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Supplementary Material I 

 
Multi-set control/response structure and pre-processing of Multicolour Flow 

Cytometry Data 

 
Multi-set control/response structure  

MFC data quantify the presence of fluorescently labelled cell properties, such as surface marker 

expressions, of a large number of single cells. These cells are collected per individual sample 

and the number of collected cells may vary considerably between cell ‘sets’. Experiments often 

compare a ’Case’ (or responder) group to samples obtained from ‘Control’ individuals. The 

Control individuals present surface marker expression on their cells typical for individuals that 

do not display the response of interest, while the individuals in the ‘responder’ group present 

cell populations with surface marker expressions characteristic of the immune response 

studied.  

Figure S1 shows the possible arrangements of the MFC data by considering three different 

levels. (1) Single matrices, which hold the cell set measured per individual; comprehensive and 

comparative analysis of different samples require that the same surface markers are measured 

across all individuals. (2) Single matrices are concatenated column-wise leading to X =  [
X1

⋮
X𝐼

]  

of size ∑ 𝑁𝑖x 𝐽  𝐼
1 , where 𝑁𝑖 is the number of cells of the 𝑖th individual and 𝐽 corresponds to the 

markers measured, 1 … 𝑗 … 𝐽. This resulting matrix 𝐗 therefore consists of a ‘multiset’, where 

each set contains the cells of one individual; each row within each set represents measurement 

of one single cell. Each individual might be either a control or a responder, the information of 

the respective group is displayed in the level (3) of the multiset structure with the matrix 𝐗𝑖𝑔
 

size 𝑁𝑖𝑔
x 𝐽.  

The index 𝑔 = 0 for the control and 𝑔 ≥ 1  for the responder groups that might correspond to 

different diseases or subtypes of the same disease. If all responder individuals are drawn from 

a population with the same disease, then 𝑔 will assume values 0 and 1, for the control group 
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and responder group, respectively. In some cases, experiments are paired, which means that 

the same person is followed and analysed before and after an immune response.  

 

Figure S1: (1) Single data matrices representing measurement per individual, (2) Multiset data arrangement obtained by 
linking the matrices column-wise, (3a) Control/Responder differentiation of the multiset structure, with paired data, (3b) 
Control/Responder differentiation of the multiset structure, with paired data 

 

In this case the index 𝑖, representing the individuals, is not unique (3a).  However, the two Flow 

Cytometry case studies we consider in this paper both consist of unpaired individuals, indicated 

by different 𝑖 (as in 3b).  

 

 

 

 



5 
 

 

Step 0: Data pre-processing 

Data pre-processing is a very important aspect of chemometric data analysis.1 It aims to remove 

variability in the data that is unrelated to the problem under study, while retaining the 

experimentally relevant information. In Flow Cytometry, such irrelevant variability might derive 

from instrumental artefacts due to misalignment of the laser source, baseline drift, laser power 

variability, interference of fluorescent labels, or uninformative noise coming from low intensity 

signals. Removing such irrelevant variability in a quantitative and reproducible way facilitates 

the quest for relevant biomedical information and guarantees that the fluorescents intensities 

are measures of level of protein expression on the cells.  

The first step of the pre-processing consists of transforming matrix 𝐗 using log (or arcsinh) 

function. In MFC, this type of transformation is essential to cope with the broad dynamic range 

of emissions between fluorophores. The data matrix may contain negative values, due to 

background subtraction or to the compensation of overlap between emission spectra of 

different fluorophores2. These require a more dedicated transformation, such as the arcsinh 

scaling described by Finak et al.3. Multivariate analysis of the cell variability then requires 

centering and scaling of the log or otherwise-transformed matrix 𝐗log = log10(𝐗) Eq. S1. Mean 

(or median) centering subtracts the column mean (or median) from every element in the 

column, which removes surface marker expression consistently present across all cells, 

resulting in the variability in surface marker expressions across the cells.  Scaling equalizes the 

variability of each surface marker across the cells, to allow them to contribute equally to a 

multivariate model of the data, regardless of the intensity of the used fluorophore or the 

absolute variability in abundance of every surface marker.  

Both centering and scaling need to take into account the multi-set structure of the MFC data 

(Fig. 1). Several strategies for centering and scaling may accommodate this structure and the 

quantitative comparison between case and responder individuals4. 

One strategy is centering and scaling the variables per set, i.e. per individual.  

(a) 𝐦𝑖𝑔
=  

1

𝑁𝑖𝑔

 𝟏𝑁𝑖𝑖𝑔

𝐓  𝐗log,𝑖𝑔
        Eq. S2 

(b) 𝐗𝐦𝑖
= 𝐗log,𝑖𝑔

− 𝟏𝑁𝑖𝑔
m𝑖𝑔

T  
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Where 𝐦𝑖𝑔
 is the mean calculated for the surface markers measurements of the 𝑖𝑔–th 

individual, 𝑖𝑔 = 1𝑔, … , IG , hold in the matrix  𝐗log,𝑖𝑔
 of size 𝑁𝑖𝑔

x 𝐽; 𝑁𝑖𝑔
 corresponds to the 

number of cells of the 𝑖𝑔–th individual; 1 is a column vector of ones with length 𝑁𝑖𝑔
. The 

resulting mean centered matrix 𝐗m,𝑖𝑔
 is thus scaled using as weight the inverse of 𝐒𝑖𝑔

