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Appendix S1: Chemical analyses and enumeration of plankton

We collected duplicate 10-L pond water sample from the bottom to surface by

repeated deployment of a 2.2-L tube sampler from floating docks deployed in each pond (Fig.

1). The water samples were kept in the dark and brought to the laboratory within two hours,

and used for quantifying dissolved and particulate organic (seston) matter, chlorophyll a

concentration, and phytoplankton biomass and composition. We measured dissolved oxygen

(DO) concentration using a multi-probe sonde (556MPS; YSI, Yellow Springs, U.S.A.) from

the floating docks.

To collect zooplankton, we took samples at 5 sites along a diagonal line in each

pond. A 22 L water sample from each pond was filtered using a 100 pm mesh net, and fixed

with 99% ethanol. Zooplankton samples were concentrated into 20 mL plastic vials and

stored at 4°C.

Submersed macrophytes were collected in triplicate on August 16, 2015 using an

Ekman-Birge grab sampler (15%15 cm) around the floating docks. To quantify the area

dominated by submersed macrophytes, we took photos of the six experimental ponds from

above using an unmanned aerial vehicle (UAV) with a video camera (Phantom 3, DJI,

Shenzhen, China) on October 7, 2015 after the experiment had been terminated and the

floating swimming-pool covers removed. All images were analyzed using Image]J software
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(Schneider et al. 2012). For each image, the area dominated by submersed macrophytes was

distinguished as dark-green color whereas bare pond bottoms were distinguished as

bright-brown color after contrast enhancement. The area dominated by submersed

macrophytes and pond surface were outlined manually, and measured area using the

“Measure” function in ImageJ. Submersed macrophyte coverage was evaluated as a fraction

of total pond surface area.

For quantifying seston C, N, and P, 50 mL samples were filtered onto

pre-combusted GF/F glass fiber filters (GE Healthcare, U.K. Inc., Little Chalfont, England),

and dried in a desiccator. Seston C and N were determined with a CN analyzer (model 2400;

Perkin-Elmer, Inc., Waltham, U.S.A.). Seston P was determined by the ascorbate-reduced

molybdenum-blue method after digestion with potassium persulfate at 120°C for 30 minutes

(American Public Health Association 1989). For determination of total dissolved N (TDN)

and soluble reactive phosphorus (SRP), water samples were filtrated by GF/F, and

immediately frozen and stored at —20°C. TDN was analyzed with a TOC/TN analyzer (multi

N/C 3100; Analytik Jena AG, Jena, Germany). SRP was determined by the ascorbic acid

modification of the molybdenum blue method (American Public Health Association 1989).

For determination of chlorophyll a concentration, a 50 mL of aliquot of a sample was filtered



onto a GF/F glass filter. Filters were immediately frozen and stored at —20°C. Chlorophyll a

was extracted in 90% ethanol for 24 hours in the dark and measured using a fluorometer

(10-AU; Turner Designs, Inc., San Jose, U.S.A.), as described in Sartory and Grobbelaar

(1984).

Because of the short generation times of phytoplankton, we used total (seston plus

dissolved) nitrogen (TN) and total phosphorus (TP) as a surrogate for the amount of nutrient

loading to aquatic ecosystems as described in Sterner et al. (1997). TN and TP were

calculated by TDN plus seston N and SRP plus seston P, respectively. Mean concentration of

total- and sestonic matter and chlorophyll a for each pond were calculated from duplicate

samples of the biweekly sampling.

For phytoplankton, we preserved 50 mL subsamples with Lugol’s solution (final

concentration, 5% in 2015 and 1% in 2016). After settling for 24 hours, we removed

supernatant by siphoning and concentrated to 10-20 mL. One to five milliliters of subsample

was analyzed from each concentrated sample. All phytoplankton cells were enumerated at the

finest taxon level (species or genus), and cell dimension was measured on 10 to 30 cells of

each algal taxon under a microscope at 200 to 400x magnification. Taxa were classified into

eight groups (Cryptophyceae, Crysophyceae, Cyanobacteria, Dinophyceae, Bacillariophyceae



(diatoms), Chlorophyceae (green algae), Euglenophyceae, and “other”). Mean cell volumes
were estimated from the cell dimensions applied to common geometric shapes according to
functions by Willén (1976), Sun and Liu (2003), and Olenina et al. (2006). Then,
phytoplankton biovolume was estimated from the mean cell volume and density of each algal
taxa.

