Supporting Information

for

The Medicinal Thiosulfinates from Garlic and Petiveria are

Not Radical-Trapping Antioxidants, but Lipophilic Analogs Are

Bo Li, Feng Zheng, Jean-Philippe R. Chauvin and Derek A. Pratt* Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada dpratt@uottawa.ca

Table of Contents

Figure S1. Samples of MeOAMVN-mediated oxidations of liposomes and curve fitting for
relative rates
Table S1. Relative rate constants for the reactions of 9-triptycenesulfenic acid 3 and hexylated
petivericin 4 with MeOAMVN-derived peroxyl radicals
Figure S2. Hydroperoxide production in the oxidation of PLPC liposomes supplemented with
hexylated petivericin 4 and NACS3
Figure S3. Decomposition of allicin 1 and petivericin 2 S4
Figure S4. Decomposition of petivericin 2 in liposomes in the presence of NAC and formation of
the corresponding mixed disulfide
Figure S5. Decomposition of hexylated petivericin 4 in liposomes in the presence of NAC and
formation of the corresponding mixed disulfide

Figure S6. Representative dose-response curves on lipid peroxidation inhibition	obtained from
flow cytometry in HEK293 cells	S6
Figure S7. Representative dose-response curves obtained from papain inactivation	assayS7
¹ H and ¹³ C NMR spectra of compounds 5-10	

Figure S1. (A) Representative fluorescence (at 520 nm) intensity-time profiles from MeOAMVN-mediated (0.2 mM) oxidations of egg phosphatidylcholine liposomes (1 mM in PBS buffer, pH 7.4) containing 0.15 μ M H₂B-PMHC and 4.5 μ M of 9-triptycenesulfenic acid (red) and hexylated petivericin (black). (B) The data in (A) plotted according to Eq. (4) for 9-triptycenesulfenic acid (red) and hexylated petivericin (black).

[Antioxidant]	$k_{\rm inh}^{\rm H2B-PMHC}/k_{\rm inh}^{3}$	$k_{\rm inh}^{\rm H2B-PMHC}/k_{\rm inh}^{4}$
4.5	0.040	0.948
9.0	0.043	1.134
13.5	0.042	1.192
18	0.039	1.071
22.5	0.036	0.965
average	0.040 ± 0.004	1.06±0.11

Table S1. Relative rate constants for the reactions of 9-triptycenesulfenic acid (**3**) and hexylated petivericin (**4**) with MeOAMVN-derived peroxyl radicals derived from data in Figure 1C and 1D.

Figure S2. Hydroperoxide production in the oxidation of 1-palmitoyl-2-linoleyl-*sn*-glycero-3-phosphocholine liposomes (13.3 mM in phosphate-buffered saline, pH 7.4) initiated by MeOAMVN (150 μ M) in the presence of 25 μ M 4 only (red), 25 μ M N-acetylcysteine only (green), or no additives (black).

Figure S3. Decomposition of 50 μ M allicin 1 without MeOAMVN (A) or with 0.2 mM MeOAMVN and 0.15 μ M H₂B-PMHC (C); and Decomposition of 50 μ M petivericin 2 without MeOAMVN (B) or with 0.2 mM MeOAMVN and 0.15 μ M H₂B-PMHC (D) in unilamellar egg phosphatidylcholine liposomes.

Figure S4. Decomposition of 7.5 μ M petivericin 2 (\blacksquare) in MeOAMVN-mediated (0.2 mM) oxidations of egg phosphatidylcholine liposomes (1 mM) containing 0.15 μ M H₂B-PMHC and either 7.5 μ M (A) or 15 μ M NAC (B) in PBS buffer of pH 7.4 and formation of the corresponding mixed disulfide (\bigcirc).

Figure S5. Decomposition of 7.5 μ M hexylated petivericin 4 (\blacksquare) in MeOAMVN-mediated (0.2 mM) oxidations of egg phosphatidylcholine liposomes (1 mM) containing 0.15 μ M H₂B-PMHC and 7.5 μ M (A) or 15 μ M NAC (B) in PBS buffer of pH 7.4 and formation of the corresponding mixed disulfide (\bigcirc).

Figure S6. Representative dose-response curves obtained from flow cytometry $(1 \times 10^6 \text{ cells/mL}; \lambda_{ex} = 488 \text{ nm}, \lambda_{em} = 525\pm25 \text{ nm}; 10,000 \text{ events})$ following induction of oxidative stress with diethylmaleate (DEM, 9 mM) in HEK293 cells grown in MEM media containing either hexylated petivericin (4, A), allicin (1, B) or petivericin (2, C) (5-200 μ M) for 22 hours at 37 °C. Cells were incubated with the lipid peroxidation reporter C11-BODIPY^{581/591} (1 μ M) for 30 minutes prior to DEM treatment.

Figure S7. Representative dose-response curves obtained from papain inactivation assay in EDTA/sodium acetate buffer (pH 6.1) for hexylated petivericin (**4**, green; $IC_{50} = 1.0\pm0.1 \mu M$), allicin (**1**, red; $IC_{50} = 1.2\pm0.2 \mu M$) or petivericin (**2**, black; $IC_{50} = 1.1\pm0.1 \mu M$). Papain activity was determined by measuring the rate of increase of absorbance at 410 nm.

S8

S10

S12

