
Supplemental Material

Table S1. Soil chemistry of the litter layer versus the O horizon.

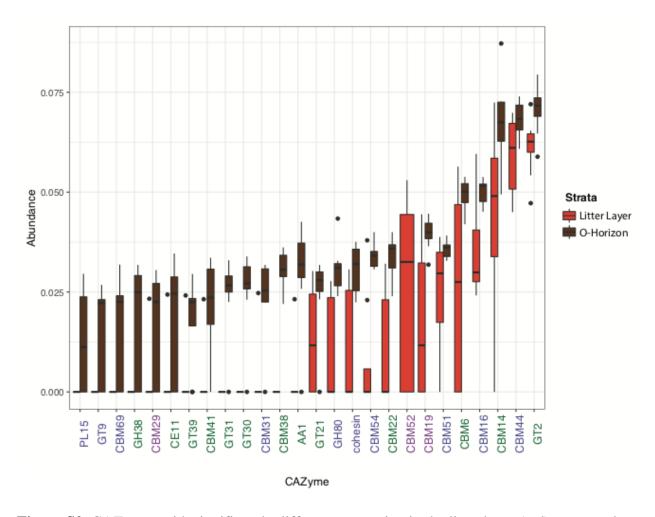
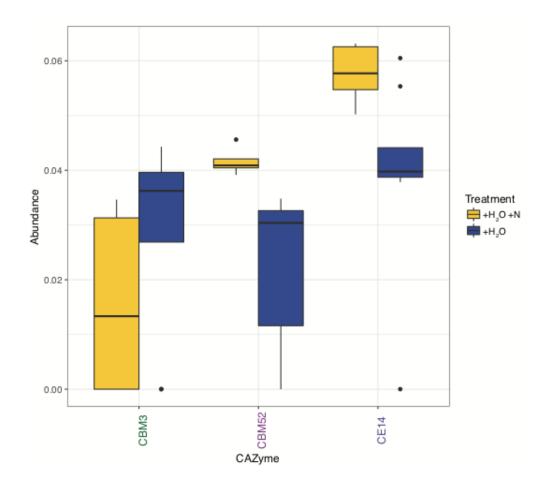
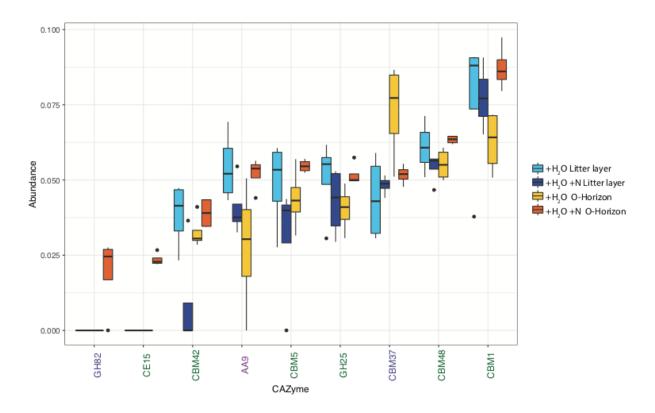
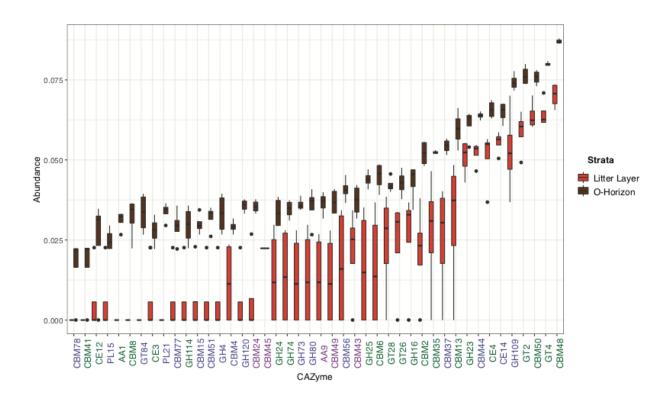
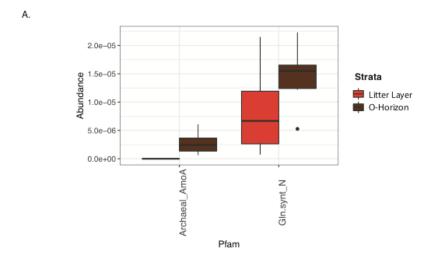

