
GigaScience

Experimenting with Reproducibility: a case study of Robustness in Bioinformatics
--Manuscript Draft--

Manuscript Number: GIGA-D-17-00317R1

Full Title: Experimenting with Reproducibility: a case study of Robustness in Bioinformatics

Article Type: Review

Funding Information: Institut Pasteur (FR) Not applicable

H2020 Health Not applicable

Institut National des Sciences de
l'Univers, Centre National de la
Recherche Scientifique (FR)

Not applicable

Université Paris Diderot (FR) Not applicable

Conny-Maeva Charitable Foundation Not applicable

Cognacq-Jay Foundation Not applicable

Orange Not applicable

Fondation pour la Recherche Médicale Not applicable

GenMed Labex Not applicable

BioPsy Labex Not applicable

Abstract: Reproducibility has been shown to be limited in many scientific fields. This question is
a fundamental tenet of the scientific activity, but the related issues of reusability of
scientific data are poorly documented. Here, we present a case study of our difficulties
to reproduce a bioinformatics method [1] although code and data were available. First,
we tried to re-run the analysis with the code and data provided by the authors. Second,
we reimplemented the whole method in a Python package to avoid dependency on a
MATLAB license and ease the execution of the code on HPCC (High-Performance
Computing Cluster). Third, we assessed reusability of our reimplementation and the
quality of our documentation, testing how easy it would be to start from our
implementation to reproduce the results. In a second section, we propose solutions
from this case study and other observations to improve reproducibility and research
efficiency at the individual and collective level.
While finalizing our code, we created case specific documentation and tutorials for the
associated Python package StratiPy. Readers are thus invited to experiment our
reproducibility case study by generating the two confusion matrices of Fig 3 (see more
in 2.2.2).
 Here we decided to propose two options: 1) a step-by-step process to follow in a
Jupyter/IPython notebook; or 2) a Docker container ready to be built and run.
Availability: last version of StratiPy (Python) with two examples of reproducibility and
dataset are available at GitHub [2] and Zenodo [3].

Corresponding Author: Yang-Min KIM
Institut Pasteur
Paris, Île-de-France FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Institut Pasteur

Corresponding Author's Secondary
Institution:

First Author: Yang-Min KIM

First Author Secondary Information:

Order of Authors: Yang-Min KIM

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Jean-Baptiste Poline

Guillaume Dumas

Order of Authors Secondary Information:

Response to Reviewers: ------------------- see revision letter -------------------

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

This review is especially based on the reproducibility issues. The illustrated method is
directly based on the original paper by Hofree et al, 2013. We nevertheless described
any specific variations.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

1

Experimenting with Reproducibility: a case study of 1

Robustness in Bioinformatics 2

Authors 3

Yang-Min KIM 1,2,3,4,* , Jean-Baptiste Poline 5,6 , Guillaume Dumas 1,2,3,4 4

1Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France, 2CNRS UMR 3571 Genes, Synapses and 5

Cognition, Institut Pasteur, Paris, France, 3University Paris Diderot, Sorbonne Paris Cité, Paris, France, 4Centre de 6

Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 Institut Pasteur and CNRS), Paris, France, 5Montreal 7

Neurological Institute, Brain Imaging Center, Ludmer Center, McGill University, 6Henry H. Wheeler Jr. Brain Imaging Center, 8

Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA 9

 10

*To whom correspondence should be addressed 11

Correspondence: yang-min.kim@pasteur.fr; jbpoline@gmail.com; guillaume.dumas@pasteur.fr 12

Abstract 13

Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of the scientific 14

activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study of our 15

difficulties to reproduce a bioinformatics method [1] although code and data were available. First, we tried to re-run the analysis 16

with the code and data provided by the authors. Second, we reimplemented the whole method in a Python package to avoid 17

dependency on a MATLAB license and ease the execution of the code on HPCC (High-Performance Computing Cluster). Third, 18

we assessed reusability of our reimplementation and the quality of our documentation, testing how easy it would be to start from 19

our implementation to reproduce the results. In a second section, we propose solutions from this case study and other observations 20

to improve reproducibility and research efficiency at the individual and collective level. 21

