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Abstract: Reproducibility has been shown to be limited in many scientific fields. This question is
a fundamental tenet of the scientific activity, but the related issues of reusability of
scientific data are poorly documented. Here, we present a case study of our difficulties
to reproduce a bioinformatics method [1] although code and data were available. First,
we tried to re-run the analysis with the code and data provided by the authors. Second,
we reimplemented the whole method in a Python package to avoid dependency on a
MATLAB license and ease the execution of the code on HPCC (High-Performance
Computing Cluster). Third, we assessed reusability of our reimplementation and the
quality of our documentation, testing how easy it would be to start from our
implementation to reproduce the results. In a second section, we propose solutions
from this case study and other observations to improve reproducibility and research
efficiency at the individual and collective level.
While finalizing our code, we created case specific documentation and tutorials for the
associated Python package StratiPy. Readers are thus invited to experiment our
reproducibility case study by generating the two confusion matrices of Fig 3 (see more
in 2.2.2).
 Here we decided to propose two options: 1) a step-by-step process to follow in a
Jupyter/IPython notebook; or 2) a Docker container ready to be built and run.
Availability: last version of StratiPy (Python) with two examples of reproducibility and
dataset are available at GitHub [2] and Zenodo [3].
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Abstract 13 

Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of the scientific 14 

activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study of our 15 

difficulties to reproduce a bioinformatics method [1] although code and data were available. First, we tried to re-run the analysis 16 

with the code and data provided by the authors. Second, we reimplemented the whole method in a Python package to avoid 17 

dependency on a MATLAB license and ease the execution of the code on HPCC (High-Performance Computing Cluster). Third, 18 

we assessed reusability of our reimplementation and the quality of our documentation, testing how easy it would be to start from 19 

our implementation to reproduce the results. In a second section, we propose solutions from this case study and other observations 20 

to improve reproducibility and research efficiency at the individual and collective level.  21 

While finalizing our code, we created case specific documentation and tutorials for the associated Python package StratiPy. 22 

Readers are thus invited to experiment our reproducibility case study by generating the two confusion matrices of Fig 3 (see more 23 

in 2.2.2). 24 

 Here we decided to propose two options: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker 25 

container ready to be built and run. 26 

Availability: last version of StratiPy (Python) with two examples of reproducibility and dataset are available at GitHub [2] and 27 

Zenodo [3]. 28 

 29 
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1 Background 37 

The collective endeavor of science depends on researchers being able to replicate the work of others. In a recent survey of 1,576 38 

researchers, 70% of them admitted having difficulty in reproducing experiments proposed by other scientists [4]. For 50%, this 39 

reproducibility issue even concerns their own experiments. Despite the growing attention on the replication crisis in science [5,6], 40 

this controversial subject is far from being new: already in the 17th century, scientists criticized the air pump invented by physicist 41 

Robert Boyle because it was too complicated and expensive to build [7]. 42 

Several concepts for reproducibility in computational science are closely associated [8,9]. Here we define them as mentioned by 43 

K. Whitaker [9]: obtaining the same results using same data and same code is Reproducibility; if code is different, it is 44 

Robustness. If we used different data but with the same code, it is Replicability. Lastly, using different data and different code is 45 

referred as Generalizability. Here we will primarily elaborate on Reproducibility and Robustness, and acknowledge that new 46 

datasets or hardware environment introduce additional hurdles [10]. Reproducibility is a key first step, for instance, among the 47 

400 algorithms published during the major artificial intelligence conferences, only 6% offered the code [11]. Even when authors 48 

provide data and code, the outcome can vary either marginally or fundamentally [12]. Tackling irreproducibility in bioinformatics 49 

thus requires considerable effort beyond code and data availability, an effort that is still poorly recognized in the current 50 

publication based research community.  In most cases, there is a significant gap between apparent executable work (Fig 1 - i.e. 51 

above water portion of iceberg) and necessary effort in practice (Fig 1 - i.e. full iceberg). Such effort is nevertheless necessary to 52 

increase the consistency of the literature and efficiency of the scientific research process by making research products easily 53 

resuable.  54 
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2 Reproducibility and Robustness in bioinformatics: a case study 55 

2.1 Reproducibility: from MATLAB to MATLAB, OS and environment 56 

Our team studies Autism Spectrum Disorders (ASD), a group of neurodevelopmental disorders well known for its heterogeneity. 57 

One of the current challenges of our research is to uncover homogeneous subgroups of patients (i.e. stratification) with more 58 

precise clinical outcomes, improving their prognosis and treatment [13,14]. An interesting stratification method was recently 59 

proposed in the field of cancer research [1], where the authors proposed to combine genetic profiles of patients’ tumors with 60 

protein-protein interaction networks to uncover meaningful homogeneous subgroups, a method called Network Based 61 

