reviewer for raising the important point of differences in network size; while we 
reference these differences in the text, we had not previously reported the total number of nodes 
in each canonical network. For concision and clarity, the number of nodes per network, as well 
as the number of nodes remaining in each network after node exclusion for each data set, are 
now presented in Supplementary Table 11 (reproduced below). The number of intra-network and 
inter-network edges for each network pair can be inferred from this table. Fig. 2d shows the 
relative contribution of each network pair (accounting for network sizes); contributions of intra-
network edges are represented along each main diagonal, while contributions of inter-network 
edges are represented in off-diagonal elements. 
 
 Number of nodes 
Canonical network Overall HCP PNC 

MF 29 29 29 
FP 34 34 31 

DMN 20 18 18 
Motor 50 49 46 
Vis A 18 18 18 
Vis B 9 9 8 

Vis Assoc 18 18 17 
Salience 30 30 30 

Subcortical 29 29 29 
CBL 31 25 24 

 
3) Line 271. Can the 10 networks be shown in a supplemental figure for easy reference? If 
not, please point to the specific figure in an earlier publication. 
 
A visualization of the 10 networks has been added as Supplementary Figure 6.  
 
4) Para. starting line 276. Include the network numbers in the main text when describing 
‘visual’ etc. so the reader isn’t forced to jump to the legend to follow the description of fig. 
2d. 
 
The corresponding network numbers have been added after each mention of a canonical network 
(p13).  



 
5) Line 394 “some overfitting is almost inevitable51” Is that really true? Would it be better 
to say “overfitting is difficult to eliminate completely”? 
 
We thank the reviewer for pointing out this overstatement and suggesting an alternative way to 
express this idea. The phrase has been revised as suggested (p18). 
 
6) Line 545 and Figs S3 and S4. The statement that ‘the scan volume was too restricted’ is 
puzzling. Fig. S4 seems to imply that the HCP fMRI data lacked full coverage of the 
cerebellum, but that is not the case. This should be clarified/corrected so that readers don’t 
get an incorrect impression and so that the actual explanation is more clear. 
 
In a relatively small subset of subjects in each data set, the scan volume was limited such that 
some of the nodes in the parcellation lacked coverage. We adopted the conservative approach of 
excluding a node from all subsequent analyses of a given data set if it lacked coverage in any 
subject in that data set. We have revised the manuscript to clarify this point: “Of note, in a subset 
of subjects in each data set, some of these nodes lacked sufficient coverage (the scan volume was 
too restricted); we adopted the conservative approach of excluding these nodes in all subjects. In 
the HCP data, 9 nodes lacked sufficient coverage, and were dropped from all further HCP 
analyses. Nine additional nodes lacked sufficient coverage in the PNC data (for a total of 18 
nodes with incomplete coverage in the PNC data); these 18 nodes were dropped from all further 
PNC and cross-data set analyses. These nodes were primarily in subcortical regions 
(Supplementary Figs. 2 and 3).” (p23).     
 
Reviewer #2 (Remarks to the Author): 
 
The authors have done a good job of addressing the several detailed issues raised in the 
previous revision. However, several major concerns remain as noted below.  
 
1. In terms of overall claims and rationale, I appreciate the sentiment that “…there is a 
strong motivation for a shift from resting-state functional connectivity to task-based 
functional connectivity for the study of brain-behavior relationships”. But relating task-
based functional connectivity to cognition and behavior, and predicting them, are precisely 
what researchers have been doing for over 15 years before resting-state fMRI turned it into 
a cottage industry correlating everything with everything in the most atheoretical ways 
imaginable! Are we now not just circling back albeit with more brain features – some 
justified and many largely not? As such, the use of “paradigm shift” in the Abstract and 
manuscript is not warranted.  
 
While we are not the first to relate task-based functional connectivity to behavior, we note 
several key features that distinguish this work. First, we use patterns of functional connectivity to 
predict – rather than explain – individual traits; this rigorous approach to identifying brain-
behavior relationships ensures that models are more robust and generalizable than explanatory 
models1. Second, we use whole-brain, data-driven analysis techniques in recognition of the 
complexity and distributed nature of neural representations of high-level cognitive processes2, 
such as those reflected in fluid intelligence scores (which has not been done before). Third, and 



most importantly, we subvert the current trend to perform such analyses using rest-based 
functional connectivity2,3, demonstrating that task-induced functional connectivity changes 
amplify individual differences in brain organization that are related to individual differences in 
fluid intelligence. This finding is replicated in two independent data sets, holds for two additional 
measures (PVRT and WRAT), and is robust to data processing choices, suggesting its 
generalizability. In short, we present the novel idea that whole-brain, task-based functional 
connectivity is better suited to the study of individual differences in brain organization (and 
related individual differences in cognition and behavior) than rest-based functional connectivity. 
Given the widespread use of resting-state functional connectivity to study brain-behavior 
relationships, we maintain our conviction that this finding suggests a paradigm shift in functional 
connectivity analyses. We highlight in the abstract that we are specifically exploring the utility of 
task-based functional connectivity for the study of brain-behavior relationships, and have 
clarified the last sentence of the abstract to reflect the broad relevance of these findings to 
functional connectivity analyses.    
 
