PRMT5-mediated regulation of developmental myelination

Scaglione et al.

Supplementary Figures 1-9

Supplementary Tables 1-4

Supplementary References

Supplementary Figure 1. Validation of antibody specificity using a modified histone peptide array. (a) Outline of the antibody array from Active Motif. Each well contains a unique combination of histone H3 or H4 peptides with distinctive post translational modifications, as detailed in the Methods section. Histone peptides containing H4 methylated arginine residues or a combination of different post-translational modifications, are highlighted in the table with different colors (yellow for symmetric methylation of R2 in histone H3, red for asymmetric methylation of R3 in histone H4, blue for symmetric methylation of the same residue). The

corresponding position in the array with the relative coordinates and specific examples are indicated. For instance H4R3me2s modification is recognized by the corresponding antibody as the only modification in the histone peptide in the well identified by the coordinates L14. The same antibody, can identify the same posttranslational modification also if additional modifications are present, such as acetylation of residue H4K5 in well L23 or acetylation of H4K8, as shown in well L24, or in the presence of multiple acetylated lysine residues, as shown for wells M7, M9, M13 and M15. Multiple antibodies specific for symmetrically or asymmetrically methylated arginine residues in histone H3 or histone H4 were tested using the modified histone peptide array. The results for the antibody specific for H3R2me2s provided by Ernesto Guccione are shown in (b). The light purple circles, identify positions in the array containing peptides harboring H3R2me2s. The results for the antibodies specific for H4R3me2a, purchased from Active Motif are shown in (d). Those for the antibodies specific for H4R3me2s purchased from Abcam are shown in (f) and those for the antibodies purchased from Epigentek are shown in (h). In (d, f, h) the red circles identify H4R3me2a and the blue circles identify the H4R3me2s immunoreactive dots. In (c,e,g,i) the bar graphs represent the output of the "Multiple Peptide Average" option, calculated using the "Array Analyze Software" provided by Active Motif. The specificity of each antibody is calculated by computing the average intensity of all the spots of the dot blot in positions containing a given mark, divided by the average intensity of all the spots of the array not containing the mark.

H4R3me2s (Abcam)

H4R3me2s (Epigentek)

Supplementary Figure 2. Validation of H4R3me2s antibody specificity for immunocytochemistry using cells with CRISPR/Cas9 targeting of PRMT5. Representative confocal images of oligodendrocyte progenitor cells with (PRMT5-CRISPR) or without (EGFP-CRISPR) targeting of PRMT5 using lentiviral vectors. Effective knockdown of PRMT5 in OPC was evaluated by immunocytochemistry using antibodies specific for OLIG2 (gray in **a** and red in **b**), for PDGFR α (CD140a antibody in red in **a**) and for H4R3me2s (green) from Abcam (**a**) or Epigentek (**b**). DAPI (blue) as nuclear counterstain. Note that the Abcam antibody identifies immunoreactive cells even after knockdown of PRMT5, which is enzy placing the H4R3me2s mark, while the Epigentek antibody shows greater selectivity. Scale, 50 μ m.

Supplementary Figure 3. Genetic ablation of *Prmt5* in oligodendrocytes using *Cnp-Cre*. Confocal images of P14 spinal cord (**a**,**b**) sections from controls ($Olig1^{Cnp/+};Prmt5^{fl/+}$) and *Prmt5* mutants ($Olig1^{Cnp/+};Prmt5^{fl/f}$) stained for (**a**) MBP (green), (**b**) CC1 (green), (**a**, **b**) OLIG2 (red) and DAPI (blue). Scale bar in **a**: 200µm, in **b**: 20µm. (**c**) Confocal images of P14 corpus callosum sections from controls ($Olig1^{Cnp/+};Prmt5^{fl/+}$) and *Prmt5* mutants ($Olig1^{Cnp/+};Prmt5^{fl/+}$) and *Prmt5* mutants ($Olig1^{Cnp/+};Prmt5^{fl/f}$) stained for MBP (white), CC1 (green), OLIG2 (red) and DAPI as nuclear counterstain (blue). Scale bar: 20µm. (**d**) Scatter plot represents the average number of CC1⁺ /OLIG2⁺ cells quantified in in spinal cord, fimbria, corpus callosum, and cortex from four controls ($Olig1^{Cnp/+};Prmt5^{fl/+}$) and four *Prmt5* mutants ($Olig1^{Cnp/+};Prmt5^{fl/+}$). Student's *t*-test, n.s.= not significant.