 , diagonal 

matrix of size 𝐽x 𝐽 holding the standard deviation of the mean-centered surface markers of the 

𝑖𝑔–th individual, calculated as follows:   

(a) 𝐬𝑖𝑔

𝐓  = √𝑣𝑎𝑟(𝐗𝐦𝑖
 )         

(b) 𝐒𝑖𝑔
=  𝐝𝐢𝐚𝐠 (𝐬𝑖𝑔

𝐓  )        Eq. S3 

(c) 𝐗sc = 𝐗m,𝑖𝑔
 𝐒𝑖𝑔

−𝟏              

Centering (Eq. S2b) and scaling (Eq. S3c) per individual may correct technical individual-specific 

offsets due to e.g. changes and/or misalignment of laser intensity, sample handling etc. that do 

not contribute to the biomedical information within the MFC dataset5. 

Next to pre-processing per individual, there are other pre-processing options, based on the 

class-level (control or response) or the whole dataset. Considering a single class, specifically the 

‘control group’ (𝑔 = 0), as a reference for ‘normal’ cell variability may highlight those cells that 

are specific to a response in the other class(es). Centering and scaling based on the control 

individuals selectively emphasizes deviations from the ‘normal’ cell variability observed in the 

case individuals, when means and the standard deviations used in Equations. S2 and S3 are 

calculated across the control individuals. This requires correcting for the considerably different 

numbers of cells per analysed individual, in order to avoid the individual with most cells 

dominating the calculated means and standard deviations. This correction is accomplished by 

pooling the means of each set into a weighted class mean, according to Eq. S4. 

(a) 𝐦0 =  
∑  

𝐼0
10

𝐦𝑖0

𝐼0
  

(b) 𝐗m0
= 𝐗log − 𝟏𝑁𝑖𝑔

m0
T       Eq. S4 

where 𝐦𝑖0
is the mean of the log-transformed surface marker intensities of the 𝑖0–th control 

individual, calculated according to Eq. S2a, with 𝑔 = 0; 𝐼0 is the total number of control 

individuals. 𝐗m0
, of size of size 𝑁𝑖𝑔

x 𝐽, represents the multiset matrix centered using the class 

mean of the log-transformed surface marker intensities of the control class.  
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Also the cumulative control standard deviation may be calculated by Eq. S5:   

(a) 𝐬0
𝐓  = √

∑  𝑣𝑎𝑟(𝐗𝐦,𝑖0)
𝐼0
10

𝐼0
   

(b) 𝐗sc0
= 𝐒0

−𝟏(𝐗m0
)         Eq. S5 

with 𝐗m,𝑖0
 the mean-centered individual control matrix, estimated according Eq. S2b, with 𝑔 =

0; 𝐒0
−𝟏 the diagonal matrix holding the standard deviation 𝐬0

𝐓 weighted for the number of 

control individuals 𝐼0; 𝐗sc0
 the multiset matrix resulting from the auto-scaling performed with 

the weighted mean and standard deviation across the control individuals. From 𝐗sc0
 we can 

extrapolate the pre-processed matrix of the control and responder sets, expressed in Eq. S6 

and Eq. S7, respectively:  

𝐗sc0
= [

𝑿sc𝟏𝟎

⋮
𝑿sc𝑰𝟎

]          Eq. S6 

𝐗sc1
= [

𝑿sc𝟏𝟏

⋮
𝑿sc𝑰𝟏

]          Eq. S7 

Among the different options, centering and scaling based on the control class (Eqs. S4b, S5b), 

will enhance the deviation of the responder individuals from the cell variability observed in the 

control individuals. Alternatively, individual centering and scaling (Eqs. S2b, S3b) might be a 

preferable option when there are considerable shifts in the observed surface marker 

expressions of cells between different samples. These operations now rid the resulting data of 

uninformative offsets and allow each surface marker to a priori contribute equally to the model 

fitted subsequently, taking into account both the multiset and control/responder structure of 

the data. However it should be noted that the last option has a disadvantage. When all cells of 

one response individual show up or downregulation of one or multiple markers compared to 

the cells of the control individuals, this information will be lost due to individual centering. 
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Figure S2: The effect of Kernel bandwidth (h in Equation 4, main article) on the estimate of a (normal) distribution. In yellow: 
a histogram of 1000 samples from a Unimodal Gaussian distribution with mean 4 and standard deviation 1. In green: an under 
smoothed estimate using a small bandwidth. In red: an over smoothed estimate using a large bandwidth. In light-blue an 
estimate using a near optimal bandwidth. 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 



9 
 

Supplementary Material II 

 
Additional results of ECLIPSE on the LPS dataset  
 

As an example of the heterogeneity between responders, the ECLIPSE results obtained from 

Individuals #14 and #16 are shown in Figure S3. Two groups of neutrophils, mainly separated 

along the first component, can be observed in both individuals. However, in Individual #14 the 

two populations are not as well distinguished from each other as in Individual #16. Cells with a 

continuum in surface marker expressions connects the two populations at the upper part. In 

addition, Individual #14 presents a quite heterogeneous distribution within the mature 

neutrophils that can be encircled by two different gates. The percentages of the cells included 

in the gates for Individual #14 and #16 are reported in Table S1. Individual #16 displays two 

already well distinguishable homogenous populations. This indicates a difference in response 

between the two individuals, which for instance could suggest that the immune system of 

Individual #16 responded faster to the LPS stimulus when compared to the other individual. 

