Supplementary Tables

Coverage and diagnostic yield of Whole Exome Sequencing for the Evaluation of Cases with Dilated and Hypertrophic Cardiomyopathy

Timothy Shin Heng Mak, Yee-Ki Lee, Clara S Tang, JoJo SH Hai, Xinru Ran, Pak-Chung Sham, Hung-Fat Tse

Company	Admera Health ¹	GeneDx ²	Invitae ³	Ambry⁴
Product	CardioGxOne (cardiomyopathies	Cardiomyopathy panel	Cardioyopathies	CMNEXT
	general panel)			
Diseases	HCM, DCM, RCM, ACM, non-	ARVC, DCM, HCM, LVNC, Noonan	ARVC, DCM, HCM, Fabry disease,	ARVD, DCM, HCM, LVNC,
covered	compaction cardiomyopathy,	syndrome	LVNC, transthyretin amyloidosis	RCM
	RASopathies, storage diseases, and			
	congenital heart diseases			
Genes	AARS2, ABCC9, ACAD9, ACADVL,	ABCC9 , ACTC1, ACTN2, ALMS1,	A2ML1, ABCC9, ACADVL, ACTC1,	ABCC9, ACTC1, ACTN2,
	ACTA1, ACTA2, ACTC1, ACTN2,	ALPK3, ANKRD1, BAG3, BRAF,	ACTN2, AGL, ALMS1, ANKRD1,	ANKRD1, BAG3, CRYAB,
	AGK, AGL, AGPAT2, ALMS1, ANK2,	CAV3, CHRM2, CRYAB , CSRP3,	BAG3, BRAF, CACNA1C, CALR3,	CSRP3, DES, DMD, DSC2,
	ANKRD1, ATPAF2, BAG3, BRAF,	DES, DMD, DOLK, DSC2, DSG2,	CAV3, CBL, CHRM2, CPT2,	DSG2, DSP, EMD, EYA4,
	BSCL2, CALR3, CASQ2, CAV3, CBL,	DSP, DTNA, EMD, FHL1, FKRP,	CRYAB, CSRP3, CTF1, CTNNA3,	FKTN, FXN, GATAD1, GLA,
	COQ2, COX15, COX6B1, CRELD1,	FKTN, GATAD1, GLA, HCN4,	DES, DMD, DNAJC19, DOLK,	JPH2, JUP, LAMA4, LAMP2,
	CRYAB, CSRP3, CTF1, CTNNA3,	HRAS, ILK, JPH2, JUP, KRAS,	DSC2, DSG2, DSP, DTNA, ELAC2,	LDB3, LMNA, MYBPC3,
	DES, DLD, DMD, DNAJC19, DOLK,	LAMA4, LAMP2, LDB3 , LMNA,	EMD, EYA4, FHL1, FHL2, FKRP,	MYH6, MYH7, MYL2, MYL3,
	DSC2, DSG2, DSP, DTNA, ELN,	MAP2K1, MAP2K2, MIB1, MTND1,	FKTN, FLNC, GAA, GATA4,	MYOZ2, MYPN, NEXN,
	EMD, EYA4, FAH, FHL1, FHL2,	MTND5, MTND6, MTTD, MTTG,	GATA6, GATAD1, GLA, HCN4,	NKX2-5, PKP2, PLN,
	FHOD3, FKRP, FKTN, FLNA, FLNC,	MTTH, MTTI, MTTK, MTTL1,	HRAS, ILK, JPH2, JUP, KRAS,	PRKAG2, PTPN11, RAF1,
	FOXD4, GAA, GATA4, GATA6,	MTTL2, MTTM, MTTQ, MTTS1,	LAMA4, LAMP2, LDB3, LMNA,	RBM20, RYR2, SCN5A, TAZ,
	GATAD1, GFM1, GJA1, GJA5, GLA,	MTTS2, MURC, MYBPC3, MYH6,	LRRC10, MAP2K1, MAP2K2,	TBX20, TCAP, TGFB3,
	GLB1, GNPTAB, GUSB, HCN4, HFE,	MYH7, MYL2, MYL3, MYLK2,	МТО1, МҮВРС3, МҮН6, МҮН7,	TMEM43, TMPO, TNNC1,
	HRAS, JAG1, JPH2, JUP, KCNH2,	MYOZ2, MYPN, NEBL , NEXN,	MYL2, MYL3, MYLK2, MYOM1,	TNNI3, TNNT2, TPM1, TTN,
	KCNJ2, KCNJ8, KCNQ1, KLF10,	NKX2-5, NRAS, PDLIM3, PKP2,	MYOZ2, MYPN, NEBL, NEXN,	TTR, TXNRD2, VCL, ZASP

