Cytokinin perception in potato: New features of canonic players

SUPPLEMENTARY DATA

Supplementary tables

Domain	Template		Receptor	Identity,	Reference
	PDB ID	Protein		%	
Sensory	3T4L_A	AHK4	StHK2	64.75	
module	_		StHK3	65.00	Hothorn <i>et al.,</i> 2011
			StHK4	79.62	
HisKA domain	4MT8_A	ERS1	StHK2	36.99	
			StHK3	34.72	Mayerhofer <i>et al.,</i> 2015
			StHK4	38.20	
ATPase domain	4PL9_A	ETR1	StHK2	34.94	
			StHK3	32.74	Mayerhofer <i>et al.</i> , 2015
			StHK4	31.55	,
	5IDM A	CckA	StHK2	19.88	
	_		StHK3	22.42	Dubey <i>et al.</i> , 2016
			StHK4	22.70	
Receiver	3MMN A	CKI1	StHK2	48.21	
domain	_		StHK3	43.64	Pekárová <i>et al.,</i> 2011
			StHK4	48.78	
	4EUK_A	AHK5/CKI2	StHK2	32.52	
	_		StHK3	31.88	Bauer <i>et al.,</i> 2013
			StHK4	32.37	
Receiver-like domain	1DCF_A	ETR1	StHK2	25.00	
			StHK3	15.45	Muller-Dieckmann et
			StHK4	21.77	al., 1999

Table S1. Sequence identity of modeled receptor domains and respective templates

Primer pair name	Single primer	Primer sequences (5' – 3')		
-	name	~ • • • •		
	StHK2 I P1	GCTTTTCTGCTCTGGGTG		
StHK2_cloning	StHK2 RP3	TCAACCTGACCCGAAGAAG		
StHK3_cloning	StHK3 LP1	GGGTTTGGTTTGAAATTGGG		
	StHK3 RP3	GGTATTCTGAGTTGGCTTG		
	StHK4 LP1	ATGGGTGAGAAGATGCAAAGCC		
StHK4_cloning	StHK4 RP3	CTATTTGTCCGAGTTAGGCTTGG		
	StHK2 attB1	TACAAAAAGCAGGCTTGATGGCTCTTGTTATCTTTGTTATTG		
StHK2 sensor	CHASE			
module	StHK2 attB2	ACAAGAAAGCTGGGTAAGCATGGAAGATATGACC		
	CHASE			
	StHK3_attB1	TACAAAAAGCAGGCTTGATGCTTTTGATAGTATG		
StHK3_sensor	CHASE			
module	StHK3_attB2	ACAAGAAAGCTGGGTAAAATATTTGCCCTATAAGC		
	CHASE			
StHV2 full longth	StHK2_attB1	TACAAAAAGCAGGCTTGATGAGCTTTTCTGCTCTGGGTG		
SINK2_Iuli leligui	StHK2_attB2	ACAAGAAAGCTGGGTAACCTGACCCGAAGAAG		
	StUV2 oftD1	TACAAAAAGCAGGCTTGATGAGTTTGTTTCATGTTATTGGG		
StHK3_full length	SINK5_allD1	TTTGGTTTGAAA		
	StHK3_attB2	ACAAGAAAGCTGGGTAGGTATTCTGAGTTGG		
GATEWAY_stan-	attB1	GGGGACAAGTTTGTACAAAAAGCAGGCT		
dard primers	attB2	GGGACCACTTTGTACAAGAAAGCTGGGTA		
CALIVA Americante d	StHK4_BcuI	ACTAGTATGGGTGAGAAGATGCAAAGCC		
StHK4_truncated	StHK4_EcoRI	AGGAATTCCAAGTCTCTTCAGATGGTATC		
SAUKA COLD	StHK2_XhoI	ATATCTCGAGATGAGCTTTTCTGCTCTGGG		
SIHK2_COLD	StHK2_NheI	TATGCTAGCTCAACCTGACCCGAAGAAGC		
	StHK4_SacI	AAAGAGCTCATGGGTGAGAAGATGCAAAGCC		
StHK4_COLD	StHK4_EcoR1a	GAATTCCTATTTGTCCGAGTTAGGCTTGG		
CALINA PLANT DCD(1)	StHK2_FPq1	ACCATTTGCAGAGACTGGGA		
$StHK2_qKTPCR(1)$	StHK2_RPq1	GGTCAACAAAAACCACGGCTA		
CALIN2 ADT DCD(1)	StHK3_FPq1	CACAGCTCCCTTCAGGCTAC		
SINKS_QK1 PCK(1)	StHK3_RPq1	TACTCCACCAAGGTACCCGT		
$Q_{4}UUZ_{4} \rightarrow DT DOD(2)$	StHK4_FPq2	TGCTGAGAGTGGGAAAGCTG		
$StHK4_qKTPCR(2)$	StHK4_RPq2	GACGTGTAGCCTCAAACCCA		
	StRR4A_FPq1	ATCAACACCTTCACCGCCAT		
StRR4A	StRR4A_RPq1	TTGAGTCGTCTTGTTGGCGA		
	StRR9A_FPq2	CCTCTTATCAAGTTACTGTTGTGGA		
Strk9A	StRR9A_RPq2	ACCAGTCATTTCAGGCATGCTA		
CUDDOD	StRR9D_FPq1	CCTAGCAACCAACAGGAAGTG		
SIKKYD	StRR9D_RPq1	TGTTCCTCAGAGATGCAGATTCC		
EE1 AD0(10(2	EF1_FP	ATTGGAAACGGATATGCTCCA		
EF1_ABU01203	EF_RP	TCCTTACCTGAACGCCTGTCA		
CVC AE126551	CYC_FP	CTCTTCGCCGATACCACTCC		
UIU_AF120331	CYC_RP	TCACACGGTGGAAGGTTGAG		