 

Figure S3: Visualization of two responder individuals in the ECLIPSE model, built after eliminating the normal cells. The variance 
explained by the general model for each individual is displayed on the axis. The individuals present different distribution of the 
responding cells that can be selected by different gates, based on the higher density estimation. The histograms show the 
marker expression of the cells within the different gate; the distribution are displayed with the colour of the corresponding 
gate. Percentage of the cells, normalized on the original total amount of cells, is visualized in Table 1. 
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Table S1: Percentages of the total cells of responder individuals #14 and #16 in the gates 

displayed in Fig. S3. 

 

 

 

Figure S4: Box plot of the angle distributions between the sub-spaces defined by loadings of different SCA models. The first 
comparison shows that the Control SCA and Responder SCA models are the most similar as shown by the smaller angle than 
those obtained by the comparison of each of the models to the ECLISPE SCA model. 

 

 

 

 

 

 

 

 



11 
 

Table S2: ECLIPSE plots of the LPS response group per individual. 
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Additional results of ECLIPSE on the asthma dataset 

 

Table S3: Density plots of all the asthma patients in the ECLIPSE model Space 
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Supplementary Material III 

 
Citrus and viSNE analyses on the LPS and asthma study dataset 

 

Results of Citrus on LPS data 

Citrus6 uses hierarchical clustering to identify phenotypically similar cell populations. 

Descriptive cell cluster-specific features are calculated on per-individual basis. These features 

can include, for example, the proportion of cells in the identified cluster for each individual. For 

intergroup analysis, the method employs a regularized classification model to detect the group-

specific cell clusters for each sample.  

By definition, a regularized model selects subsets of features of the data to achieve the best 

prediction, avoiding overfitting. The constant regularization threshold regulates the number of 

features used for the classification. A series of models with increasing complexity, i.e. with 

increased number of selected features, is built by varying this threshold. The fit of each model 

is estimated through cross-validation. A plot of the Model cross-validation Error Rate versus 

Regularization Threshold enables investigators to assess the quality of the results of the 

classification and the fit of the model chosen by Citrus analysis. An optimal model has low cross-

validation error rate, which corresponds to a low percentage of misclassified samples. When 

the error remains constant within a range of increasing number of features, the regularized 

threshold associated to the fewest number of features is chosen in order to select the most 

informative features that differ between the two groups. 

Citrus was applied to the LPS dataset using the R GUI. The regression classification model was 

trained on the data using the default pre-processing of the GUI, which implies arcsinh transform 

with cofactor 5. The accuracy of the classification models constructed is shown in Figure S5. 



18 
 

 

Figure S5: The figure shows the Model Cross-validation Error Rate vs the log(Regularization Threshold) for the classification 
models constructed on the arcsinh-transformed LPS dataset. The number of the features, used to build the model, associated 
to the different regularized thresholds is shown on the top of the plot. The green circle (cv.min) points out the model with the 
smallest number of features necessary to obtain the lowest cross-validation error; while the orange diamond (cv_1se) 
indicates the model with the smallest number of features associated to cross-validation error 1 std higher than the minimum 
error. The model with cv.min is chosen by the Citrus analysis and this corresponds to an error rate of around 7%. 

 

The model, identified as optimal by the cross-validation procedure (cv.min in Figure S5), 

incorrectly classifies around 7% of the samples. Two cell clusters were selected as the most 

discriminating ones between LPS responders and controls by the cross-validated model. The 

histograms of these clusters, both more abundant in the LPS responder, are shown against the 

background cluster, which contains all the rest of the cells not included in the specified cluster 

(Figure S6). 

 

Figure S6: The histograms show the phenotype of the cells belonging to the cluster (red) selected by the cross-validated model. 
The background histograms (blue) show the rest of the data, not included in the cluster. Cells from cluster 14985 are  
characterized by the distinctive phenotype CD16-and+CD62L+CD64+; cells from cluster 14989 are 
CD16+CD11b+CD69+CD11c+CD62L-. Both clusters are more abundant in the responder group. 
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Cluster 14989 has a distinctive phenotype, existing of CD16+CD11b+CD69+CD11c+CD62L− 

cells. Two CD32 populations are present in this cluster: CD32− and CD32+. In contrast, cells 

from cluster 14985 express high levels of CD64 and CD62L, while they have a dim expression of 

CD16. The cells present in the two cluster might be identified as activated mature and partly 

immature (CD16dim) neutrophils, respectively. Using the ECLISPE method we also identified two 

LPS-specific cell clusters in the ECLIPSE space generated when plotting PC1 and PC2, Figure 4. 

To be able to compare these results, we applied Citrus on the pre-processed data as used in 

the ECLIPSE analysis. Subsequently, we applied Citrus on the LPS response-specific cells after 

ECLIPSE cell elimination. 

First, Citrus was applied on the data pre-processed with the ECLISPE algorithm, as described in 

Pre-processing section. In this analysis, all the cells were included. The cross-validated error 

rates of the obtained models are displayed in Figure S7.  

 

Figure S7: Cross-validation error rate plot for LPS dataset transformed with the ECLIPSE pre-processing procedure: arcsinh 
transformation, individual mean center and control scaling. Model Cross Validation Error Rate equals to 0 is obtained with 3 
stratifying features.    