Supplementary Figure 4. Validation of PRMT5 knockdown in oligodendrocytes lineage cells, using CRISPR/Cas9. (a) Western blot analysis of cytosolic or nuclear protein extracts from OPC either infected with the control (EGFP-CRISPR) or knockdown (PRMT5-CRISPR) lentiviruses and probed with antibodies for PRMT5, MEK was used as control for cytoplasmic proteins and total H3 as control for nuclear proteins. (b) Relative quantification of the PRMT5 protein level in control (EGFP-CRISPR) or knockdown (PRMT5-CRISPR) cytosolic and nuclear extracts is shown. Data were normalized to the appropriate loading controls and are presented as means from three different preparations (one-way ANOVA with Bonferroni's Multiple Comparison Test, *** p<0.001). (c) Absolute numbers of OPC cells infected with either control (EGFP-CRISPR) or knockdown (PRMT5-CRISPR) lentiviruses, at day 4, 5 and 6 after infection. Scatter plots indicate relative values normalized to the average of the control group (DMSO), (one-way ANOVA, ** p<0.01, *** p<0.001), n=3 independent preparations.

Supplementary Figure 5. CRISPR/Cas9 targeting of PRMT5 in oligodendrocyte progenitors leads to alteration of *Mdm4* **splicing and up-regulation of P53 protein levels. (a) Representative confocal images of oligodendrocyte progenitor cells with (PRMT5-CRISPR) or without (EGFP-CRISPR) targeting of PRMT5 using lentiviral vectors, processed for immunocytochemistry using antibodies specific for P53 (gray) and for H4R3me2s (green). DAPI (blue) was used as nuclei counter-stain. Scale: 20 μm. Scatter plot identify the intensity of p53 immunoreactivity in H4R3me2s⁺ (EGF-CRISPR) and in H4R3me2s⁻ (PRMT5-CRISPR) cells. Data are shown as normalized values, relative to the average of the EGFP group ± s.e.m. from three independent preparations. *** =p<0.001 Student's** *t***-test. (b) Whole cell protein lysates extracted from progenitors transduced with control (EGFP-CRISPR) or targeted (PRMT5-CRISPR) lentiviral vectors were processed for Western blot analysis and probed with antibodies specific for P53 and for GAPDH, as loading control. (c) Relative distribution of RNA splicing events detected in Olineu cells after PRMT5 knockdown (PRMT5-CRISPR). (d) Semi-qRT-PCR detecting the transcripts of the** *Mdm4* **long and short isoforms in EGFP-CRISPR or PRMT5-CRISPR infected oligodendrocyte progenitors.**

Supplementary Figure 6. Transcript levels of acetyltransferase from available databases. The transcript values of *Kat7*, *Kat5* and *Kat2a* in different cell classes of the brain as reported in RNA-seq transcriptome database^{1,2}. Note the enrichment of the three transcripts in the OPC.

Supplementary Figure 7. Increased acetylation of lysine residue K5 in histone H4 after PRMT5 knockdown. (a) Western blot analysis of cell lysates and histone extraction from control (EGFP-CRISPR) and knockdown (PRMT5-CRISPR) cultures probed with antibodies specific for H4R3me2s and for H4K5ac. Antibdes for total H3 or total H4 were used as protein loading control for histones. (b) Representative confocal images of control (EGFP-CRISPR) and knockdown (PRMT5-CRISPR) OliNeu cells stained with antibodies specific for H4K5ac (red), H4R3me2s (green) and DAPI (blue). (c) Scatter plot of the normalized immunoreactivity intensity for H4K5ac staining counted in at least 50 cells per condition and from three independent biological replicates. Scatter plots indicate relative values normalized to the average of the EGFP group ± s.e.m. Student's t-test, *** p<0.001, scale 20 μ m. (d-e) Time course of the effect of the pharmacological inhibitor of PRMT5 (GSK591, 10 nM) treatment on methyl-arginine (H4R3me2s) and acetyl-lysine (H4K5ac) deposition in primary oligodendrocyte progenitors, cultured in presence of growth factors (+GF), for 24 and 72 hours. Scatter plot of the average of 50 PDGFRa⁺ cells from three independent preparations. The values werenormalized to the average of the average of 50 PDGFRa⁺ cells from three independent preparations. The values werenormalized to the average of the control group (DMSO). One-way ANOVA n.s. p>0.05 * p<0.05, ** p<0.01, *** p<0.001.

a

Full size image for figure 6a

b

Full size image for figure 6c

Supplementary Figure 8. Original western blots of data presented in this manuscript. Uncropped images of immunoblots and coomassie gels displayed in the main and supplementary figures. Antibodies indicated on the right side and size markers are indicated on the left side of each blot.