While finalizing our code, we created case specific documentation and tutorials for the associated Python package StratiPy. 22

Readers are thus invited to experiment our reproducibility case study by generating the two confusion matrices of Fig 3 (see more 23

in 2.2.2). 24

 Here we decided to propose two options: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker 25

container ready to be built and run. 26

Availability: last version of StratiPy (Python) with two examples of reproducibility and dataset are available at GitHub [2] and 27

Zenodo [3]. 28

 29

Manuscript Click here to download Manuscript
reproducibility_KIM_manuscript_v2.docx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:yang-min.kim@pasteur.fr
mailto:jbpoline@gmail.com
mailto:guillaume.dumas@pasteur.fr
http://www.editorialmanager.com/giga/download.aspx?id=38133&guid=39eb40fe-9854-47d8-94fe-908a54849e3f&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38133&guid=39eb40fe-9854-47d8-94fe-908a54849e3f&scheme=1

2

Keywords 30

 Reproducibility 31

 Robustness 32

 Reusability 33

 Network Based Stratification (NBS) 34

 Standard consensus dataset 35

 Cancer 36

1 Background 37

The collective endeavor of science depends on researchers being able to replicate the work of others. In a recent survey of 1,576 38

researchers, 70% of them admitted having difficulty in reproducing experiments proposed by other scientists [4]. For 50%, this 39

reproducibility issue even concerns their own experiments. Despite the growing attention on the replication crisis in science [5,6], 40

this controversial subject is far from being new: already in the 17th century, scientists criticized the air pump invented by physicist 41

Robert Boyle because it was too complicated and expensive to build [7]. 42

Several concepts for reproducibility in computational science are closely associated [8,9]. Here we define them as mentioned by 43

K. Whitaker [9]: obtaining the same results using same data and same code is Reproducibility; if code is different, it is 44

Robustness. If we used different data but with the same code, it is Replicability. Lastly, using different data and different code is 45

referred as Generalizability. Here we will primarily elaborate on Reproducibility and Robustness, and acknowledge that new 46

datasets or hardware environment introduce additional hurdles [10]. Reproducibility is a key first step, for instance, among the 47

400 algorithms published during the major artificial intelligence conferences, only 6% offered the code [11]. Even when authors 48

provide data and code, the outcome can vary either marginally or fundamentally [12]. Tackling irreproducibility in bioinformatics 49

thus requires considerable effort beyond code and data availability, an effort that is still poorly recognized in the current 50

publication based research community. In most cases, there is a significant gap between apparent executable work (Fig 1 - i.e. 51

above water portion of iceberg) and necessary effort in practice (Fig 1 - i.e. full iceberg). Such effort is nevertheless necessary to 52

increase the consistency of the literature and efficiency of the scientific research process by making research products easily 53

resuable. 54

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

2 Reproducibility and Robustness in bioinformatics: a case study 55

2.1 Reproducibility: from MATLAB to MATLAB, OS and environment 56

Our team studies Autism Spectrum Disorders (ASD), a group of neurodevelopmental disorders well known for its heterogeneity. 57

One of the current challenges of our research is to uncover homogeneous subgroups of patients (i.e. stratification) with more 58

precise clinical outcomes, improving their prognosis and treatment [13,14]. An interesting stratification method was recently 59

proposed in the field of cancer research [1], where the authors proposed to combine genetic profiles of patients’ tumors with 60

protein-protein interaction networks to uncover meaningful homogeneous subgroups, a method called Network Based 61

Stratification (NBS). 62

Before using NBS method on our data, we studied the method by reproducing results from the original study. We are very grateful 63

to the main authors who kindly provided online all the related data and code, and gave us invaluable input upon request. The 64

authors of this study did much more to help reproduce their results than is generally done. Despite their help we experienced a 65

number of difficulties that we document here, hoping that this report will help future researchers to improve the reproducibility of 66

results and reusability of research products. 67

The first step of our project was to execute the original method code with the given data: reproducibility (Table 1). To improve 68

execution speed, the original authors used a library for MATLAB on a Linux platform, using executable compiled code MEX file 69