A perfect classification is achieved with a model which uses three distinctive features. This 

model is chosen as optimal by the Citrus Analysis. The most discriminant three clusters 

identified by the model are shown in Figure S8. Cluster 14956 and 14993 represent phenotypes 

that might be assigned to mature neutrophils, with CD16+CD62L+ and CD16+CD62L+CD32−, 

respectively. These clusters are found more abundant in the control group, compared to the 
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responder group for which cluster 14990 is more present. This last cluster, with CD16−CD69− 

and CD62L+ can be assigned as immature neutrophils. 

 

Figure S8: Histograms show the phenotypes of the three cluster identified by the cross-validated classification model. Cluster 
14956 and 14993 present phenotypes that might be assigned to mature neutrophils, with CD16+CD62L+and−. The cluster 
14990, more abundant in the responder group, is identified as premature neutrophils with CD16−CD69− and CD62L+.  

 

Finally, we applied Citrus to the LPS dataset, after the elimination of normal cells, provided by 

ECLIPSE. The model chosen by the Citrus analysis offers a perfect classification of the individuals 

in the two groups, as shown in the cross-validation error rate plot (Figure S9). In this case, 

however, the discriminating model requires a lower number of informative features. In fact, 

only one feature is necessary to correctly classify the samples. This feature corresponds to the 

abundance of cluster 14994 in the responder group. The phenotype of this cluster (Figure S10) 

indicates that the most discriminant population is represented by cells 

CD16−CD11b−CD62L+CD69−CD11c−/dim, which might correspond to gate a in Figure 4 of 

ECLIPSE, defined as immature neutrophils. In contrast to the previous analyses, there are no 

clusters of mature neutrophils identified as most discriminant ones between the groups. 

The results obtained by the three analysis show how individual mean-centering and control 

scaling has a positive effect in the predictive ability of the Citrus algorithm. The ECLIPSE 

algorithm, at the current stage, is not developed to be used as a classification model. It is more 

suited for explorative research, finding cell populations that arise upon an immune response. 

These results can give further insight in the mechanism behind the immune response studied. 

Due to the different purposes of the models, a direct comparison of the prediction accuracy of 

the two methods is not possible. However, the last analysis, performed on the data after 

removal of normal cells, brings a further improvement of the classification model in terms of 
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complexity. This shows the power of the subsampling provided by ECLIPSE, since in principle 

the ECLIPSE subsampling may be beneficial for discriminant classification methods as Citrus.  

 

Figure S9: Cross-validation error rate vs Regularization threshold plot for LPS dataset transformed with the ECLIPSE pre-
processing procedure (arcsinh transformation, individual mean center and control scaling), after elimination of normal cells. 
Model Cross Validation Error Rate null is obtained with 1 stratifying feature.  

 

 

Figure S10: Histograms of the phenotypes of the most discriminant cluster, more abundant in the responder group. Cells in 
the cluster are CD16−CD11b−CD62L+CD69−CD11c−/dim. 

 

 

Results of viSNE on LPS data 

viSNE7 analysis was applied to the LPS dataset using the Matlab GUI cyt (downloadable from 

the website https://www.c2b2.columbia.edu/danapeerlab/html/cyt.html). In order to obtain a 

better visualization of single-cell resolution, we run all the analyses on a subset of the LPS 

dataset. Each individual was subsampled to 2000 cells, so that the total amount of cells was 

30,000. The analysis was first performed using the default transformation present in the GUI, 

consisting of arcsinh transformation with cofactor 5. The results are shown in Figure S11. The 
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upper left panel (Figure S11a) show the cells in the viSNE map coloured per individual. It seems 

that cells of the same individual are grouped together, suggesting that the cluster found by the 

algorithm are individual specific. The viSNE map in the upper right panel (Figure S11b) shows 

cells coloured per control/response group: a considerable overlap of cells between control and 

response individuals is observed. Distinctive region for the responders seems to be the upper 

left region and the right area. However, not all the response individuals show cells in those 

regions. 

 

 

Figure S11: viSNE analysis performed on the LPS data pre-processed with the default arcsinh transformation present in the cyt 
gui. 11a: cells in the viSNE map are coloured per different individual; 11b: cells from the responder individuals, in the viSNE 
map, are coloured based on control (blue) and responder (red) group. 11c: cells are coloured based on expression of the single 
7 markers. 
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Figure S12 shows the constructed viSNE map only for the responder individual ID14, for whom 

we show the ECLIPSE model in the Supplementary material II (Figure S3, upper panel). LPS-

specific cells CD62L−CD16+CD11b+ (upper right) and CD62L+andCD16− (upper left) can be 

observed.  These cell populations were clearly distinct also in the ECLIPSE space. 

A big overlap is present with the control region.  However, in viSNE, we cannot affirm whether 

these normal-like cells are overrepresented compared to the controls and thus interesting to 

describe the immune response. The Difference between Densities (DbD, step 4), performed by 

ECLIPSE, takes into account both situation that might occur because of immune response: 

deviation from normal cell marker variability and overproduction of normal immune cells. 

 

Figure S12: Cells from the responder individual with ID14 shown on the viSNE map built on all the control and responder 
individuals. The panels show the marker expression of the measured marker. 