For zooplankton identification and enumeration, 1 — 4 mL subsamples were
analyzed from each concentrated sample. Cladocerans and copepods were identified
according to Thorp and Covich (1991) and enumerated at least total 200 individuals in
qualitative analysis with measurements of the body lengths under a microscope at 25 to 72%
magnification. Zooplankton body mass for each taxon was estimated using length-weight
regression equations from McCauley (1984).

We monitored the photon flux density (umol m > s') above and below the water
surface at each pond by using spherical quantum sensor (LI-193; LiCor, Inc.) between 10 am
and 12 am at the biweekly sampling. We determined the light attenuation coefficients, A (m '),
by fitting an exponential function, I. = lyexp(—Az), where z is depth (m), . and [, are observed
photon flux densities at z and 0 m depth. According to McCree (1972), we assumed that 4.57

umol m* s™! in photon flux density is 1 Jm > s ' in irradiance (Table S2).



When we surveyed the 35 CUEPF ponds in 2016, we collected 7-L of sub-surface

pond water (<50 cm from surface) by repeated towing of a 1.4-L weighted PET bottle from

the shore at each pond. For chlorophyll a, we filtrated 50 mL of aliquot onto a GF/F glass

filter, and stored immediately at —4°C in dark. Chlorophyll a concentration was quantified by

the same method described above. For macrophytes, we took aerial photos by an UAV and

measured the fraction of macrophytes coverage area (0 to 100% of pond area) as a proxy of

macrophytes abundance with ImageJ (Schneider et al. 2012) because those were significantly

correlated in our six experimental ponds in 2015 (Fig. S2).
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Table S1. The number of individuals and total wet weight (g WW) of introduced largemouth

bass.

Pond ID Number of fish ~ Total weight (g WW)
203 (control) 5 91

217 (control) 6 115

204 (medium) 6 91

218 (medium) 6 77

202 (low) 6 103

219 (low) 6 97
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Table S2. Parameter descriptions and default values. 4: pelagic algae (phytoplankton), S:
submersed macrophytes. Reference 1: Mulderij et al. (2007), 2: van Gerven et al. (2015), 3:
Hwang et al. (1998) , 4: Muhammetoglu and Soyupak (2000) , 5: Jager and Diehl (2014), FO:
field observation, ARV: arbitrary realistic value. Light was converted by assuming 4.57

umolm?s'=1Jm?*s . "We assumed that 2 g P (N)/g C =1 g P (N)/g DW.

Parameter Description Unit Value  Reference
Pmax.4 Maximum growth rate of 4 dayf1 5 (1)
Pmax.s Maximum growth rate of § day ' 3 (2)

M,  Half-saturation constant for nutrient of 4 g P (N) m>  .003(.025) (1), (5)

Mg  Half-saturation constant for nutrient of § gP (N) m™ 003 (.01) (3),4)

My Loss rate of 4 day ™! A (1), (5)
ms Loss rate of S day ™! A ARV
k4 Light attenuation coefficient of 4 m’> g DW ' 2 (1)
ks Light attenuation coefficient of S m’> g DW ' .02 (1)
Hy Half-saturation constant for light of 4 ~ pmolm s 30 (1)
Hs Half-saturation constant for light of § ~ umolm*s"' 150 Q)
CA Nutrient to dry weight ratio of 4 gP(N)gDW' .01(.13) (1!
Cs Nutrient to dry weight ratio of S gP(N)gDW ' .005(.02) ARV, (2)
Rin Nutrient concentration in sediment gP(N)m” 303) (1)
Iin Incoming light intensity pmol m s 0-1000 Variable
zy Depth of the pelagic habitat m 1.4 FO
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Figure S1. Contour plots of dissolved oxygen (DO) saturation level (%) in the ponds. X axes

are days since shading (July 3, 2015) and Y axes are depth (m) from surface (0 m) to bottom

(ca. 1.5 m). Contours were calculated by the “interp” function of the “akima” package in R.
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Figure S2. A relationship between submersed macrophyte coverage (%) and submersed
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are overlapping at the origin on this figure. A Spearman’s rank correlation coefficient, p =