[15]: MTIMESX [16], a library allowing acceleration of large matrix multiplication. MEX files however are specific to the 70

architecture and have to be recompiled for each Operating System (OS). Since our lab was using Mac OS X Sierra, the 71

compilation of this MEX file into a mac64 binary required a new version of MTIMESX. It was also necessary to install and to 72

configure properly OpenMP [17], a development library for parallel computing. After this, the original MATLAB code was 73

successfully run in our environment. 74

 Code Data Technical issues Other issues

Reproducibility
Same: MATLAB

Same OS: MEX file specificity linked to OS (e.g.

Linux OSX)

Robustness

MATLAB Python Same File format: we can load sparse matrices from

.mat file but cannot save them into HDF5

using h5py package

Default parameters: linkage method use for

the hierarchical clustering

• MATLAB (MathWorks): UPGMA

(average)

• Python (SciPy): single

• Metadata structure

• Important parameter

value not explained in

the original paper

• Remaining discarded

work (‘code ruins’) and

traces of debugging

Reproducibility

of Robustness

Same: Python Same OS: Numpy package and BLAS library

compiled for specific OS (e.g. OSX Linux)

Documentation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Table 1: Technical problems encountered during our reproducibility and robustness case study. 75

These issues are classic but may not be overcome by researchers with little experience in compilation or installation issues. For 76

these reasons alone, many individuals may turn down the opportunity of reusing code. 77

The next part will focus on code re-implementation, a procedure, which can help understanding the method, but is even more time 78

consuming. 79

 80

 81

2.2 Robustness: from MATLAB to Python, language and organization 82

To fully master the method, we developed a complete open source toolkit of genomic stratification in Python [2]. Python is also 83

an interpreted programming language, but contrary to MATLAB is free of use and has a GPL-compatible license [18], which 84

fosters both robustness and generalizability. Recoding in another language in a different environment will lead to be some 85

unavoidable problems such as variation in low level libraries (e.g. glibc): it is likely that the outcomes will vary even if the same 86

algorithm is implemented [19]. In addition, we rely on Python packages to perform visualization or linear algebra computations 87

(e.g. Matplotlib, SciPy, NumPy [20–22]), and results may depend on these packages versions. Python is currently in a transitional 88

period between two major versions 2 and 3. We chose to write the code in Python 3, which is the current recommendation. 89

2.2.1 Metadata and File formats 90

Even if the original code could be run, we had to handle several file formats to check and understand the structure of the original 91

data. For instance the data was provided by The Cancer Genome (TCGA) [23] and made available in a MATLAB .mat file format 92

as compressed data (sparse matrices). Thanks to SciPy, Python can load all versions through v7.2 MATLAB files, but to read v7.3 93

.mat files, we needed an HDF5 Python library. We decided to continue using Python’s h5py package but Scipy’s sparse matrices 94

could not be stored in HDF5 format (Table 1). Moreover, the original authors had denoted download dates of patients’ data of 95

TCGA, thereby clarifying source of data. But in the absence of structural metadata, it was not always obvious how to interpret 96

dataset variables (e.g. patient ID, gene ID, phenotype). Fig 2 shows an analogy between robustness issues and road transport: 97

driving in a different environment (e.g. OS), we attempt to obtain identical results (i.e. to reach the same location) using the same 98

input data (i.e. gasoline), but with different computational environment (i.e. cars), different implementation of the method (i.e. 99

engine) and different programming languages (i.e. MATLAB and Python roads). 100

2.2.2 Codes and parameters 101

Once the environment, file format and data issues were resolved, the code was finally executed. Unfortunately, “unexpected” 102

results were obtained. One cause was the application of the hierarchical clustering step for which we used the clustering tools of 103