 

Secondly, we performed viSNE on the LPS data pre-processed by the ECLIPSE algorithm; the 

results can be observed in Figure S13.  The viSNE map, coloured per individual, shows how the 

cells are distributed across the map and no donor-specific clusters are present. In fact, the 

multiset pre-processing specifically adopted for the LPS study by ECLIPSE (as described in the 
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Pre-processing section of Supplementary Material I, Equations S2b and S5b), helps to remove 

the individual variability of the control individuals. In this case, the individual control variability 

is biologically not that relevant and introduces noise into the results. It might originate from 

instrumental variability, for instance.  

 

Figure S13: viSNE analysis performed on the LPS data mean-centered and scaled according to the ECLIPSE algorithm. 13a: cells 
in the viSNE map are coloured per different individual; 13b: cells in the viSNE map are coloured based on control (blue) and 
responder (red) group. 13c: cells from the responder individuals, in the viSNE map, are coloured based on expression of the 
single 7 markers. 

 

Finally we applied viSNE to the LPS data pre-processed by ECLIPSE, but after removal of normal 

cells from the responder individuals, performed by the ECLIPSE algorithm. The results are 
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shown in Figure S14. It is clear how the cells from control individuals (blue, Figure S14b) are 

placed in the middle of the viSNE map, whereas the cells from the responder individuals (red, 

Figure S14b) are distributed in the upper and lower region of the map. Very little overlap is 

present between cells of the two groups and clearly, a lower amount of responding cells is 

present. The marker expression of these remaining cells is shown in Figure S14c. ECLIPSE 

removes mostly the CD16dimCD62L+ and CD16−CD62L− cells, leaving two quite distinctive 

populations. No particular difference in marker expression is noted in the viSNE analysis, 

performed on the ECLISPE subsampled data.  
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Figure S14: viSNE analysis performed on the LPS data mean-centered and scaled, after removal of normal cells in the responder 
done by ECLIPSE. 14a: cells in the viSNE map are coloured per different individual; 14b: cells in the viSNE map are coloured 
based on control (blue) and responder (red) group. 14c: cells from the responder individuals, in the viSNE map, are coloured 
based on expression of the single 7 markers. 

The viSNE algorithm is used mostly for data dimensionality reduction and visualization 

purposes, while the main goal of ECLIPSE is the selection of interesting cellular information 

and/or populations based on multiple marker co-expression. In principle, no quantitative 

parameter can be used for the comparison with the ECLIPSE results on the LPS data. However, 

we have shown how the viSNE analysis is susceptible to sample-to-sample variation, which has 

influence on the resulting map. The multiset pre-processing operated by ECLIPSE systematically 

reduces this variation.  
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Both ECLIPSE and viSNE performed on the ECLIPSE subsampled data reveal two distinctive 

populations, which are mostly differentiated by CD16 and CD62L marker expressions. However, 

an advantage of ECLIPSE is that the co-expression among the markers are displayed in one 

single biplot. Secondly, ECLIPSE defines response-specific cell populations, also taking into 

account normal cells that are overrepresented upon an immune response. These cells are not 

specifically defined when analyzing data with the viSNE algorithm. Next to this, the hallmark of 

ECLIPSE is the removal of normal cells, leading to a less crowed representation, which enables 

to distinguish the LPS responding cell populations better, also in the viSNE map (Figure S14). 

Results of Citrus on the asthma data  

We trained Citrus on the asthma data using the R GUI. The model error rates plot of the built models is 

shown in Figure S15.  

 

Figure S15: The figure shows the Model Cross-validation Error Rate vs the log(Regularization Threshold) for the classification 
models constructed on asthma data.  The green circle (cv.min) points out the model with the smallest number of features 
necessary to obtain the lowest cross-validation error, which corresponds to 25% of misclassified samples;  the orange diamond 
(cv_1se) indicates the model with the smallest number of features associated to cross-validation error 1 std higher than the 
minimum error, which leads to an error of around 30%. 

 

The highest accuracy achievable by the analysis correspond to 25% of misclassified samples. 

Four features were necessary for this minimal error (Figure S15, cv.min). A model with a cross-

validation error 1 std higher than the minimum, corresponding to 30% of misclassification, 

requires 1 feature (Figure S15, cv.1se).  The clusters detected by both models are shown below.   
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The feature identified by the model cv.1se corresponds to the abundance of cluster 41977, 

found to be more abundant in the control group (group 1) compared to the asthmatic individual 

(group 2) (Figure S16). The phenotype indicated that the cluster is mostly characterized by 

CD4+ T cells, having CD3+CD4+ and CD8−CD16−CD123−CD14−CRTH2− expression levels.  

 

Figure S19:  

 

The cell clusters found by the best performing model are shown in Figure S17. Cluster 41962 is 

characterized by cells with CD16+CD123dimCD8dim and CD3−CD14− expression levels; while 

cluster 41977 has a  CD4+ T cell phenotype (CD3+CD4+). These clusters are more abundant in 

the control group compared to the asthmatic. This is in contrast to the ECLIPSE results, in which 

we found CD3+CD4+ cells present in the asthmatic patients after the ECLIPSE elimination step 

of normal cells.  