Supplementary Table S1. Genes covered by three commercial panels for cardiomyopathy

KRAS, LAMA2, LAMA4, LAMP2,	PLN, PRDM16, PRKAG2, PTPN11,	NF1, NKX2-5, NPPA, NRAS,	(n=56)
LDB3, LIAS, LMNA, MAP2K1,	RAF1, RBM20, RIT1, RYR2,	PDLIM3, PKP2, PLEKHM2, PLN,	
MAP2K2, MIB1, MLYCD, MRPL3,	SCN5A, SGCD, SOS1, TAZ, TCAP,	PRDM16, PRKAG2, PTPN11,	
MRPS22, MTO1, MURC, MYBPC3,	TGFB3, TMEM43, TMPO, TNNC1,	RAF1, RASA1, RBM20, RIT1,	
MYH11, MYH6, MYH7, MYL2, MYL3,	TNNI3, TNNT2, TPM1, TTN, TTR,	RRAS, RYR2, SCN5A, SDHA,	
MYLK2, MYOT, MYOZ2, MYPN,	TXNRD2, VCL (n=91)	SGCD, SHOC2, SLC22A5, SOS1,	
NEBL, NEXN, NKX2-5, NOTCH1,		SOS2, SPRED1, TAZ, TCAP,	
NRAS, OBSL1, PDHA1, PDLIM3,		TGFB3, TMEM43, TMEM70,	
PHKA1, PITX2, PKP2, PLN, PMM2,		TMPO, TNNC1, TNNI3, TNNT2,	
PRDM16, PRKAG2, PSEN1, PSEN2,		TPM1, TTN, TTR, TXNRD2, VCL	
PTPN11, RAF1, RBM20, RYR2,		(n=105)	
SCN5A, SGCA, SGCB, SGCD,			
SHOC2, SLC22A5, SLC25A4,			
SMAD3, SOS1, SPRED1, SURF1,			
TAZ, TBX1, TBX20, TBX5, TCAP,			
TGFB3, TMEM43, TMEM70, TMPO,			
TNNC1, TNNI3, TNNT2, TPM1,			
TRIM63, TSFM, TTN, TTR, TXNRD2,			
VCL (n=149)			

1. http://www.admerahealth.com/cardiogxone/cardiomyopathies-general-panel/

2. https://www.genedx.com/test-catalog/available-tests/cardiomyopathy-panel/

3. https://www.invitae.com/en/physician/tests/02251/#test-order

4. http://www.ambrygen.com/tests/cmne

Evidence of ACMG definition Our working definition pathogenicity PVS1: Null variant (nonsense, Truncating variants in genes whose truncating variants Very strong frameshift, canonical +/1 1 or are significantly associated with HCM/DCM according 2 splice sites, initiation codon, to Walsh et al⁶ (after correction for multiple testing). single or multiexon deletion) in a gene where Truncating is a known mechanism of disease Strong PS1: Same amino acid A previously established pathogenic variant was change as a previously defined as one which had a Pathogenic call from the established pathogenic ACMG guideline. variant regardless of nucleotide change PS2: De novo in a patient with based on literature review the disease and no family history PS3: Well-established in vitro based on literature review or in vivo functional studies supportive of a damaging effect on the gene or gene product PS4: The prevalence of the Not applicable. variant in affected individuals is significantly increased compared with the prevalence in controls Moderate PM1: Located in a mutational Mutational hotspots for 190 genes were given in the hot spot and/or critical and Supplementary material of Maxwell et al⁷ well-established functional domain without benign variation Absent in the Exac database, the 1000 Genome PM2: Absent from controls in Exome sequencing project, database, and a cohort of 712 local DDD patients 1000 Genomes Project, or Exome Aggregation Consortium PM3: For recessive disorders. Not applicable detected in trans with a pathogenic variant PM4: Protein length changes nonframeshift variants as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants PM5: Novel missense change Like PS1, a previously established pathogenic variant at an amino acid residue was defined as one which had a Pathogenic call from where a different missense the ACMG guideline. change determined to be pathogenic has been seen before PM6: Assumed de novo, but based on literature review without confirmation of paternity and maternity Supporting PP1: Cosegregation with If evidence found in Clinvar. disease in multiple affected family members in a gene definitively known to cause the disease

