The Multiple Bonding in Heavier Group 14 Element Alkene Analogues is Stabilized Mainly by Dispersion Force Effects

Jing-Dong Guo,[†] David J. Liptrot,[‡] Shigeru Nagase,^{*,†} and Philip P. Power.^{*,‡}

[†] Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishiraki-cho
34-4, Sakyo-ku, Kyoto, Japan 606-8103, Japan.
[‡] Department of Chemistry, University of California, One Shields Avenue, Davis,
California 95616, United States.

Supporting Information

Contents

Table S1, Table S2, Table S3, Table S4	Page S2
Table S5	Page S3

Table S1. Calculated binding energies (kcal mol⁻¹) of E_2R_4 (E = Ge or Sn; R = CH(SiMe_3)₂) with a *syn,anti* configuration for the ER₂ units and H-C-E-C angles set at experimental values.

$[E\{CH(SiMe_{3})_{2}\}_{2}]_{2} \rightarrow 2E\{CH(SiMe_{3})_{2}\}_{2}$							
	E	= Ge	E = Sn				
	B3PW91	B3PW91 B3PW91-D3 B3PW91 B3PW91-					
ΔE^{a}	5.6 (-2.3)	40.2 (28.7)	12.0 (2.1)	38.5 (26.3)			
ΔE ^{a,b}	14.0 (6.5)	50.4 (39.4)	13.3 (3.1)	40.5 (28.8)			
^a Binding energy. In parentheses are values with ZPE and BSSE corrections.							
^b The Ge and Sn monomers are optimized by fixing the (H-C-E-C) torsion angles							
at experimental values: 2° for GeR2: 15° for SnR2.							

Table S2. Calculated structural data for the Ge_2R_4 and Sn_2R_4 ($R = CH(SiMe_3)_2$) dimers with the GeR₂ and SnR₂ units within the dimers in *syn,syn* configuration.

	Ge ₂ R ₄			Sn ₂ R ₄		
	B3PW91	B3PW91-D3	B97-D3	B3PW91	B3PW91-D3	B97-D3
E-E (Å)	2.428	2.377	2.452	2.842	2.765	2.855
E-C (Å)	2.034 (av.)	2.012 (av.)	2.051 (av.)	2.239 (av.)	2.210 (av.)	2.267 (av.)
C-E-C (°)	98.7 (av.)	98.1 (av.)	97.7 (av.)	96.3 (av.)	96.0 (av.)	95.3 (av.)
C-E-E (°)	122.6 (av.)	121.0 (av.)	120.2 (av.)	121.2 (av.)	119.2 (av.)	118.6 (av.)
C-E-E-C (°)	-51.6 (av.)	-56.3 (av.)	-58.7 (av.)	-58.7 (av.)	-62.9 (av.)	-65.2 (av.)
	164.0 (av.)	167.2 (av.)	167.4 (av.)	168.7 (av.)	163.4 (av.)	166.9 (av.)
Trans-bent	34.3 (av.)	38.0 (av.)	40.1 (av.)	39.0 (av.)	43.4 (av.)	44.8 (av.)
angle (°)						

Table S3. Calculated binding energies (kcal mol⁻¹) of the E_2R_4 dimers (E = Ge or Sn; R = CH(SiMe_3)_2) with each ER₂ unit within the dimer in a *syn,syn* configuration.

$[E\{CH(SiMe_{3})_{2}\}_{2}]_{2} \rightarrow 2E\{CH(SiMe_{3})_{2}\}_{2}$						
	E = Ge			E = Sn		
	B3PW91	B3PW91-D3	B97-D3	B3PW91	B3PW91-D3	B97-D3
ΔE^{a}	-4.6	30.3 (29.6)	24.8	6.3	33.7 (34.0)	28.9
ΔE^{b}	-14.1	18.9		-3.8	20.0	
ΔH ^c	-13.5	20.0		-3.6	21.2	
-T ΔS^{c}	-18.5	-20.7		-16.6	-21.5	
ΔG^{c}	-32.0	-0.7		-20.2	-0.3	
^a Binding energy. In parentheses are MP2 values.						
^b With ZPE and BSSE corrections.						

• At 25°C (298 K) and 1atm.

Table S4. Calculated and experimental structural parameters for the dimetallene Pb_2R_4 (R = CH(SiMe_3)_2), in which the Pb{CH(SiMe_3)_2}_2 units have the *syn,anti* configuration.

$[Pb{CH(S_1Me_3)_2}_2]_2$						
	B3PW91	B3PW91-D3	B97-D3	X-ray ^a		
E-E (Å)	3.202	2.956	3.073	4.129(1)		
E-C (Å)	2.384(avg.)	2.345(avg.)	2.395(avg.)	2.313(5), 2.323(5)		
C1-E-C2 (°)	106.3	106.6	106.4	93.4(2)		
C-E-E (°)	108.7	108.3	107.4			
	121.7	116.7	119.4			
^a Ref. 11.						

			Monomer: SnR ₂ (R = SiMe ^t Bu ₂)				
		Unit: kcal/mol	B3PW91		B3PW91-D3		
	Singlet state	0.0		0.0			
		Triplet state	4.5		6.8		
Si Si			$(SnR_2)_2 \rightarrow 2 SnR_2$	(R = SiMe ^t Bu ₂)			
		ΔE (dissociation) 36.4			59.5		
	ΔE (BSSE + ZPE)	25.8		46.8			
	(BSSE,25°C, 1.0 atm) ΔΗ -TΔS ΔG	25.9 -17.6 8.3		47.3 -20.8 26.5			
Sn	Sn Si		Dimer: $(SnR_2)_2$ (syn, anti)				
Si			B3PW91	B3PW91-D3	Exp.		
syn,anti syn,a (SnR ₂) ₂		Sn-Sn (Å)	2.702	2.647	2.668		
	svn.anti	Sn-Si (Å)	2.665	2.597	2.660 (av.)		
		Sn-Sn-Si (°)	124.6	124.3	113.8 (av.)		
	2/2	Si-Sn-Si (°)	110.9	111.4	111.7 (av.)		
		Trans-bending angle θ (°)	0.0	0.0	1.2		
		Torsion angle τ (°) (between Sn planes)	40.9	43.6	44.6		

Table S5. Calculations on the dissociation of $(SnR_2)_2 \rightarrow 2SnR_2$ (R = SiMe^tBu₂).