0.95 (P =0.0030).
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Figure S3. Relationships between attenuation coefficients (m ') and chlorophyll a (ug L™)
(a), total biovolume of phytoplankton (um’ mL ") (b), and seston carbon (umol L") (c). Data
were from June 24 to September 21, 2015 (please note that we did not measure biovolume on
August 16). Spearman’s rank correlation coefficients (p) were 0.51 (P = 0.00021), 0.50 (P =
0.00098), and 0.51 (P = 0.00030) for chlorophyll @, biovolume, and seston carbon,

respectively.
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Figure S4. Relationships between chlorophyll a (g L") and total phosphorus (umol L', TP)
(a), total nitrogen (Lmol L', TN) (b), zooplankton biomass (ug DW L) (c), and zooplankton
body length (um) (d) from July 10 to September 21, 2015 (mean and standard error).
Spearman’s rank correlation coefficients (p) between the mean values of each pond were 0.66
(P=10.18),0.77 (P = 0.10), —0.14 (P = 0.80), and —0.029 (P > 0.99) for TP, TN, zooplankton

biomass, and zooplankton body length, respectively.
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Figure S5. (a) A relationship between total biovolume of phytoplankton (um’ mL ™) and
chlorophyll @ (ug L'"). A Spearman’s rank correlation coefficient between measurements
from each sampling date, p = 0.46 (P = 0.0020). (b) Time-series of chlorophyll a/total
biovolume of phytoplankton from June 24 to September 21, 2015. Please note that we did not

measure biovolume on August 16.
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Figure S6. Bifurcation analyses based on the parameters for nitrogen (Table S2). Y axes of
(a) and (b) show phytoplankton biomass (the phytoplankton concentration in the entire water
column averaged over the pelagic and benthic habitats, (z14, + z242)/(z1 + z2), g DW m ) and
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vertical lines indicate light conditions for control, medium-light, and low-light ponds,

respectively when the light intensity of control ponds is assumed to be 600 (umol m s ™).
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Figure S7. Bifurcation plots of nutrients in the pelagic habitat. Bifurcation analyses of the
model demonstrate that decreasing surface light gradually increases nutrients (phosphorus and
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arrows) due to alternative stable states (Figs. S7a, S7b). Increasing light can also cause the
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S7b, S7d) and the observed positive correlation between biomass of phytoplankton and
nutrients (Figs. S4a, S4b). Black and gray dots represent stable equilibria and smaller gray
dots represent unstable equilibria. Red, blue, and black vertical lines indicate light conditions
for control, medium-light, and low-light ponds, respectively when the light intensity of

control ponds is assumed to be 600 (umol m > s ™).
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Figure S8. (a) Time-series of total biovolume of phytoplankton (um’ mL™") from June 24 to
September 21, 2015. Please note that we did not measure biovolume on August 16. (b)
Boxplot of total biovolume of phytoplankton under three light intensities from July 10 to
September 21, 2015. The bold line in the box indicates the median value. Lower/upper limits
of the box are the first/third quartiles, respectively. Lower/upper whisker plots represent the
minimum/maximum values within the first/third quartiles minus/plus 1.5 % interquartile range,
respectively. (¢) A correlation between total biovolume of phytoplankton (mean and standard

error, SE) and submersed macrophyte biomass on August 16, 2015 (A Spearman’s rank
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correlation coefficient (p) was —0.73 with P = 0.10). Red: control, blue: medium-light, black:

low-light. Circle: road-side ponds, square: channel-side ponds. Error bars indicate SE values.

(d) A relationship between surface uncovered (%) and total biovolume of phytoplankton.
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Figure S9. (a) Time-series of seston carbon (umol L") from June 24 to September 21, 2015.
(b) Boxplot of seston carbon under three light intensities from July 10 to September 21, 2015.
The bold line in the box indicates the median value. Lower/upper limits of the box are the
first/third  quartiles, respectively. Lower/upper  whisker plots represent the
minimum/maximum values within the first/third quartiles minus/plus 1.5 % interquartile range,
respectively. (c) A correlation between seston carbon (mean and SE) and submersed
macrophyte biomass on August 16, 2015 (A Spearman’s rank correlation coefficient (p) was

—0.99 with P = 0.00031). Red: control, blue: medium-light, black: low-light. Circle: road-side
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ponds, square: channel-side ponds. Error bars indicate SE values. (d) A relationship between

surface uncovered (%) and seston carbon.
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Figure S10. Phytoplankton biomass (um’ mL ') composition changes during the experiment
in 2015. Green: green algae (Chlorophyceae), pale green: diatoms (Bacillariophyceae), blue:
cyanobacteria, purple: Euglenophyceae, orange: Cryptophyceae, red: Dinophyceae, yellow:

Chrysophyceae, pink: others.
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Figure S11. Principle component analysis (PCA) of phytoplankton biomass dynamics (Fig.
S10). Eigenvectors are shown by blue arrows. PCA was performed using the “prcomp”

function and visualized by the “autoplot” function of the “ggfortify” package in R.
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Figure S12. Relationships between zooplankton body length (um) and total biovolume of
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