Supplementary Table S2. Methods for applying the ACMG guidelines

Evidence of pathogenicity	ACMG definition	Our working definition
	PP2: Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease PP3: Multiple lines of computational evidence support a deleterious effect on the gene or gene product PP4: Patient's phenotype or family history is highly specific for a disease with a single genetic etiology	non-truncating variant found in gene whose RVIS (Residual Variation Intolerance Score) ¹ is in the most intolerant 10%, or Truncating variant found in gene whose pLI (probability of Loss-of-function intolerant) ² score is in the most intolerant 10%. Predicted to be pathogenic by Polyphen (HDIV), Polyphen (HVAR) ³ , deleterious by SIFT (Sorting Intolerant From Tolerant) ⁴ ,and Mutation Taster ⁵ . Not applicable
	PP5: Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation	Not applicable
Benign (stand-alone)	BA1: Allele frequency is >5% in Exome sequencing project, 1000 Genome project, or Exome Aggregation consortium	Not applicable
Benign (Strong)	BS1: Allele frequency is greater than expected for disorder	MAF > 0.1%
	BS2: Observed in a healthy adult individual with full penetrance expected at an early age	Not applicable. Cardiomyopathy not fully penetrant at early age
	BS3: Well-established in vitro or in vivo function studies show no damaging effect on protein function or splicing	Literature review
	BS4: Lack of segregation in affected members of a family	Literature review
Benign (Supporting)	BP1: Missense variant in a gene for which primarily truncating variants are known to cause disease	Missense variants in TTN or SCN5A (according to Walsh et al)
	BP2: Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern	Not applicable. Information not available.
	BP3: In-frame deletions/insertions in a repetitive region without a known function	Not applicable. Information not available.
	BP4: Multiple lines of computational evidence suggest no impact on gene or gene product	Predicted to be benign by Polyphen (HDIV), Polyphen (HVAR) ⁴ , deleterious by SIFT ⁵ , and Mutation Taster ³ .

Evidence of pathogenicity	ACMG definition	Our working definition
	BP5: Variant found in a case with a an alternate molecular basis for disease	awarded to variants found in patients with variants classified as "Pathogenic"
	BP6: Reputable source recently reports variant as benign	One "Benign" or "Likely benign" classification in Clinvar
	BP7: A synonymous variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site and the nucleotide is not highly conserved	Not applicable. Synonymous variants are not considered

References:

- 1. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes. *PLoS Genet.* **9**, (2013).
- 2. Lek, M. *et al.* Analysis of protein-coding genetic variation in 60,706 humans. *Nature* **536**, 285–291 (2016).
- 3. Adzhubei, I. A. *et al.* A method and server for predicting damaging missense mutations. *Nat. Methods* **7**, 248–249 (2010).
- 4. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. *Nat. Protoc.* **4**, 1073–1081 (2009).
- Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. *Nat. Methods* **11**, 361–2 (2014).
- Walsh, R. *et al.* Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. *Genet. Med.* 41111 (2016). doi:10.1038/gim.2016.90

7. Maxwell, K. N. *et al.* Evaluation of ACMG-Guideline-Based Variant Classification of Cancer Susceptibility and Non-Cancer-Associated Genes in Families Affected by Breast Cancer. *Am. J. Hum. Genet.* **98,** 801–817 (2016).