Stratification (NBS). 62 

Before using NBS method on our data, we studied the method by reproducing results from the original study. We are very grateful 63 

to the main authors who kindly provided online all the related data and code, and gave us invaluable input upon request. The 64 

authors of this study did much more to help reproduce their results than is generally done. Despite their help we experienced a 65 

number of difficulties that we document here, hoping that this report will help future researchers to improve the reproducibility of 66 

results and reusability of research products. 67 

The first step of our project was to execute the original method code with the given data: reproducibility (Table 1). To improve 68 

execution speed, the original authors used a library for MATLAB on a Linux platform, using executable compiled code MEX file 69 

[15]: MTIMESX [16], a library allowing acceleration of large matrix multiplication. MEX files however are specific to the 70 

architecture and have to be recompiled for each Operating System (OS). Since our lab was using Mac OS X Sierra, the 71 

compilation of this MEX file into a mac64 binary required a new version of MTIMESX. It was also necessary to install and to 72 

configure properly OpenMP [17], a development library for parallel computing. After this, the original MATLAB code was 73 

successfully run in our environment. 74 

 Code Data Technical issues Other issues 

Reproducibility 
Same: MATLAB 

 

Same OS: MEX file specificity linked to OS (e.g. 

Linux  OSX) 

 

Robustness 

MATLAB  Python Same File format: we can load sparse matrices from 

.mat file but cannot save them into HDF5 

using h5py package 

Default parameters: linkage method use for 

the hierarchical clustering 

• MATLAB (MathWorks): UPGMA 

(average) 

• Python (SciPy): single 

• Metadata structure 

• Important parameter 

value not explained in 

the original paper 

• Remaining discarded 

work (‘code ruins’) and 

traces of debugging 

Reproducibility 

of Robustness 

Same: Python Same OS: Numpy package and BLAS library 

compiled for specific OS (e.g. OSX  Linux) 

Documentation 
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Table 1: Technical problems encountered during our reproducibility and robustness case study. 75 

These issues are classic but may not be overcome by researchers with little experience in compilation or installation issues. For 76 

these reasons alone, many individuals may turn down the opportunity of reusing code. 77 

The next part will focus on code re-implementation, a procedure, which can help understanding the method, but is even more time 78 

consuming. 79 

 80 

 81 

2.2 Robustness: from MATLAB to Python, language and organization 82 

To fully master the method, we developed a complete open source toolkit of genomic stratification in Python [2]. Python is also 83 

an interpreted programming language, but contrary to MATLAB is free of use and has a GPL-compatible license [18], which 84 

fosters both robustness and generalizability. Recoding in another language in a different environment will lead to be some 85 

unavoidable problems such as variation in low level libraries (e.g. glibc): it is likely that the outcomes will vary even if the same 86 

algorithm is implemented [19]. In addition, we rely on Python packages to perform visualization or linear algebra computations 87 

(e.g. Matplotlib, SciPy, NumPy [20–22]), and results may depend on these packages versions.  Python is currently in a transitional 88 

period between two major versions 2 and 3. We chose to write the code in Python 3, which is the current recommendation. 89 

2.2.1 Metadata and File formats 90 

Even if the original code could be run, we had to handle several file formats to check and understand the structure of the original 91 

data. For instance the data was provided by The Cancer Genome (TCGA) [23] and made available in a MATLAB .mat file format 92 

as compressed data (sparse matrices). Thanks to SciPy, Python can load all versions through v7.2 MATLAB files, but to read v7.3 93 

.mat files, we needed an HDF5 Python library. We decided to continue using Python’s h5py package but Scipy’s sparse matrices 94 

could not be stored in HDF5 format (Table 1). Moreover, the original authors had denoted download dates of patients’ data of 95 

TCGA, thereby clarifying source of data. But in the absence of structural metadata, it was not always obvious how to interpret 96 

dataset variables (e.g. patient ID, gene ID, phenotype). Fig 2 shows an analogy between robustness issues and road transport: 97 

driving in a different environment (e.g. OS), we attempt to obtain identical results (i.e. to reach the same location) using the same 98 

input data (i.e. gasoline), but with different computational environment (i.e. cars), different implementation of the method (i.e. 99 

engine) and different programming languages (i.e. MATLAB and Python roads). 100 

2.2.2 Codes and parameters 101 

Once the environment, file format and data issues were resolved, the code was finally executed.  Unfortunately, “unexpected” 102 

results were obtained. One cause was the application of the hierarchical clustering step for which we used the clustering tools of 103 
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SciPy. Both SciPy and MATLAB (MathWorks) functions offer seven linkage methods, however, SciPy’s default option (single 104 

method) [24] differs from MATLAB’s default option (UPGMA or average method) [25], which was used in the original study 105 