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

SciPy. Both SciPy and MATLAB (MathWorks) functions offer seven linkage methods, however, SciPy’s default option (single 104

method) [24] differs from MATLAB’s default option (UPGMA or average method) [25], which was used in the original study 105

(Table 1). Another cause for the variation in results is the value of one of the most important parameters of the method, the graph 106

regulator factor, which was not clarified in the original paper. From the article, we believed that this factor had a constant value of 107

1.0 until we found in the original code that its value varies across iterations and converges to an optimal value around 1800. 108

Therefore, we initially obtained very different results from the original NBS (Fig 3 a) with heterogeneous subgroups. Once the 109

optimal value was set up, we finally observed homogenous clusters (Fig 3 b). Moreover, during our attempts to run the original 110

code to understand the causes of the errors, we realized that some parts of the code were not run anymore (e.g. discarded work, 111

remaining traces of debugging) which made understanding the implementation harder. 112

To allow others to reproduce our results, we wrote some documentation and tutorials for the Python package StratiPy [2]. Readers 113

are thus invited to experiment with reproducibility too by generating the two confusion matrices of Fig 3. They will use the 114

different tools described in the following: GitHub, Docker, and Jupyter/IPython notebook. 115

2.2.3 Jupyter/IPython 116

During the re-coding process, we used an enhanced Python interpreter to debug: IPython, an interactive shell supporting both 117

Python 2 and 3. Since the dataset is large and the execution takes a significant amount of time, we used IPython to re-run 118

interactively some sub-sections of the script, which is one of the most helpful features. IPython can be integrated in the web 119

interface Jupyter Notebook, offering an advanced structure for mixing code and documentation. While the Jupyter/IPython 120

notebook was therefore initially convenient, it does not scale well to large programs and is not well adapted to versioning. 121

However, ability of mixing code with document text is very useful for tutorials: a user of the code can read documentation 122

(docstring), text explanations, and see how to run the code, explore parameters and visualize results in the browser. Our work on 123

NBS, as related here, can be reproduced with a Jupyter/IPython notebook available on our GitHub [2]. One can find more 124

examples and several helpful links on this “gallery of interesting Jupyter Notebooks” [26], which contains a section about 125

“Reproducible academic publications”. 126

2.3 Reproducibility of Robustness: from Python to Python 127

Besides Jupyter/IPython notebooks, we used versioning tools like the Git code version control system (VCS) to document the 128

development of our Python code. Git is arguably one of the most powerful VCS, allowing easy development of branches and 129

helping us to work together as a distributed team (Paris, Berkeley, Montreal) on the same project. This project, StratiPy, is hosted 130

on GitHub, a web-based Git repository hosting service [2]. While the original code was not available on GitHub, the main authors 131

shared their code on a website. This should be sufficient for our purpose but makes it less easy to collaborate on code. While 132

working on our GitHub repository, researchers from USA, India, China, and Europe contacted us about our robustness 133

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

experiment. Not only GitHub supports a better organization of projects, it also facilitates the collaboration of open-source 134

software projects, thanks to its social network functions [27]. We adopted open source coding standards and learnt how to 135

efficiently use Git and GitHub. Both required considerable training efforts on the short-term but brought clear benefits on the 136

long-term, especially regarding collaboration and debugging. 137

We then attempted to re-run and reproduce the results we obtained on another platform. While the Python code was developed 138

under Mac OS X Sierra (10.12), we used an Ubuntu 16.04.1 (Xenial) computer to test the Python implementation. Some 139

additional issues emerged (Table 1). First, our initial documentation did not include the list of the required packages and 140

instructions to launch the code. Second, the code was very slow to the extent that it was impractical to run it on a laptop because 141

the Numpy package had not been compiled with BLAS (Basic Linear Algebra Subprograms) that speeds up low-level routines 142

performing basic vector and matrix operations. Last, there was (initially) no easy way to check whether the results obtained on a 143

different architecture were the expected ones. We added documentation and tests on the results files md5sum to solve this. To 144

summarize, although the reuse and reproducibility of the results of the developed package were improved, these were far from 145

being optimal. 146

3 Potential solutions: from local to global 147

3.1 Act locally: simple practices and available tools 148

Given the observed difficulties, in this section we draw some conclusions on this reproducibility case study experiment and 149

suggest some tools and best practices. In addition, we suggest to follow the programing best practices of Wilson et al. such as 150

modularizing and re-using code, unit testing, document design, data management, and project organization [5,28]. Sandve and 151

colleagues [29] also suggest to keep the data provenance with recording all intermediate results. 152