 Table S2.
 List of primers used in this research

Table S3. Consensus motifs in CHASE domains of potato and Arabidopsis cytokinin receptors

Туре	Amino acid sequence
All CHKs	x <u>P</u> SAIDQxT <u>F</u> (A)xYT <u>E/A</u> RT(A) <u>FERPLT/L</u> S <u>GAVA</u> YAx <u>R/K</u> Vx(H)(S)(E)R(E)x <u>FE</u> xxxGW(T)IKxMxxx <i>loop</i> xxxxxx <u>D/</u> <u>EEYAP</u> V(I)(F) <u>A/S</u> Q <u>E/D</u> T(V)(S) <u>H/Y</u> xxSxDM(M)S <u>GK/E</u> E <u>D</u> REN(I)LRAR <u>A/ES/T</u> GK <u>G/A</u> VL <u>TS/APFR/KL</u> Lx <u>S/TN/</u> <u>HH/RLGV(V)LTFA/PVY</u> xxxLPxxx(T)xxxRIxATx <u>G_Y</u> L <u>G</u> (G)x <u>F/Y</u> D <u>V/IE/PSLV(E)K/NLL</u> xQLA <u>S/GK/N</u> QxIx <u>V</u> (N) VY <u>D</u> xTNx(S)XP <u>I/L</u> xM <u>Y</u> Gxxxxxx(D)xx(L)x(H)xSxL <u>D/NF</u> G <u>D</u> Px <u>R</u> (K) <u>H</u> (E)Mx
HK2-clade	$eq:spectral_$
StHK2 vs HK2- clade	_PSAIDQKTFEEYTERT_FERPLTSGAVAYALRV_HSERE_FEK_HGWTIKKMESE <i>loop</i> DSAPDQDEYAPVIFSQ D TV SHIVSIDMMSGKEDRENILRARASGKGVLTSPFKLLKSNHLGVVLTFAVYLL_YATPVDRINAT_G_YIGASYDVP SLVEKLLHQLASKQTIVVNVYDTTNKF_PI_MYGDTGLLRVSNLDFGDP_RNHEMH
AHK2 vs HK2- clade	_PSAIDQKTFEEYTERT_FERPLTSGAVAYALKV_HSERE_FEK_HGWAIKKMETE <i>loop</i> DPAPIQDEYAPVIFAQ <mark>E</mark> TVS HIVSVDMMSGEEDRENILRARASGKGVLTSPFKLLKSNHLGVVLTFAVYLP_DATEEQRVEAT_G_YLGASYDM PSLVEKLLHQLASKQTIVVDVYDTTNTS_LI_MYGDISEQHISSLDFGDP_RNHEMH
HK3-clade	$\begin{split} & \times \underline{P}SA\underline{I}DQx\underline{TF}(A)(R)Y(T)(E)\underline{RT}(A)\underline{FERPLTS}G\underline{AVAY}AVR\underline{V}(L)H(S)ER(E)\underline{Q}/\underline{EFEK}/RQQ\underline{GWT}/SI(K)(R)\underline{M}(D)(T)\times \textit{lo}\\ & op\underline{E}(P)(S)(P)x(Q)E\underline{EYAPVIFAQDT}xx\underline{H}VI/VSx\underline{D}(M)\underline{L}(S)\underline{G}(K)E\underline{DRE}/DNVLRAR(E)\underline{SG}KG\underline{VLTAPF}(R)\underline{L}(L)(K)TNR\\ & \underline{LGVI}(L)\underline{T}(F)A\underline{VY}Kx\underline{D}/\underline{E}L\underline{P}(S)N\underline{ATP}(N)\underline{ERIQ}/\underline{EA}T(D)\underline{G}\ \underline{VLGGV}/\underline{IE}DIE(S)\underline{LV}EK\underline{LL}(Q)\underline{QLA}(S)KQ(T)Ix\underline{V}N\underline{V}Y\underline{D}(T)T\\ & \underline{N}x(S)(H)P\underline{I}S\underline{MYG}S(N)(V)(S)x(D)(G)(L)x(H)VSx\underline{L}N\underline{F}G\underline{DP}x\underline{R}(K)\underline{H}E\underline{MR}/\underline{H} \end{split}$