(Table 1). Another cause for the variation in results is the value of one of the most important parameters of the method, the graph 106 

regulator factor, which was not clarified in the original paper. From the article, we believed that this factor had a constant value of 107 

1.0 until we found in the original code that its value varies across iterations and converges to an optimal value around 1800. 108 

Therefore, we initially obtained very different results from the original NBS (Fig 3 a) with heterogeneous subgroups. Once the 109 

optimal value was set up, we finally observed homogenous clusters (Fig 3 b). Moreover, during our attempts to run the original 110 

code to understand the causes of the errors, we realized that some parts of the code were not run anymore (e.g. discarded work, 111 

remaining traces of debugging) which made understanding the implementation harder. 112 

To allow others to reproduce our results, we wrote some documentation and tutorials for the Python package StratiPy [2]. Readers 113 

are thus invited to experiment with reproducibility too by generating the two confusion matrices of Fig 3. They will use the 114 

different tools described in the following: GitHub, Docker, and Jupyter/IPython notebook. 115 

2.2.3 Jupyter/IPython 116 

During the re-coding process, we used an enhanced Python interpreter to debug: IPython, an interactive shell supporting both 117 

Python 2 and 3. Since the dataset is large and the execution takes a significant amount of time, we used IPython to re-run 118 

interactively some sub-sections of the script, which is one of the most helpful features. IPython can be integrated in the web 119 

interface Jupyter Notebook, offering an advanced structure for mixing code and documentation. While the Jupyter/IPython 120 

notebook was therefore initially convenient, it does not scale well to large programs and is not well adapted to versioning. 121 

However, ability of mixing code with document text is very useful for tutorials: a user of the code can read documentation 122 

(docstring), text explanations, and see how to run the code, explore parameters and visualize results in the browser. Our work on 123 

NBS, as related here, can be reproduced with a Jupyter/IPython notebook available on our GitHub [2]. One can find more 124 

examples and several helpful links on this “gallery of interesting Jupyter Notebooks” [26], which contains a section about 125 

“Reproducible academic publications”. 126 

2.3 Reproducibility of Robustness: from Python to Python 127 

Besides Jupyter/IPython notebooks, we used versioning tools like the Git code version control system (VCS) to document the 128 

development of our Python code. Git is arguably one of the most powerful VCS, allowing easy development of branches and 129 

helping us to work together as a distributed team (Paris, Berkeley, Montreal) on the same project. This project, StratiPy, is hosted 130 

on GitHub, a web-based Git repository hosting service [2]. While the original code was not available on GitHub, the main authors 131 

shared their code on a website. This should be sufficient for our purpose but makes it less easy to collaborate on code. While 132 

working on our GitHub repository, researchers from USA, India, China, and Europe contacted us about our robustness 133 
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experiment. Not only GitHub supports a better organization of projects, it also facilitates the collaboration of open-source 134 

software projects, thanks to its social network functions [27]. We adopted open source coding standards and learnt how to 135 

efficiently use Git and GitHub. Both required considerable training efforts on the short-term but brought clear benefits on the 136 

long-term, especially regarding collaboration and debugging.  137 

We then attempted to re-run and reproduce the results we obtained on another platform. While the Python code was developed 138 

under Mac OS X Sierra (10.12), we used an Ubuntu 16.04.1 (Xenial) computer to test the Python implementation. Some 139 

additional issues emerged (Table 1). First, our initial documentation did not include the list of the required packages and 140 

instructions to launch the code. Second, the code was very slow to the extent that it was impractical to run it on a laptop because 141 

the Numpy package had not been compiled with BLAS (Basic Linear Algebra Subprograms) that speeds up low-level routines 142 

performing basic vector and matrix operations. Last, there was (initially) no easy way to check whether the results obtained on a 143 

different architecture were the expected ones. We added documentation and tests on the results files md5sum to solve this. To 144 

summarize, although the reuse and reproducibility of the results of the developed package were improved, these were far from 145 

being optimal. 146 

3 Potential solutions: from local to global 147 

3.1 Act locally: simple practices and available tools 148 

Given the observed difficulties, in this section we draw some conclusions on this reproducibility case study experiment and 149 

suggest some tools and best practices. In addition, we suggest to follow the programing best practices of Wilson et al. such as 150 

modularizing and re-using code, unit testing, document design, data management, and project organization [5,28].  Sandve and 151 

colleagues [29] also suggest to keep the data provenance with recording all intermediate results. 152 

3.1.1 Environment 153 

In 1995, Buckheit and Donoho were already thinking about reproducible research in computer science. Their motto was “When 154 

we publish articles containing figures which were generated by computer, we also publish the complete software environment 155 

which generates the figures” by offering a complete and free package (WaveLab) to reproduce the published output [30]. 156 