2. It appears that key aspects, especially feature selection in the previous study (Finn et al. 
2015), could not be replicated here. This is a major concern in our field, and especially so 
for claims of predictive modeling. The authors attributed better rest-based model in Finn et 
al to overfitting but I remain concerned that the same issues may hold for the present study 
because the methods used may not be robust or stable. It would be important to do a 
proper validation study with multiple repeats and stability analysis. E.g. randomly split the 
data into subsets (e.g., 258 subjects in training set and 257 subjects in testing set) and do 
prediction, feature selection analyses and repeat this procedure several (~ 1000) times to 
test for robustness and stability. 
 
We share this reviewer’s concerns about overfitting, and have already taken several steps to 
ensure that patterns of model performance are reliable, that models are generalizable, and that 
model anatomy is relatively stable. First, k-fold cross-validation approaches yield results that are 
comparable to those generated by leave-one-out cross-validation approaches (see Supplementary 
Tables 1 and 7). Second, models built from one data set can be applied to another; given the 
differences between the HCP and PNC samples and experimental designs, this external 
validation is particularly compelling evidence of model robustness and generalizability. Third, 
models overlap across conditions and data sets, demonstrating stability of model anatomy (e.g., 
Fig. 2).  
 
To further interrogate model overlap and ensure that it extends to confound analyses, we 
calculated the Spearman’s correlations between model node degree in the main analyses, and 
model node degree in head motion analyses (i.e., edge selection via partial correlation with gF, 
controlling for motion; Supplementary Table 4) using an edge-selection threshold of P < 0.01. 
Correlations were quite high [see below; results reported as r(P)], indicating that hubs are robust 
to edge-selection approach and unrelated to head motion. 
 
 
 
 
 



  WM Emotion Rest 
H

C
P CN 0.9680 (2.25E-156) 0.8899 (1.42E-89) 0.9841 (9.32E-195) 

AN 0.9747 (2.39E-169) 0.8728 (5.04E-82) 0.9845 (3.25E-196) 

PN
C

 CN 0.9956 (2.64E-257) 0.9668 (5.51E-149) 0.9684 (1.28E-151) 
AN 0.9962 (2.56E-264) 0.9491 (1.79E-126) 0.9719 (7.73E-158) 

 
Next, to evaluate the stability of these results, we performed the requested analysis; that is, we 
randomly divided the data set in half, trained the models on one half and tested on the other, and 
repeated this procedure 1,000 times. We performed this split-half analysis in both the HCP and 
PNC data sets and evaluated the stability of model performance (i.e., the correlation between 
predicted and true gF) and of node degree, a proxy for the stability of model anatomical 
distribution. To quantify the similarity of node degree across the 1,000 iterations, we calculated 
the Spearman’s correlation between degree vectors for every pair of iterations. These additional 
analyses confirm that models’ prediction performance and anatomical distribution are quite 
stable; analysis details have been added to Methods (p24 and p29) and results are presented in 
Supplementary Fig. 1 (reproduced below). 
 

 
Supplementary Figure 1. Prediction performance (a,b) and model anatomical distribution (c,d) 
are relatively stable across 1,000 iterations of split-half predictive modeling in both the HCP 
(a,c) and PNC (b,d) data sets. Models generated using a feature-selection threshold of P < 0.01. 
Results presented as the Spearman’s correlation between predicted and true gF (a,b) and between 
node degree vectors for every pair of iterations. In each boxplot, center line corresponds to the 
median value, box edges correspond to the 25th and 75th percentiles, and whiskers extend to the 
most extreme data points not considered outliers. Outliers plotted individually. 

CN
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3. The use of the CV procedures is problematic for univariate feature selection. It is 
important not to claim these as predictive features and the manuscript needs to be revised 
accordingly.  
 
We thank the reviewer for pointing out this important point; the use of the word “feature” in 
previous versions of the manuscript was imprecise. Because models are trained and tested using 
network strength summary statistics (i.e., the sums of many edges’ strengths), the edges 
themselves are not predictive features. To clarify this point, all mentions of “feature selection” in 
the manuscript and SI have been changed to “edge selection.” 
 
4. Interpretation of features remains problematic: the authors’ justification for using 
gambling, motor, social and emotion tasks to predict fluid intelligence is still weak, and this 
aspect has not been improved. The authors have not discussed what the features mean and 
how they contribute to fluid intelligence. Instead, they note that it is unsurprising that e.g. 
motor task-based models perform relatively well. Similarly, explaining fluid intelligence 
from gambling task features is not quite meaningful or interpretable. If the goal is solely 
prediction and the features are essentially uninterpretable, why discuss the features and 
tasks at such length? 
 
The primary goal of this work is to demonstrate that cognitive tasks amplify individual 
differences in neural circuitry that are related to individual differences in behavior and cognition. 
Prediction is used as a means to demonstrate this point; that task-based models outperform rest-
based models indicates that task-based functional connectivity patterns contain more information 
relevant to such individual differences than rest-based functional connectivity patterns. Given the 
stability of model anatomical distribution (see response to Reviewer 2, comment 2), we analyze 
this anatomy to offer some insight into which gF-relevant edges are detectable in various brain 
states. We note again that the broad spatial distribution of selected edges highlights the 
importance of a whole-brain, data-driven approach to studying the neural bases of such complex 
cognitive constructs. Our goal is not to map a complete fluid intelligence network, nor to explain 
why tasks differentially improve gF prediction, though we agree that these are important and 
interesting questions for future work.  
 
Reviewer #3 (Remarks to the Author): 
 
The authors have addressed all of my comments thoroughly. I have no further suggestions. 
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REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have been very responsive, and I am satisfied with the revised version.   

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have done an excellent job of addressing the issues raised.  
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