StHK3 vs HK3-clade	_PSAIDQ_TFASYTERTAFERPLTSGAVAYAVRVLHSERKEFEKRHGWSIKRMDT_ <i>loop</i> EPSP_QAEYAPVIFAQDT_ _HVIS_DMLSGKEDRENVLRARESGKGVLTAPFRLLKTNHLGVIKTFAVYK_DLPSNATPNERIQATDG_YLGGV <mark>L</mark> DIE SLVEKLLQQLASKQTI_VNVYDMTN_SHPISMYGSNVS_DGL_HVS_LNFGDP_RRHEMR
AHK3 vs HK3-clade	_PSAIDQ_TFSEYTDRTSFERPLTSGAVAYAMRVLHSEREEFERQQGWSIRKMYS_ <i>loop</i> EPSP_QEEYAPVIFAQDT_ _HVIS_DMLSGKEDRENVLRARSSGKGVLTAPFPLIKTNRLGVILTFAVYK_DLPSNATPNERIQATNG_YLGGV <mark>F</mark> DIE SLVEKLLQQLASKQTI_VNVYDMTN_SQPISMYGSNVS_DGL_RVS_LIFGDP_RKHEMR
HK4-clade	$ \begin{array}{l} (N)P(S)\underline{A}(I)\underline{D}Q(E)\underline{T}F\underline{A}(E)\underline{Y}\underline{T}AR\underline{T}\underline{A}/SF\underline{F}\underline{R}LS\underline{G}\underline{V}\underline{A}_{X}RVxx(E)R(E)x\underline{F}\underline{E}x(Q)(H)GWxIK\underline{T}\underline{M}xxxloop(E)(P)S(P)x(R)R)D_{F}P\underline{V}(F)(S)Q(E)(T)V\underline{S}Y\underline{I}/L(E)(S)\underline{L}/IDMM\underline{S}\underline{G}\underline{E}\underline{D}}R\underline{E}\mathbf{N}ILAR(A)(T)\underline{G}K\underline{A}\underline{V}L\underline{T}\mathbf{x}\underline{P}\underline{F}\mathbf{R}LL(G)S(H)\underline{H}H\underline{G}VU\underline{T}\mathbf{F}P\underline{V}}{Y(K)(S)(K)\underline{L}Px(P)(T)x(E)xR(I)x\underline{A}TAG_{T}\underline{Y}(L)\underline{G}G(A)\underline{F}DV\underline{E}LU(G)(Q)\underline{L}(A)GNQ(A)I(L)\underline{V}(N)\underline{V}VD\mathbf{V}/I}\mathbf{N}x(S)(D)}{P}L\underline{I}/VM\underline{M}Gxxxx(G)(Q)I(L)\underline{U}(N)\underline{V}DV/I}\mathbf{N}x(S)(G)}{P}L_{I}III(I)}{I}I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)I(I)}I(I)I(I)}{I}I)I(I)I)I(I)I(I)I(I)I$
StHK4 vs HK4-clade	NPSAIDQNTFAEYTARTAFERPLLSGVAYA_RVERE_FE_EHGW_IKTMloopKPSP_RDEYSPVIFSQETVSY IESLDMMSGEEDRENILRARASGKAVLT_PFRLLGSHHLGVVLTFPVYRSKLPPT_H_RV_ATAG_ELGGAFDVESL VECLLGQLAANHPIIVNVYDVTN_SDPLIMYGGD_SL_QVSKLDFGDPFRKHEMI
AHK4 vs HK4-clade	NPSAIDQNTFAEYTARTAFERPLLSGVAYA_RVERE_FE_QHNW_IKTMloopEPSP_RDEYAPVIFSQDSVS YLESLDMMSGEEDRENILRARETGKAVLT_PFRLLETHHLGVVLTFPVYKSSLPPT_E_RI_ATAG_YLGGAFDVESL VENLLGQLAGNQPIVVHVYDVTN_SDPLIMYGAD_SL_HESKLDFGDPFRKHKMI