Container and virtual machines technologies such as Docker [31], Vagrant [32], Singularity [33,34] (easily works in cluster 157 

environments) are becoming a standard solution to installation issues. These rely however on competencies that we think too few 158 

biologists possess today. While a container might encapsulate everything needed for a software execution, it could be hard to 159 

develop in a container. For instance, running Jupyter/IPython notebooks in Docker’s container requires knowledge on advanced 160 

port forwarding , which can be discouraging for some biologists. Therefore, we decided to propose two options in our example 161 

implementation of reproducibility: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker container 162 
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ready to be built and run. Nevertheless, mastering Docker –or other container tools– will become an important skill for 163 

computational reproducible researchers. 164 

3.1.2 Metadata 165 

Standard metadata are vital for an efficient documentation of both data and software. In our example, we still lack the standard 166 

lexicon to document the data as well as documenting the software. We however aim to follow the recommendations by Stodden et 167 

al. [35]: “Software metadata should include, at a minimum, the title, authors, version, language, license, Uniform Resource 168 

Identifier/DOI, software description (including purpose, inputs, outputs, dependencies), and execution requirements”. The more 169 

comprehensive is the metadata description, the more likely the reuse will be both efficient and appropriate [36]. 170 

3.1.3 Write readable code 171 

Anyone who has spent time to understand someone else’s code would advise some simple basic rules to help make the code 172 

readable and understandable.  173 

First, the structure of the program should be clear and easily accessible. Second, good concise code documentation and naming 174 

convention will help readability. Third, the code should not contain left-overs of previously tested solutions. When a solution 175 

takes a long time to compute, an option to store it locally can be proposed. Using standard coding and documentation conventions 176 

(e.g. PEP 8 and PEP 257 in Python [37,38]) with detailed comments and references of papers makes the code more accessible. 177 

When an algorithm is used, any modification from the original reference should be explained and discussed in the article as well 178 

as in the code. We advocate for researchers to write code “for their colleagues”, hence, ask for the opinion and review of co-179 

working or partner laboratories. Furthermore, the collaboration between researchers working on different environments can more 180 

easily isolate reproducibility problems. In the future, journals may consider review of code as part of the standard review process 181 

[39]. 182 

3.1.4 Test the code 183 

To check if the code is yielding a correct answer, software developers associate test suites (unit tests or integration tests) with their 184 

software. While we developed only a few tests in this project, we realize that this has a number of advantages, such as checking if 185 

the software installation seems correct, check if updates in the code or in the operating system impact the results, etc. In our case, 186 

we propose to check for the integrity of the data and for the results of some key processing. 187 
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3.2 Think globally: from education to community standards 188 

3.2.1 Training the new generation of scientists to digital tools and practices 189 

The training in coding is still too limited for biologists. Often, it is self-training, from searching answers on Stack Overflow or 190 

equivalent. Despite efforts by organizations such as Software [40] or Data Carpentry [41] and the growing demand for ‘data 191 

scientists’ in life science, university training on coding practices is still not enough generalized. The difficulty to access and 192 

understand code may lead to applying code blindly without checking the validity of the results: often, scientists may prefer to 193 

believe that the results are correct because of the time that would be needed to check the validity of the results. Mastering a 194 

package such that results are truly understood can take a long time, as it was the case in our experiment. 195 

Academia could instruct young scientists best practices for reproducibility. For instance, Hothorn and Leisch organized a 196 

reproducibility workshop gathering mostly PhD students and young postdocs specialized in bioinformatics and biostatistics. Then 197 

they evaluated 100 random sample papers from Bioinformatics [6]. Their study revealed how such a workshop can raise young 198 

scientists awareness about “what makes reproduction easy or hard at first hand”. Indeed, they found out that only a third of the 199 

original papers and two-thirds for applications notes had given access to the source code of software used. 200 

3.2.2 Standard consensus dataset and testing ecosystem 201 

We propose here that bioinformatics methods publications are systematically accompanied with a test dataset, code source and 202 

some basic tests. As the method is tested on new datasets, the number of tests of the method would increase in number and cover a 203 

wider range of applications. We give a first example with our NBS re-implementation. We develop below how this could 204 

generalize and what would be the benefit for the scientific community.  205 

A schematic overview of a possible testing ecosystem is shown in Fig 4. The core of this system would be a set of standard 206 

consensus datasets used to validate methods. For instance in the field of machine learning, standard image databases are widely 207 

used for training and testing (e.g. MNIST for handwritten digits [42]). In the case of our proposal, data could be from different 208 

categories such as binary, text, image (shown as folders in different colors, Fig 4 b), and sub-categories to introduce criteria such 209 

as size, quantitative/qualitative, discrete/continuous using a tagging system. Datasets could be issued from simulations or from 210 