Mdm2 Cdkn1a Perp *** * Normalized mRNA level Normalized mRNA level Normalized mRNA level to control relative to control relative to control 6 4 4 relative **P** • 配 ┺╸ 2 ৰ্ম্ন DMSO □ GS5K91 GSK591 + KATs inhibitors ♦ KATs inhibitors HDAC inhibitor ٠

P53 pathway

Supplementary Figure 9. Upregulation of P53-dependent genes induced by PRMT5 inhibition is rescued by co-treatment with KAT inhibitors. qRT-PCR of selected P53-target genes (*Mdm2, Cdkn1a, Perp*) normalized to the geo-mean of three housekeeping genes (*18s, Wdr33* and *Pja2*). Differentiating oligodendrocyte progenitors were treated for 48 hours with DMSO, KAT inhibitors (Butyrolactone-3, 100 μ M and Nu-9056, 0.2 μ M) alone or in combination with the PRMT5 inhibitor GSK591 (10nM) or with the HDAC inhibitor Trichostatin A (TSA, 20 nM). Note that TSA is toxic and induces upregulation while the KAT inhibitors rescue the upregulation induced by GSK591. Scatter plots indicate transcript values for the indicated genes from six independent preparations. One-way ANOVA with Bonferroni Multiple Comparison Test was performed for each gene compared to the value of the control (DMSO) (* p<0.05** p<0.01 *** p<0.001).

Supplementary Tables

Supplementary Table 1. List of primary antibodies used in the study.

Technique	Antibody name	Antibody source	Commercial house and reference	Dilution
Immunopanning	CD140a	Rat	BD Bioscience 558774	1:1000
Immunoprecipitation	PRMT5	Rb	Abcam, ab31751	
Histone peptide array	H3R2me2s	Rb	Ernesto Guccione's	
	H4R3me2a	Rb	Active Motif, 39705	
	H4R3me2s	Rb	Abcam, ab5823	
	H4R3me2s	Rb	Epigentek, A-3718	
Western Blot	GADPH	Ms	Abcam, ab8245	1:5000
	Н3	Rb	Abcam ab1791	1:20000
	H3K9ac	Ms	Active Motif, 61251	1:1000
	H4	Rb	Active motif, 39269	1:1000
	H4R3me2s	Rb	Epigentek A-3718	1:1000
	H4K5ac	Ms	Active Motif, 61523	1:1000
	H4K5ac	Rb	Abcam, ab51997	1:1000
	H4K8ac	Rb	Millipore, 07-328	1:1000
	H4K12ac	Rb	Millipore, 07-595	1:1000
	МЕК	Rb	Sigma, M 5795	1:5000
	PRMT5	Rb	Abcam, ab109451	1:1000
Immunohistochemistry	CC1	Ms	Calbiochem, OP80	1:100
	H4R3me2s	Rb	Diagenode, C15410308	1:200
	H4K5Ac	Ms	Active Motif, 61523	1:200
	Ki67	Rb	Abcam, ab15580	1:500
	MBP	Rat	Millipore MAB386	1:500
	Olig2	Rb	Chemicon, AB9610	1:200
	Olig2	Ms	Millipore, MABN50	1:200
	PDGFRα	Rb	Cell Signalling, 3164S	1:100
	PRMT5	Rb	Abcam, AB109451	1:100

Immunocytochemistry	Cleaved CASPASE-3	Rb	Cell Signalling, 9661	1:200
	CNP	Ms	Covance, E11BF00277	1:200
	H4R3me2s	Rb	Diagenode, C15410308	1:500
	H4K5Ac	Ms	Active Motif, 61523	1:500
	Ki67	Ms	Abcam, ab15580	1:500
	MBP	Rat	Millipore MAB386	1:1000
	Olig2	Rb	Chemicon, AB9610	1:500
	Olig2	Ms	Millipore, MABN50	1:500
	P53	Rb	Cell Signalling, 2524S	1:500
	PRMT5	Rb	Abcam, AB109451	1:200
	PDGFRα	Rat	Millipore, CBL1366	1:1000