3.1.1 Environment 153

In 1995, Buckheit and Donoho were already thinking about reproducible research in computer science. Their motto was “When 154

we publish articles containing figures which were generated by computer, we also publish the complete software environment 155

which generates the figures” by offering a complete and free package (WaveLab) to reproduce the published output [30]. 156

Container and virtual machines technologies such as Docker [31], Vagrant [32], Singularity [33,34] (easily works in cluster 157

environments) are becoming a standard solution to installation issues. These rely however on competencies that we think too few 158

biologists possess today. While a container might encapsulate everything needed for a software execution, it could be hard to 159

develop in a container. For instance, running Jupyter/IPython notebooks in Docker’s container requires knowledge on advanced 160

port forwarding , which can be discouraging for some biologists. Therefore, we decided to propose two options in our example 161

implementation of reproducibility: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker container 162

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

ready to be built and run. Nevertheless, mastering Docker –or other container tools– will become an important skill for 163

computational reproducible researchers. 164

3.1.2 Metadata 165

Standard metadata are vital for an efficient documentation of both data and software. In our example, we still lack the standard 166

lexicon to document the data as well as documenting the software. We however aim to follow the recommendations by Stodden et 167

al. [35]: “Software metadata should include, at a minimum, the title, authors, version, language, license, Uniform Resource 168

Identifier/DOI, software description (including purpose, inputs, outputs, dependencies), and execution requirements”. The more 169

comprehensive is the metadata description, the more likely the reuse will be both efficient and appropriate [36]. 170

3.1.3 Write readable code 171

Anyone who has spent time to understand someone else’s code would advise some simple basic rules to help make the code 172

readable and understandable. 173

First, the structure of the program should be clear and easily accessible. Second, good concise code documentation and naming 174

convention will help readability. Third, the code should not contain left-overs of previously tested solutions. When a solution 175

takes a long time to compute, an option to store it locally can be proposed. Using standard coding and documentation conventions 176

(e.g. PEP 8 and PEP 257 in Python [37,38]) with detailed comments and references of papers makes the code more accessible. 177

When an algorithm is used, any modification from the original reference should be explained and discussed in the article as well 178

as in the code. We advocate for researchers to write code “for their colleagues”, hence, ask for the opinion and review of co-179

working or partner laboratories. Furthermore, the collaboration between researchers working on different environments can more 180

easily isolate reproducibility problems. In the future, journals may consider review of code as part of the standard review process 181

[39]. 182

3.1.4 Test the code 183

To check if the code is yielding a correct answer, software developers associate test suites (unit tests or integration tests) with their 184

software. While we developed only a few tests in this project, we realize that this has a number of advantages, such as checking if 185

the software installation seems correct, check if updates in the code or in the operating system impact the results, etc. In our case, 186

we propose to check for the integrity of the data and for the results of some key processing. 187

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

3.2 Think globally: from education to community standards 188

3.2.1 Training the new generation of scientists to digital tools and practices 189

The training in coding is still too limited for biologists. Often, it is self-training, from searching answers on Stack Overflow or 190

equivalent. Despite efforts by organizations such as Software [40] or Data Carpentry [41] and the growing demand for ‘data 191

scientists’ in life science, university training on coding practices is still not enough generalized. The difficulty to access and 192

understand code may lead to applying code blindly without checking the validity of the results: often, scientists may prefer to 193

believe that the results are correct because of the time that would be needed to check the validity of the results. Mastering a 194

package such that results are truly understood can take a long time, as it was the case in our experiment. 195