acquisition, and would validate a method on a particular component. This testing ecosystem will help scientists that cannot release 211 

their data because of privacy issues (Fig 4 a.1) (although these can often be overcome) but also give access to data and tests to a 212 

wide community including establishments with weak financial means.  213 

We divide those who interact with scientific software or analysis code in two broad categories. First, the authors (“A”) who 214 

propose a method and need to verify its validity and usefulness with open and/or private – data. Second, the users (“U”, e.g. 215 

developers, engineers, bioinformaticians) who need to test and evaluate the proposed methods with other data.  216 
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When authors propose a new method, this method could have a reproducibility profile, which will progressively be built by 217 

authors and users (Fig 4 b.3, b.4). The information of which method does or does not work with well identified data is crucial for 218 

future work. During the optimization of a project, the software code and associated documentation  should be accessible  to foster 219 

collaboration on additional use cases and data. When the work achieve some level of maturity, a full fledge article can be posted 220 

on a preprint servers such as bioRxiv [43,44] and be associated with a GitHub repository by digital object identifiers (DOI). With 221 

considerable effort, Stodden et al. conducted a reproducibility study on 204 random articles of Science: despite some availability 222 

of the code, it had often been changed after publication, causing difficulties in replication [45]. In our proposed testing ecosystem, 223 

users will be able to launch reproducibility projects more easily thanks to  code and article versioning. 224 

Users who test and approve reproducibility on original or new data could be credited and recognized by the scientific and 225 

developer communities (i.e. Stack Overflow, GitHub). This testing ecosystem could thus facilitate collaborations between 226 

methodology development and biological research communities. 227 

4 Conclusion and perspective 228 

In the 19th century, Pasteur introduced a detailed ”Methods” section in his report: this advanced approach was necessary to 229 

reproduce his experiments and became new norms in the philosophy of science [46]. Today with the advent of computational 230 

science, the reproducibility issue is seen as a growing concern. Before reusing a published method, we attempted to reproduce the 231 

initial results and recoded the method to have a deep understanding of it. The investment in time to verify a previously published 232 

method can be as or even more important than the work needed to publish a new paper. Despite the willingness of the authors to 233 

share their tool and help us in our work, we have faced computational reproducibility and robustness problems due to 234 

compatibility between environments, programming languages and software versions, choice of parameters, data identification, etc. 235 

In addition to individual effort to write well documented and readable code, we recommend to use online repositories and tools to 236 

help other scientists in their exploration of the method: Docker for environment standardization, GitHub for code version 237 

management, and Jupyter notebooks for demonstration and tutorial [26,27,31]. We suggest to adopt such practices, not only for 238 

writing code but also manuscripts [5]. At the community level, we should enhance the cooperation between academic education 239 

and industry to foster a new generation of well-trained scientists in software development. For instance, Academia-Industry 240 

Software Quality & Testing summit (AISTQ) organizes conference in order to encourage collaboration between Academia and 241 

Industry [47]. This is also in line with the work of the Software or Data carpentry organizations [40,41]. Here, we propose a 242 

testing ecosystem where the community uses standard, well-identified datasets to validate tools and their versions. The scope of a 243 

proposed method could be continuously evaluated on new datasets. Eventually, data and software can be versioned and cited to 244 

give credit to the individuals who have contributed to these building blocks of Science. This testing ecosystem is not only a 245 

reproducibility validation tool; it is an attempt to make research product more reusable using online platforms and open source 246 

tools, beyond the publication of a PDF file. Such system could be seen as a generalization of already existing workflow systems 247 
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such as Galaxy or GATK, integrating data and software provenance [48,49]. Some top-down initiatives already provide some 248 

incentives for such a process i.e. Horizon 2020 (H2020) [50] project of the European Commission (EC) mandates open access of 249 

research data, while respecting security and liability. H2020 supports OpenAIRE [51] a technical infrastructure of the open access, 250 

which allows the interconnection between projects, publications, datasets, and author information across Europe. Thanks to 251 

common guidelines, OpenAIRE interoperates with other web-based generalist scientific data repositories such as Zenodo, hosted 252 

by CERN, which allows combining data and GitHub repository using DOI. The Open Science Framework also hosts data and 253 

software for a given project [52]. Respecting standard guidelines to transparently communicate the scientific work is a key step 254 

towards tackling irreproducibility and insures a robust scientific endeavor. 255 

Key points 256 

 Main barrier for reproducibility is in the lack of compatibility between environments, programming languages, software 257 

versions, etc.  258 

 At the individual level, the key is in research practices such as well written, tested and documented code, and well 259 

curated data and the use of online repositories and collaborative tools.  260 

 At the community level, we propose a testing ecosystem where standard consensus datasets are used to validate new 261 

methods and foster their generalizability. 262 

Declarations 263 

 Ethics approval and consent to participate 264 

We used the uterine endometrial carcinoma data as they were downloaded on January 1st, 2013 from the The Cancer Genome 265 

