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Bibliographical references of the interactions among
the molecules of the model

IR → miR-449a [1, 2]
IR → ATR [3]
IR → ATM [3]
p21 → G2/M-Arrest [4]
p53-Main → p53-Arrest [5]
p53-Main → p53-Killer [6]
p53-Main → Mdm2 [7]
p53-Main → G2/M-Arrest [8]
14-3-3s → G2/M-Arrest [9]
Cdc25ABC → E2F1 [10]
Myc → Cdc25ABC [11]
Myc → E2F1 [12]
E2F1 → Myc [12]
E2F1 → Sirt-1 [13]
E2F1 → p53-Main [14]
E2F1 → Proliferation [15]
ATM → E2F1 [16]
ATM → p53 [17]
ATR → E2F1 [16]
ATR → p53 [17]
E2F1 → ATM [18]
Cdc25ABC → Cdc2-CycB [19]
Cdc2-CycB → Proliferation [20]
p53-Killer → 14-3-3 [21]
p53-Killer → p21 [22, 8]
p53-Killer → G2/M-Apoptosis [23]
p53-Arrest → 14-3-3 [21]
p53-Arrest → p21 [22, 8]
p53-Arrest → Wip1 [24]
p53-Arrest → p53INP1 [25]
p53INP1 a p53-Arrest [25]
p21 a Cdc2-CycB [26]
p53-Main a Proliferation [27]
p53-Arrest a p53-killer [28]
p53-Killer a p53-Arrest [28]
MDM2 a RB [29]
MDM2 a P53-Main [7]
MDM2 a [30]
Wip1 a p53-Killer [31]
Wip1 a mdm2 [31]
Wip1 a ATM [32]
ATM a Cdc25ABC [33]
ATM a Mdm2 [34]
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ATR a Mdm2 [35]
ATR a Cdc25ABC [33]
Sirt-1 a p53-Arrest [36]
Sirt-1 a p53-Killer [36]
Sirt-1 a E2F1 [13]
Sirt-1 a RB [37]
miR-449a a Myc [1, 2]
c-Myc a p21 [38]
miR-449a a Cdc25ABC [39]
Cdc25ABC a Rb [40]
miR-449a a Sirt-1 [41]
sirt-1 a P53 [42]
14-3-3 a Cdc2-CycB [43]
Rb a E2F1 [44]
Rb a c-Myc [45]
Rb a mdm2 [46]
miR-449a a E2F1 [39]
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