Supplementary Table 2. Number of total reads and aligned read pairs for the RNA-seq analysis performed for CRISPR-PRMT5 and CRISPR-EGFP control cells. The table shows the values obtained from four different analysis performed for each condition (CRISPR-PRMT5 and CRISPR-EGFP control)

Sample	Total read pairs	Aligned read pairs	Average of total read pairs	Range of total read pairs	Read type
EGFP-CRISPR-1 (exp.1)	64722813	52660045			Paired end
EGFP-CRISPR-2 (exp. 1)	66929862	54600276	61602313.25	EC742484 CC0208C2	Paired end
EGFP-CRISPR-1 (exp.3)	56743181	45668535		50745161 - 00929602	Paired end
EGFP-CRISPR-2 (exp.4)	58013397	47106242			Paired end
PRMT5-CRISPR-3 (exp. 1)	68576976	55956459		63379315.75 59009841 - 68576976	Paired end
PRMT5-CRISPR-4 (exp. 2)	64201644	52395588	62270245 75		Paired end
PRMT5-CRISPR-3 (exp. 3)	59009841	47970026	63379315.75		Paired end
PRMT5-CRISPR-4 (exp. 4)	61728802	49934101			Paired end

Supplementary Table 3. List of qRT-PCR primers used in the study

Gene	Forward primer	Reverse primer
Prmt5	CTGAGTGTCTGGATGGAGCA	GCATCTCAAACTGTGCCTCA
Cdkn1a	CAGGGCAGAGGAAGTACTGG	CGGTGGAACTTTGACTTCGT
Mdm2	TAAAGTCCGTTGGAGCGCAAA	CTGCTGCTTCTCGTCATATAACC
Perp	ACCCCAGATGCTTGTTTTCCT	CTGCTGCTTCTCGTCATATAACC
Gpr17	ACACATTGTCTGCCTGCAA	TGACCGTGGTGATGAATGGG
Myt1	TGCAGACCTCAGTTGTCCTAC	TCCTCTTGGATACCAGGTGCT
Sox10	GGAGATCAGCCACGAGGTAATG	GTTGGGTGGCAGGTATTGGT
Спр	ACCCGCAAAAGCCACACA	CACCGTGTCCTCATCTTGAAG
Mbp	ACACACGAGAACTACCCATTATGG	AGAAATGGACTACTGGGTTTTCATCT
m18s	AGTCCCTGCCCTTTGTACACA	GATCCGAGGGCCTCACTAAAC
Pja2	GCC TTG CCA TCA CTT CTT TC	GCA GAT GCG TCA ATA ACT GC
Wdr33	TGA TCT GGT CCC ACC AAT AG	GCA GAT GCG TCA ATA ACT GC

Supplementary Table 4. List of the genes identified in PRMT5 knockdown cells compared to controls for the following alternative splicing event: Skipped Exon (SE), Mutually Exclusive Exon (MXE), Alternative 5' splice event (A5SS), Alternative 3' splice event (A3SS), Retained Intron (RI)

SE	MXE	A5SS	A3SS	RI
Муо5а	Rsbn1l	Zfp691	Zfp2	Hsf1
Supl15h	Sobp	Sh3bp5l	Epn1	Adamts10
Prpf39	Vit	Adamts10	Map4k4	Pla2g4b
Crem	Zfp346	Steap2	Tbc1d24	Amigo2
Uspl1	Ints10	Taf1c	Fkbp1a	Keap1
Aste1	Fuk	Lzts3	Zfp788	Tert
Csnk1g3	Tmbim6	Ciz1	Zbtb37	
Sbno2	Dap3	Ccser1	Zfp946	
Pdp1	Klhl18	Rfx5	Baz2b	
Sobp	Ptk2	ll15ra	Tank	
Map3k4	Zfp788	Adamts10	Pms2	
Atp5s	Enox2	Sema6c	Zfp82	
Pkd1	Zfp788	Ароо		
Atr	A730011L01Rik	Rsad1		
edpk	9530077C05Rik	Cant1		
AK016788	Tcf7l2			
B3gnt5	Pdgfc			
Eps15l1	Epb41l4a			
Enox2	Smarce1			
Armcx1	Sorbs1			
Trim68	Ap4e1			
Nsun3	Prss36			
Zfp788	Senp8			
Ankrd29	Lrrc7			
Fbrsl1	Kif21a			