The last two clusters are more represented in the asthmatic group when compared to the 

control group. For these clusters, it is harder to identify the cell populations. Cluster 41979 

consists of CD16+CD14dimCRTH2+CD123+ cells, which might be identified as monocyte 

derived cells. As shown by the cluster abundance graph on the right, there is high variability in 

the occurrence of this cellular cluster among the asthmatic patients. The last cluster 41994 has 

a very heterogeneous expression pattern, with multiple peaks per marker. |This indicates the 

presence of multiple cell types within the cluster. Based on the smaller peaks with high CD193, 

CRTH2 and CD123 expression, basophils and/or eosinophils might be identified within this 

cluster. In addition, CD3+CD8+ T cells might be present in this cluster. However, co-expression 

Figure S16: The upper panel shows the phenotype of the most discriminant cluster between control and asthmatic individuals, found by 
the model associated with cv.1se error (~30%). This cluster is on average more present in control group (group 1) than in asthmatic 
(group 2), as displayed on the lower panel. Cells in the specified cluster can be recognized as CD4+CD3+ and CD8- T cells. 



29 
 

of these markers should be verified to be able to draw these conclusions. When multiple cell 

types are present within one Citrus cluster, it is impossible to state which cell types are 

represented, since the single marker histograms do not give information about co-expression 

of markers. ECLIPSE, on the other hand, allows interpretation of co-expression from  the 

location of the cell populations and the respective orientation of the loadings. 

 

Figure S17: Upper panel: Histograms show the phenotype of the discriminant clusters, found by the model associated with smallest 
cross-validation rate error, corresponding to 25% misclassification. Lower panel: Differential abundance of these clusters between 
control (group 1) and asthma (group 2). 
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viSNE analysis of asthma data 

viSNE was performed on the asthma data. Due to limits in computational power, the original 

datasets consisting of almost 2 millions cells needed to be downsampled to 3000 cells per 

individual (48000 cells in total). Figure S18 shows the viSNE analysis performed on the arcsinh-

transformed data (cofactor 5), coloured per individual (upper left panel) and for both groups 

(upper right). Substantial overlap of cells is present between the control and the asthmatic 

patients. Based on the single-marker expression profile of all cells (lower panel), we might 

conclude that most of the overlapping regions are associated to CD4+ T-cells; CD8+ T-cells; 

CD16+ cells, which might be identified as neutrophils; and CD14+ cells, which might be 

identified as monocytes. Also a few smaller CD193+ clusters were found, which could be 

eosinophils or basophils. 

 

Figure S18: viSNE analysis performed on the asthma data. a: cells in the viSNE map are coloured per different individual; b: 
cells, in the viSNE map, are coloured based on control (blue) and responder (red) group. c: cell are coloured based on the 
expression levels of the single 8 markers. 

a b 

c 
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Considerable heterogeneity can be observed among the asthmatic patients. In this case, maps 

with distributions of a single or a few patients may enhance focus on subtle and patient-specific 

cell populations. Figure S19 shows the viSNE map with individuals #63 and #67, which were also 

grouped and analysed in a partial model by ECLIPSE (Figure 11).  

 

 

Figure S19: a: viSNE map obtained by the analysis of the asthma data, only the cell distribution of asthmatic individual #63 
and #67 are shown. b: cells coloured based on the expression levels of the single 8 markers. 

 

 

a 

b 
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Similar cell subpopulations seem to be present for both individuals. However, for individual #67 

only a few cells are present in various regions. This might be a consequence of the down-

sampling, which retains the more abundant CD16+ cell population at the expenses of rarer cells. 

The phenotypical marker pattern observed in Figure S19b is similar to the phenotypes shown 

in the ECLIPSE partial model. CD16+ cells might be identified as neutrophils; 

CD123+CD193+CRTH2 cells as basophils; while CD3+CD8+ cells and CD3+CD4+ cells might be 

assigned to CD8+ T cells and CD4+ T cells, respectively. A key disadvantage for easy 

identification of the various cell populations is the representation of the marker expressions in 

single plots per marker. 
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Supplementary Material IV 

Manual sequential gating of the asthma red cluster and projection into ECLIPSE space 

 
Manual gating of the cells of the individual belonging to the red cluster (Figure 10c) was 

performed in FCS express 5, according to the surface markers phenotype as shown in Figure 

S20. The gating demonstrates the absence of double positive CD4/CD8 T cells. Double negative 

CD4/CD8 T cells are present in a very low percentage. These cells, probably also present in the 

control individuals, were eliminated by the ECLIPSE algorithm. We can conclude that the mutual 

direction of CD4 and CD8 markers in the ECLIPSE space represents a big part of the variation of 

the data well, associated with the presence of different types of T cells (CD4+ and CD8+). 
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Figure S20: Manual sequential gating of the cells from the individuals belonging to the red cluster, in figure 10c. The gates are 
differentially coloured. 
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CD8+ T cells (CD3+CD8+CD4-, yellow gate) are not easily visualized in the first two PCs of the 

ECLIPSE model (Figure S21, left panel, PC1-PC2 plot). The CD8+ T cells are positioned in the 

middle of the plot, overlapping with other cell populations. Obviously, the other markers are 

more important to explain the variance of cells this 2PCs model (Figure 10C), since all the other 

markers show longer loadings when compared to the CD8 loading. If the CD8+ T-cells were 

more important, the loading would be longer and the cell population would be visible in these 

first 2 PCs. The investigation of the ECLIPSE space built on PC1 and PC3 made the CD8+ T cells 

better distinguishable (figure S21, right panel, PC1-PC3 plot and figure S22).   