Atlas (TCGA) portal by Hofree and colleagues [1]. 266 

 Consent for publication 267 

Not applicable 268 

 Availability of data and material 269 

Last version of StratiPy (Python) with two examples of reproducibility and dataset are available at GitHub [2]. 270 

Zenodo DOI: https://doi.org/10.5281/zenodo.1042546 [3] 271 

 Competing interests 272 

The authors declare that they have no competing interests. 273 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.5281/zenodo.1042546


11  

 

 Funding 274 

This work was supported by: 275 

o Institut Pasteur (http://dx.doi.org/10.13039/501100003762) 276 

o H2020 Societal Challenges (http://dx.doi.org/10.13039/100010676) 277 

o Centre National de la Recherche Scientifique (http://dx.doi.org/10.13039/501100004794)  278 

o Université Paris Diderot (http://dx.doi.org/10.13039/501100005736) 279 

o Conny-Maeva Charitable Foundation 280 

o Cognacq-Jay Foundation 281 

o Orange (http://dx.doi.org/10.13039/501100003951) 282 

o Fondation pour la Recherche Médicale (http://dx.doi.org/10.13039/501100002915) 283 

o GenMed Labex 284 

o BioPsy Labex.  285 

 Authors' contributions 286 

Y-M. K., J-B. P., and G.D. wrote the manuscript, Y-M. K. and G.D. developed the StratiPy module. 287 

All authors read and approved the final manuscript. 288 

 Acknowledgements 289 

We thank Thomas Rolland and Freddy Cliquet for sharing their advices and comments. 290 

 Authors' information 291 

Yang-Min KIM 1,2,3,4,* is a PhD student at Human Genetics and Cognitive Functions unit at the neuroscience department of the 292 

Institut Pasteur in Paris. Her research on next-generation sequencing data and biological networks is focused on stratification of 293 

patients with Autism.  294 

Keywords: Autism Spectrum Disorder; Network; Protein-Protein Interaction; Personalize Medicine; Network-Based Stratification; 295 

Computational Biology.  296 

 297 

Jean-Baptiste Poline 5,6 is a researcher at Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, 298 

University of California, Berkeley, California, USA. His research focuses on neuroimaging methods, imaging-genetic biostatistics 299 

and neuroinformatics. 300 

Keywords: Neuroinformatics; Statistical methods; Brain imaging; Imaging genomics. 301 

 302 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12  

 

Guillaume Dumas 1,2,3,4 is research fellow of the Human Genetics and Cognitive Functions unit at the neuroscience department of 303 

the Institut Pasteur in Paris. His interdisciplinary work is at the cross-road of social psychology, cognitive neuroscience, and 304 

system biology.  305 

Keywords: Open Science; Complex Systems; Computational Biology; Cognitive Science; Social Neuroscience; Autism Spectrum 306 

Disorder. 307 

 308 

Reference 309 

1. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods [Internet]. 310 

2013 [cited 2015 Aug 12];10. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/ 311 

2. Stratipy: Graph regularized nonnegative matrix factorization (GNMF) in Python [Internet]. GHFC; 2017. Available from: 312 

https://github.com/GHFC/Stratipy 313 

3. Kim Yang-Min, Poline Jean-Baptiste, Dumas Guillaume. StratiPy [Internet]. Zenodo; 2017. Available from: 314 

https://zenodo.org/record/1042546 315 

4. Baker M. 1,500 scientists lift the lid on reproducibility. Nat News. 2016;533:452.  316 

5. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLOS 317 

Comput Biol. 2017;13:e1005510.  318 

6. Hothorn T, Leisch F. Case studies in reproducibility. Brief Bioinform. 2011;12:288–300.  319 

7. Shapin S, Schaffer S. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life (New in Paper). Princeton 320 

University Press; 2011.  321 

8. Peng RD. Reproducible research in computational science. Science. 2011;334:1226–7.  322 

9. Whitaker K. Showing your working: a how to guide to reproducible research [Internet]. 2017. Available from: 323 

https://figshare.com/articles/Showing_your_working_a_how_to_guide_to_reproducible_research/5443201 324 

10. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev 325 

Genet. 2012;13:667–72.  326 

11. HutsonFeb. 15 M, 2018, Pm 12:30. Missing data hinder replication of artificial intelligence studies [Internet]. Sci. AAAS. 327 

2018 [cited 2018 Mar 13]. Available from: http://www.sciencemag.org/news/2018/02/missing-data-hinder-replication-artificial-328 

intelligence-studies 329 

12. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. 330 

Camb J Econ. 2014;38:257–79.  331 

13. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 332 

2015;16:551–63.  333 

14. Loth E, Spooren W, Ham LM, Isaac MB, Auriche-Benichou C, Banaschewski T, et al. Identification and validation of 334 

biomarkers for autism spectrum disorders. Nat Rev Drug Discov. 2016;15:70–73.  335 