mKIAA1584	Cyp2r1		
Kirrel3	Scyl3		
1110054O05Rik	Lrrc7		
BC006965	Dnahc9		
2310005N01Rik	COX4AL		
Tmbim6	Senp8		
Milt4	Dnahc9		
Sdccag3	Cnot2		
Krba1	Enox2		
mKIAA1335	Kif21a		
Phf16			
Svil			
Fam151b			
Enox2			
Zfp202			
Dos			
Zfp821			
Cep152			
Krba1			
Ocel1			
Acvr1			
Tmtc1			
Zfyve21			
Senp8			
Gal3st4			
Mylk			
Senp8			
Vegfa			

Wdr52		
Acap2		
Trerf1		
Zfp788		
Ccdc77		
Abca8b		
Pla2g4b		
Zfp324		
4930578N16Rik		
Zfp239		
St3gal3		
Cacna1c		
AK015657		
Slc7a3		
Pbx4		
Rgs19		
4933411K20Rik		
Tmem194b		
Cyp2r1		
Osgepl1		
Tns1		
Elmod3		
ltgav		
4932438A13Rik		
Ppp4r1I-ps		
Nfatc2ip		
Zfp324		
Alkbh1		

D04		
Baz2b		
SImap		
Wdr62		
6720401G13Rik		
Atg16l1		
Atp4a		
Lrrc45		
Brd4		
1810013D10Rik		
Clta		
Sgip1		
4930523C07Rik		
Wnk1		
Accs		
mKIAA0656		
0610037D15Rik		
Erc2		
Polm		
BC046404		
Agbl2		
Zfp655		
2010015L04Rik		
Tcf7l2		
6230409E13Rik		
Anubl1		
Cyp2r1		
Ddb2		
Sgip1		

	τ		
Baz2b			
2310004I24Rik			
Ubap2l			
Armcx1			
P2rx6			
Znf618			
Pigv			
Fam38b			
Nkain4			
Terf2			
Odz4			
4930481A15Rik			
Ccdc157			
Neil1			
Fggy			
meif2C4			
AK045786			
Csmd1			
Ttc13			
Dnajc17			
Zfp952			
Wipf3			
Tcf20			
Cyp2r1			
Gprasp2			
2210009G21Rik			
Gbp3			
Ccdc57			

Ptk2		
Сер63		
Prss36		
Gprasp2		
Sh3glb2		
BC004004		
Rgs7		
Rcbtb1		
Ranbp17		
Fbxo25		
Grhl1		
Tec		
Mbd5		
Tmem194b		
Gpr137		
Poli		
Pion		
Mark3		
Scn2a1		
Cyp4f17		
Wdr78		
AI118078		
Abcb4		
Slc39a14		
Lrp8		
Zbtb43		
Slc17a8		
Slc29a3		

Tgfbr2		
Cd99l2		
Ppm1b		
Raph1		
Prpf40b		
2210404J11Rik		
Zfp551, Znf551		
Fggy		
Pdzd2		
2810429I04Rik		
Gfra1		
Ccdc76		
Tsku		
Zbtb43		
Shc1		
Crem		
Madd		
Lipo1		
Rapgef6		
Rims1		
Dsc2		
Enox2		
6720401G13Rik		
Lrp1b		
Thap6		
Wdfy2		
4930432K21Rik		
Thsd1		

E130303B06Rik		
Fam35a		
Kif24		
Blzf1		
Zfp317		
Rapgefl1		
Tpd52l1		
D2hgdh		
Nr3c2		
Sytl4		
Scly		
Trpm2		
Pgbd1		
Dlg3		
1700012B15Rik		
Zfp420		
Xrcc3		
Tpcn2		
2210009G21Rik		
Thap6		
Slc35a1		
Mfsd9		

Supplementary References

- Zhang *et al.*, An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex, *Journal of Neuroscience*, **34** (36) 11929-11947; DOI: https://doi.org/10.1523/JNEUROSCI.1860-14 (2014).
- 2. http://www.brainrnaseq.org