 

 

Figure S21: ECLIPSE partial model of the red cluster: the left panel shows the space built with PC1-PC2, the left panel shows 
the space of PC1-PC3. The cell scores in the plots are coloured accordingly to the gates found by the manual gating procedure. 
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Figure S22: Density representation of the ECLIPSE partial model of the red cluster, showing PC1 and PC3. 

 

CD4+ T-cells were easily visualized in the left part of the ECLIPSE plot (figure 10c, ECLIPSE 

paper), with two main distinctive populations. These populations are different because they 

express different levels of the marker CD3. Based on the orientation of the loadings in space 

spanned by PC1 and PC2, we would expect to find CD3brightCD4+ cells situated closer to the CD3 

loading; while CD3dimCD4+ cells are expected to lie more to the left, in the direction of the CD4 

loading and a bit further away from the CD3 loading. This was confirmed when backgating the 

cells, as shown in Figure S23 and S24.  
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Figure S23: Manual sequential gating of the cells from the individuals belonging to the red cluster, in figure 9c. Gates for CD3+ 
cells are shown and coloured differently. 

 

Figure S24: ECLIPSE partial model of the red cluster: the left panel shows the space built with PC1-PC2, the left panel shows 
the space of PC1-PC3. The cell scores in the plots are coloured accordingly to the expression of the marker CD4 and CD3, in the 
CD3+ gate. 
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Supplementary Material V 

 
ECLIPSE and Citrus analyses on synthetic datasets  

Immunological response to a stimulus or a disease can comprise changes in relative abundance 

of a particular cell population and/or changes in expression levels of certain markers can also  

lead to the appearance of new cell phenotypes. The detection of both types of changes is 

essential for a comprehensive understanding of the etiology of the immune response.  

A two-dimensional synthetic dataset was created to show the performance of ECLIPSE and 

Citrus in identifying cell populations, characterized by differences in terms of abundance and 

expression levels of different markers. The synthetic dataset consists of 10 controls and 10 

responders. The control group presents a single cell population with higher abundance than 

the response group. Heterogeneity has been introduced into the response group as the 

samples have diverse cell subpopulations, one of which consists of a small subset of 20 cells 

present only in one responder. This heterogeneity can be observed in the 2D scatter plot, Figure 

S25 (the small cell population in yellow in the top right corner belongs to Responder 10), and 

in the histograms shown in Figure S26;  contour plots showing the differing relative abundance 

of cell populations between controls and responders are shown in Figure S27.  
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Figure S25: 2D scatter plot of the synthetic data. Cells from the control individuals are coloured in blue, while cells from the 
responders are differently coloured per individual. 

 

Figure S26: Histograms showing the expression of the 2 markers included in the synthetic data. Histograms of the control 
individuals are depicted in blue, while the histograms of the responders are in red. 
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Figure S27: Panel A: contour plot of the cells distribution of control individuals. A single cell population is present for all the 
controls; Panel B: contour plot of cells distribution for response individuals. 

 

Citrus was applied to the dataset with a Minimum Cluster Size Threshold (MCST) corresponding 

to 10 cells, so that the method could identify the rare subset. The accuracy of the constructed 

models is shown in Figure S28, which reports the model cross-validation error rate versus the 

regularization threshold associated to the number of features identified. Seven features were 

detected by the model with the minimum error (cv.min), while the model with a cross validation 

error 1 std higher than the minimum (cv.1se) identified two most discriminant features.  
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Figure S28: The figure shows the Model Cross-validation Error Rate vs the log(Regularization Threshold) for the classification 
models built on the simulated data.  The green circle (cv.min) points out the model with the smallest number of features 
necessary to obtain the lowest cross-validation error, which corresponds to 10% of misclassified samples;  the orange diamond 
(cv_1se) indicates the model with the smallest number of features associated to cross-validation error 1 std higher than the 
minimum error, which leads to an error of around 15%. 

 

The features returned by both models are visualized in Figure S29. In both cases, the relative 

abundance of the identified cell clusters is higher in the control group compared to the 

response.  These clusters correspond to the population with lower expressions of Marker1 and 

Marker2, created as more abundant for the control samples. Although the information of 

differential cell population abundance might be relevant for describing an immune response, 

evidence about such relevant response-specific cell populations is missing from the optimally 

parsimonious Citrus model.  
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Figure S29: Panel A: Histograms show the phenotype of the discriminant clusters, found by the model associated with cv.min 
error (10% of misclassification). Differential abundance of these clusters between control (group 1) and response group (group 
2) can be observed in the right panel: these are all found more abundant in the control group.  Panel B: Histograms show the 
phenotype of the discriminant clusters, found by the model associated with cv.1se error (15% of misclassification). Differential 
abundance of these clusters between control (group 1) and response group (group 2) can be observed in the right panel: they 
are more abundant in the control group.   

a 

b 
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Secondly, we performed an ECLIPSE analysis on the synthetic dataset. The Difference between 

Densities (DbD) plot (Figure S30) clearly shows the difference between the two groups. 

Advantageous is the possibility to estimate the difference between densities of a single 

responder against the control group estimate (Figure S30B). This will enhance the resolution 

on a specific individual and it is helpful when one sample is available for the response 

class/classes.  