	Litter Layer	O Horizon
рН	4.3	4.9
%OM	27.4	25.8
Total C	0.7932	0.6292
Total N	26.02	19.60
C:N ratio	32.80	31.15
NO3-N	2.2	3.7
P	61.3	57.3
Туре	loam	loam

Table S2. Average number of reads assigned to nitrogen cycle pathway genes for each set of samples (n=4). The number of N cycle pathway reads were lower in the metatranscriptome (MT) than metagenome (MG) samples, and lower in the litter layer (LL) than the O-horizon (OH) samples.


Nitrogen Pathway	Gene	OH Initial MT	OH +H20 MT	OH Initial MT OH +H2O MT OH +H2O +N MT LL Initial MT LL Control MT LL +H2O MT LL +H2O +N	LL Initial MT	LL Control MT	LL +H2O MT	LL +H2O +N MT	LL +H2O MG	LL +H2O +N MG
Nitrification	hao	1.25	1.5	0.5	0	0	0	0.25	1.5	0.25 1.5 2.25
Denitrification	nosZ	3.25	0.75	2.25		0	0	0	3.25	5
Denitrification	norB	9.5	3.25	6.75	0.5	0.5	0	0	51.5	61.25
Denitrification	norC	0	0	0	0	0	0	0	1	2
Denitrification	nirk	0	0	0	0	0	0	0	0	0
Dissimilatory nitrate reduction	nirB	26.5	9.75	18.75	9.5	1	2.25	0.5	1452.75	1191.75
Dissimilatory nitrate reduction	nirD	8.5	6.5	7		1	0.75	1.25	92.5	84
Assimilatory nitrate reduction	nirA	142.5	51	110.25	29.5	6.5	7.5	7	1554.75	1436.75
Assimilatory nitrate reduction	napB	0.75	0.5	0	1.75	0	0	0	12.5	11.75
Nitrogen Fixation	nifH	ω	0	0.5	0.75	1.5	0	0	1.75	1


Figure S1. Carbohydrate metabolism pathways (KEGG annotations) with significantly different expression in the + H₂O treatment (blue) compared to the +H₂O +N treatment (orange) at the final sampling time (64 hours).


Figure S2. CAZymes with significantly different expression in the litter layer (red) compared to the O-horizon (brown) at the final sampling time (64 hours). CAZymes associated with bacteria/archaea (blue), fungi (purple) or both bacteria/archaea and fungi (green).


Figure S3. CAZymes with significantly different expression in the + H₂O treatment (blue) compared to the +H₂O +N treatment (orange) at the final sampling time (64 hours). CAZymes associated with bacteria/archaea (blue), fungi (purple) or both bacteria/archaea and fungi (green).

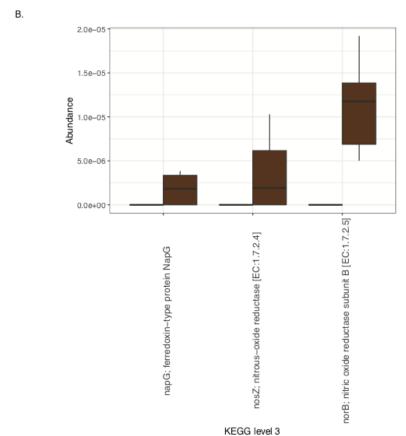


Figure S4. CAZymes showing a significant interactive effect between horizon and treatment [+ H₂O litter layer (light blue), +H₂O +N litter layer (dark blue), +H₂O O-horizon (light orange), +H₂O +N litter layer (dark orange)] at the final sampling time (64 hours). CAZymes associated with bacteria/archaea (blue), fungi (purple) or both bacteria/archaea and fungi (green).

Figure S5. CAZymes with significantly different expression at the initial sampling time (0 hours) in the litter layer (red) compared to the O-horizon (brown). CAZymes associated with bacteria/archaea (blue), fungi (purple) or both bacteria/archaea and fungi (green).

Figure S6. Nitrogen cycling genes showing significantly different expression levels in the litter layer compared to the O-horizon as annotated by a) pFam b) KEGG.