CHK means CHASE-domain containing histidine kinase (cytokinin receptor); HK2, HK3 and HK4 mean AHK2-, AHK3- and AHK4-orthologs, respectively. StHKs correspond to potato var. Phureja. In presented motifs (Steklov *et al.*, 2013) bold letters design highly conserved aa positions, regular letters – semiconserved positions, letters in brackets – positions of a prevalent aa, slash-separated letters – positions of any of two amino acids, x – non-conserved position. In the case of individual receptors, non-conserved aa are shown by underlined gaps. Gross deviations in conserved aa sequences of individual receptors are highlighted in red, the same positions in the general motifs and Arabidopsis receptors are marked in green.

	Receptor	Main Ramachandran plot parameters				
Domain		Most favored regions	Additional allowed regions	Generously allowed regions	Disallowed regions	
Sensor	StHK2	87.3%	11.3%	0.8%	0.6%	
module (no ligand)	StHK3	88.5%	10.1%	0.6%	0.8%	
	StHK4	89.0%	10.4%	0.6%	0.0%	
HisKA domain	StHK2	96.3%	3.7%	0.0%	0.0%	
	StHK3	96.3%	3.7%	0.0%	0.0%	
	StHK4	97.3%	2.7%	0.0%	0.0%	
HATPase domain	StHK2	85.9%	12.6%	0.7%	0.7%	
	StHK3	85.8%	12.7%	1.5%	0.0%	
	StHK4	85.4%	13.1%	0.7%	0.7%	
Receiver- like domain	StHK2	82.0%	17.3%	0.0%	0.8%	
	StHK3	84.1%	14.3%	0.0%	1.6%	
	StHK4	86.0%	13.2%	0.8%	0.0%	
Receiver domain	StHK2	86.5%	12.7%	0.0%	0.8%	
	StHK3	86.6%	11.0%	1.6%	0.8%	
	StHK4	83.9%	12.1%	2.4%	1.6%	