 

 

Figure S30: Panel a: Difference between Densities plot, obtained by subtracting the KDE cell distribution of 10 responders from 
the cumulative KDE of the control cells distribution. The negative intensity (red) indicates the location where cells over-
produced in the responder are more likely to be present; the positive intensity (blue) indicates the location where control cells 
are more likely to be present. Panel b: Difference between Densities plot of the KDE of cell distribution of a responder (ID #9) 
subtracted from the cumulative KDE of the control cells distribution. 

 

Response cells overlapping with the control marker variability were removed from the dataset 

and the remaining cells are displayed in Figure S31. The small population existing of 20 cells is 

still visualized (top right corner). Few cells are retained also for the control group, due to the 

individual variability we introduced between the control samples.   

a 

b 
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Figure S31: 2D scatter plot of the synthetic data, after the elimination of normal cells performed by ECLIPSE. Cells left for the 
control individuals, due to personal variability, are coloured in blue, while cells from the responders are differently coloured 
per individual. 

 

The results of the analyses on the synthetic data showed how ECLIPSE outperforms Citrus in 

presence of a heterogeneity within the response class. In fact, Citrus is a two-class classifier 

method which needs numerous samples with similar phenotypically properties within both 

groups to find their signature features. Contrarily, ECLIPSE is a one class classifier method that 

requires only a group of control individuals. This is necessary to define a reference, against 

which a single patient or a group of patients, even highly heterogeneous in their response, can 

be compared.  The removal of normal cells will put more focus on the response specific 

subpopulations of each individual, including rare cell subsets.  

In this example, the dimensional reduction step of ECLIPSE was not needed because the data 

had only two dimensions. In order to show that the SCA-based transformation will not affect 

the discovery of cells subpopulations we performed the analyses on a 3D datasets, obtained 

from the first one after specific transformations.  

A third random aspect was added to the first dataset; the matrix obtained was rotated  by using 

orthogonal Procrustes rotation8, which allowed to introduce a more realistic correlation across 

all the three variables. A 3D scatter plot of the new dataset and histograms of the three marker 

expression levels are shown below (Figure S32 and S33). 
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Figure S32: 3D scatter plot of the 3 dimensional synthetic data. Cells from the control individuals are coloured in blue, while 
cells from the responders are differently coloured per individual. 

 

 

Figure S33: Histograms show the marker expression of the three markers created for the synthetic data. Distributions from 
control individuals is displayed in blue, while distributions from response are in red. 

 

We applied the Citrus method on this new dataset. The cross-validated error rates of the model 

obtained, in Figure S34, indicate the model with only one feature as optimal. In this case, different 

relative abundance of cell populations is not identified as relevant feature (Figure S35). As for the 

previous Citrus analysis, the rare cell subset is not detected.   
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Figure S34: The figure shows the Model Cross-validation Error Rate vs the log(Regularization Threshold) for the classification 
models constructed on the synthetic dataset. The lowest cross-validation error (cv.min and cv.1se) is obtained with the model 
using one feature. This corresponds to an error rate of around 2.5%. 

 

 

Figure S35: The histogram shows the phenotype of the cells belonging to the cluster (red) selected by the cross-validated model 
and found more abundant in the responder. The background histograms (blue) shows the rest of the data, not included in the 
cluster. 

 

ECLIPSE analysis was performed on the three-dimensional dataset, whose dimensionality was 

reduced with Simultaneous Component Analysis to two components. Figure S36 shows the 

Control Model with the density estimation of cell score distributions for the control (blue) and 

response group (red), together with the marker loadings. The axis show the variance explained 

by the model. The deviation of the responders (Figure S36B) from the reference group 

principally occurs along the first component PC1 and is mainly described by Marker1. Marker2 

and Marker3 mostly explain the specific variability of cells along the second component PC2.  
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Figure S36: Panel A: shows the density estimate of the control cells scores distribution. Panel B:  shows the KDE estimates of 
the response cells scores distribution. Biplots of the KDE estimates in the Control Model, built on the variability of the control 
individuals. The loadings of Control Model are plotted as vectors: their length indicates the contribution of each marker to the 
cell-to-cell variability; the mutual directions suggest a positive (same direction) or negative (opposite direction) co-expression. 

 

 

a 
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Figure S37: Density estimate of the cells scores distribution from the responder individuals is subtracted from the density 
estimate of the control individuals. The negative intensity (red) specifies the location where cells over-produced in the 
responder are more likely to be present, while the positive intensity (blue) indicates the location where healthy cells are more 
likely to be present. The white area between the red and blue areas corresponds to a value of KDE=0, which can indicate bins 
with no cells or equal intensity of control and responder estimates. 

 

Responder cells with a marker profile variability overlapping with the control variability were 

removed. A new SCA-based space is built on the variability of cells left after this removal and it 

specifically focuses only on the marker expression specific for the responder cells. The resulting 

ECLIPSE space is shown in Figure S38, which does show the rare cell population in down right 

corner. Moreover, the loadings show the correct co-expression between Marker 2 and 3 for 

this rare cell population which was masked in Figure S37, due to the high variability in the 

control cells of all markers.  
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Figure S38: ECLIPSE model built on the cells of the responder individuals, after removal of normal cells (KDE representation, 
panel a; single cells representation panel b). The loadings show the marker co-expression specific for the response-specific cell 
subsets. The small population, consisting of 20 cells, is visible on the bottom right corner.  
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