15. Introducing MEX Files - MATLAB & Simulink - MathWorks France [Internet]. [cited 2017 Aug 18]. Available from: 336 

https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html?requestedDomain=www.mathworks.com 337 

16. Tursa. MTIMESX - Fast Matrix Multiply with Multi-Dimensional Support - File Exchange - MATLAB Central [Internet]. 338 

2009 [cited 2017 Apr 24]. Available from: http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-339 

multiply-with-multi-dimensional-support 340 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13  

 

17. tim.lewis. Specifications [Internet]. OpenMP. [cited 2017 Aug 18]. Available from: http://www.openmp.org/specifications/ 341 

18. Python Software Foundation. History and License — Python 3.6.1 documentation [Internet]. 2017 [cited 2017 Apr 24]. 342 

Available from: https://docs.python.org/3/license.html#licenses-and-acknowledgements-for-incorporated-software 343 

19. Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N, Lepage C, et al. Reproducibility of neuroimaging analyses across 344 

operating systems. Front Neuroinformatics. 2015;9:12.  345 

20. Michael Droettboom, Thomas A Caswell, John Hunter, Eric Firing, Jens Hedegaard Nielsen, Antony Lee, et al. 346 

matplotlib/matplotlib v2.2.2 [Internet]. Zenodo; 2018. Available from: https://zenodo.org/record/1202077 347 

21. Pauli Virtanen, Ralf Gommers, Evgeni Burovski, Travis E. Oliphant, David Cournapeau, Warren Weckesser, et al. 348 

scipy/scipy: SciPy 1.0.1 [Internet]. Zenodo; 2018. Available from: https://zenodo.org/record/1206941 349 

22. NumPy — NumPy [Internet]. [cited 2018 Apr 3]. Available from: http://www.numpy.org/ 350 

23. TCGA [Internet]. Cancer Genome Atlas - Natl. Cancer Inst. [cited 2017 Apr 24]. Available from: 351 

https://cancergenome.nih.gov/ 352 

24. Eads. Hierarchical clustering (scipy.cluster.hierarchy) — SciPy v0.19.0 Reference Guide [Internet]. 2007 [cited 2017 Apr 24]. 353 

Available from: https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html 354 

25. Hierarchical Clustering - MATLAB & Simulink - MathWorks France [Internet]. [cited 2017 Apr 24]. Available from: 355 

https://fr.mathworks.com/help/stats/hierarchical-clustering-12.html 356 

26. A gallery of interesting Jupyter Notebooks · jupyter/jupyter Wiki [Internet]. [cited 2017 Aug 18]. Available from: 357 

https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks 358 

27. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control with Git and GitHub. PLoS Comput Biol. 359 

2016;12:e1004668.  360 

28. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific Computing. Eisen 361 

JA, editor. PLoS Biol. 2014;12:e1001745.  362 

29. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. Bourne PE, 363 

editor. PLoS Comput Biol. 2013;9:e1003285-4.  364 

30. Buckheit JB, Donoho DL. WaveLab and Reproducible Research. Wavelets Stat [Internet]. Springer, New York, NY; 1995 365 

[cited 2018 Mar 13]. p. 55–81. Available from: https://link.springer.com/chapter/10.1007/978-1-4612-2544-7_5 366 

31. Boettiger C. An introduction to Docker for reproducible research, with examples from the R environment. ACM SIGOPS 367 

Oper Syst Rev. 2015;49:71–9.  368 

32. Introduction [Internet]. Vagrant HashiCorp. [cited 2017 Oct 13]. Available from: https://www.vagrantup.com/intro/index.html 369 

33. Singularity | Singularity [Internet]. [cited 2017 Oct 13]. Available from: http://singularity.lbl.gov/ 370 

34. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS ONE. 371 

2017;12:e0177459.  372 

35. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhancing reproducibility for computational methods. 373 

Science. 2016;354:1240–1.  374 

36. Hill SL. How do we know what we know? Discovering neuroscience data sets through minimal metadata. Nat Rev Neurosci. 375 

2016;17:735–6.  376 

37. PEP 8 -- Style Guide for Python Code [Internet]. Python.org. [cited 2017 Aug 21]. Available from: 377 

https://www.python.org/dev/peps/pep-0008/ 378 

38. PEP 257 -- Docstring Conventions [Internet]. Python.org. [cited 2017 Aug 21]. Available from: 379 

https://www.python.org/dev/peps/pep-0257/ 380 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14  

 