Table S4. Main Ramachandran plot parameters of modeled structures upon minimization procedures

Supplementary figures

Fig. S1. Intron/exon and domain structure of cytokinin receptor orthologs from different plant species. For every receptor, upper line shows scheme of exons (cylinders) and introns (lines) alternation; next line corresponds to RNA/proteins structures upon splicing; third line represents main protein domains; bottom line is the aa scale indicating the protein length.

Fig. S2. Insertions in PAS domains of the sensory modules of StHK2 and StHK3.

Homology models of sensory modules of *Solanum tuberosum* (var. Phureja) cytokinin receptors (green) are superimposed to crystal structure of Arabidopsis receptor AHK4 (grey) (PDB ID: 3T4L) demonstrating the presence of insertions (indicated by arrows) in StHK2 and StHK3 PAS domains. The ligand position is shown at the bottom of the pictures.

Fig. S3. Models of StHK3 HATPase domain built using *de novo* folding with IntFOLD server (A) (Roche *et al.*, 2011) and multitemplate homology modelling in Modeller – initial structure (B) and structure with deleted insertion (C) – in comparison with crystal structures of HATPase domain of histidine kinase CckA (D) (PDB ID: 5IDM) and ETR1 (E) (PDB ID: 4PL9) used as templates. Insertion (in comparison with basic HATPase folding) or missing structure (dotted line) corresponding to it are colored red. Small green spheres designate Mg²⁺ ions. It is clearly visible that the insertion is located on the opposite side of the catalytic site.

Additional reference

Roche DB, Buenavista MT, Tetchner SJ, McGuffin LJ. 2011. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Research **39**, 171–176.

Fig. S4. Models of receiver domains of StHKs.

Homology models of StHK receiver domains (magenta) are superimposed to crystal structures of CKI1 (hazel) (PDB ID: 3MMN) and AHK5/CKI2 (blue) (PDB ID: 4EUK, chain A) demonstrating the presence of an insertion and additional $6^{th} \alpha$ -helix (indicated by arrows) in structures of all StHKs and AHK5/CKI2 in comparison with basic REC-like folding (including CKI1 structure). Missing part of the structure (AHK5/CKI2) is indicated by a dotted line.

Amino acid residues alterating the canonic motifs are indicated in the models and in respective aa sequence fragments (at the bottom of figures). Sensory module of StHK4 receptor is shown in two orientations. The aa residue numbering is different depending on whether full length proteins or CHASE only (Table S3) are considered. For non-canonical residues, this double numbering is; in StHK2, Gln464/90; in StHK3, Leu 313/177; in StHK4, Ser168/83 and Phe247/172. Non-conserved residues are shown by underlined gaps.

Fig. S6. Alignment of aa sequences of CHASE domain-containing histidine kinases from different plant species. Full-length protein sequences from potato var. Phureja (StHK) and Désirée (StHKa/b), tomato (SlHK), Arabidopsis (AHK) and rice (OsHK) are compared. Amino acids differing between Phureja and Désirée sequences are highlighted.

Fig. S7. Scatchard analysis of the interaction between ³H-*trans*-zeatin and StHKs. On the left, receptor saturation curves; on the right, curve transformation in Scatchard plots. B and U, bound and unbound hormone concentrations, respectively.

Fig. S8. Competition of various cytokinins with ³H-*trans*-zeatin for binding to StHKs. Unlabeled hormones are: tZ, *trans*-zeatin; cZ, *cis*-zeatin; iP, isopentenyladenine; DZ, dihydrozeatin; BA, N^6 -benzyladenine; TD, thidiazuron.