39. Eglen SJ, Marwick B, Halchenko YO, Hanke M, Sufi S, Gleeson P, et al. Toward standard practices for sharing computer 381 

code and programs in neuroscience. Nat Neurosci. 2017;20:770–3.  382 

40. Software Carpentry [Internet]. Softw. Carpentry. [cited 2017 Aug 22]. Available from: http://software-383 

carpentry.org//index.html 384 

41. Data Carpentry [Internet]. Data Carpentry. [cited 2017 Aug 22]. Available from: http://www.datacarpentry.org/ 385 

42. MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges [Internet]. [cited 2017 Aug 23]. Available 386 

from: http://yann.lecun.com/exdb/mnist/ 387 

43. Bourne PE, Polka JK, Vale RD, Kiley R. Ten simple rules to consider regarding preprint submission. PLOS Comput Biol. 388 

2017;13:e1005473.  389 

44. Preprints in biology. Nat Methods. 2016;13:277–277.  390 

45. Stodden V, Seiler J, Ma Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc Natl 391 

Acad Sci. 2018;115:2584–9.  392 

46. Day RA, Gastel B. Historical Perspectives. Write Publ Sci Pap Seventh Ed. ABC-CLIO; 2011. p. 6–8.  393 

47. Academia – Industry Software Quality & Testing summit - ISTQB® International Software Testing Qualifications Board 394 

[Internet]. [cited 2017 Aug 23]. Available from: http://www.istqb.org/special-initiatives/istqb-conference-network-2istqb-395 

conference-network-academia/academia-%E2%80%93-industry-software-quality-testing-summit.html 396 

48. Kanwal S, Khan FZ, Lonie A, Sinnott RO. Investigating reproducibility and tracking provenance – A genomic workflow case 397 

study. BMC Bioinformatics. 2017;18:337.  398 

49. Karim MR, Michel A, Zappa A, Baranov P, Sahay R, Rebholz-Schuhmann D. Improving data workflow systems with cloud 399 

services and use of open data for bioinformatics research. Brief Bioinform [Internet]. [cited 2017 Jul 31]; Available from: 400 

https://academic.oup.com/bib/article/doi/10.1093/bib/bbx039/3737318/Improving-data-workflow-systems-with-cloud 401 

50. Open Research Data in Horizon 2020 [Internet]. [cited 2017 Aug 23]. Available from: 402 

https://ec.europa.eu/research/press/2016/pdf/opendata-infographic_072016.pdf 403 

51. Open Access in Horizon 2020 - EC funded projects [Internet]. [cited 2017 Aug 23]. Available from: 404 

https://www.openaire.eu/edocman?id=749&task=document.viewdoc 405 

52. Foster ED, Deardorff A. Open Science Framework (OSF). J Med Libr Assoc JMLA. 2017;105:203–6.  406 

 407 

Figure legends 408 

Figure 1: Hidden reproducibility issues like underwater iceberg. Scientific journals readers have the impression that they can 409 

almost see the full work of method. But in reality, articles do not take into account adjustment and configuration for significant 410 

replication in most cases. Therefore, there is a significant gap between apparent executable work (i.e. above water portion of 411 

iceberg) and necessary effort in practice (i.e. full iceberg). 412 

 413 

Figure 2: Analogy between robustness issues and road transport. The aim is to achieve same output (i.e. to reach the same 414 

location) using published methods (i.e. engine). Despite the same input data (i.e. gasoline), we obtained different results due to 415 

different programming languages —e.g. MATLAB and Python— (i.e. different roadways) and environments (i.e. different 416 

vehicles). 417 
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 418 

Figure 3: Normalized confusion matrices between original and replicated results. Before (a) and after (b) applying 419 

appropriate value of graph regularization factor on NBS method. Each row or column corresponds to a subgroup of patients (here 420 

three subgroups). The diagonal elements show the frequency of correct classifications for each subgroup: a high value indicates a 421 

correct prediction. 422 

 423 

Figure 4: Working principles of testing ecosystem with private data. Figure 4a shows a classical case: (a.1) Authors take 424 

private data (e.g. blue data) then publish their method and corresponding results; (a.2) Users having their own data (e.g. orange 425 

data) find a relevant paper but will be lost in the labyrinth of reproducibility. Figure 4b shows testing ecosystem with standard 426 

consensus dataset: (b.1) If authors work with their own data, they must identify corresponding standard data tag(s) (e.g. blue data); 427 

(b.2) Authors initiate to develop their method with corresponding standard data and reproducibility profile will be progressively 428 

built. Bar length on iceberg corresponds to progression of replication test; (b.3) Users can test proposed method with other 429 

standard data (e.g. orange and green data) and thus participate to enhancement of the reproducibility profile; (b.4) Thanks to the 430 

collective work on testing, the method could be optimized and authors can upgrade their initial paper (versioning). 431 
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