Academia could instruct young scientists best practices for reproducibility. For instance, Hothorn and Leisch organized a 196

reproducibility workshop gathering mostly PhD students and young postdocs specialized in bioinformatics and biostatistics. Then 197

they evaluated 100 random sample papers from Bioinformatics [6]. Their study revealed how such a workshop can raise young 198

scientists awareness about “what makes reproduction easy or hard at first hand”. Indeed, they found out that only a third of the 199

original papers and two-thirds for applications notes had given access to the source code of software used. 200

3.2.2 Standard consensus dataset and testing ecosystem 201

We propose here that bioinformatics methods publications are systematically accompanied with a test dataset, code source and 202

some basic tests. As the method is tested on new datasets, the number of tests of the method would increase in number and cover a 203

wider range of applications. We give a first example with our NBS re-implementation. We develop below how this could 204

generalize and what would be the benefit for the scientific community. 205

A schematic overview of a possible testing ecosystem is shown in Fig 4. The core of this system would be a set of standard 206

consensus datasets used to validate methods. For instance in the field of machine learning, standard image databases are widely 207

used for training and testing (e.g. MNIST for handwritten digits [42]). In the case of our proposal, data could be from different 208

categories such as binary, text, image (shown as folders in different colors, Fig 4 b), and sub-categories to introduce criteria such 209

as size, quantitative/qualitative, discrete/continuous using a tagging system. Datasets could be issued from simulations or from 210

acquisition, and would validate a method on a particular component. This testing ecosystem will help scientists that cannot release 211

their data because of privacy issues (Fig 4 a.1) (although these can often be overcome) but also give access to data and tests to a 212

wide community including establishments with weak financial means. 213

We divide those who interact with scientific software or analysis code in two broad categories. First, the authors (“A”) who 214

propose a method and need to verify its validity and usefulness with open and/or private – data. Second, the users (“U”, e.g. 215

developers, engineers, bioinformaticians) who need to test and evaluate the proposed methods with other data. 216

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

When authors propose a new method, this method could have a reproducibility profile, which will progressively be built by 217

authors and users (Fig 4 b.3, b.4). The information of which method does or does not work with well identified data is crucial for 218

future work. During the optimization of a project, the software code and associated documentation should be accessible to foster 219

collaboration on additional use cases and data. When the work achieve some level of maturity, a full fledge article can be posted 220

on a preprint servers such as bioRxiv [43,44] and be associated with a GitHub repository by digital object identifiers (DOI). With 221

considerable effort, Stodden et al. conducted a reproducibility study on 204 random articles of Science: despite some availability 222

of the code, it had often been changed after publication, causing difficulties in replication [45]. In our proposed testing ecosystem, 223

users will be able to launch reproducibility projects more easily thanks to code and article versioning. 224

Users who test and approve reproducibility on original or new data could be credited and recognized by the scientific and 225

developer communities (i.e. Stack Overflow, GitHub). This testing ecosystem could thus facilitate collaborations between 226

methodology development and biological research communities. 227

4 Conclusion and perspective 228

In the 19th century, Pasteur introduced a detailed ”Methods” section in his report: this advanced approach was necessary to 229

reproduce his experiments and became new norms in the philosophy of science [46]. Today with the advent of computational 230

science, the reproducibility issue is seen as a growing concern. Before reusing a published method, we attempted to reproduce the 231

initial results and recoded the method to have a deep understanding of it. The investment in time to verify a previously published 232

method can be as or even more important than the work needed to publish a new paper. Despite the willingness of the authors to 233

share their tool and help us in our work, we have faced computational reproducibility and robustness problems due to 234

compatibility between environments, programming languages and software versions, choice of parameters, data identification, etc. 235

In addition to individual effort to write well documented and readable code, we recommend to use online repositories and tools to 236

help other scientists in their exploration of the method: Docker for environment standardization, GitHub for code version 237

management, and Jupyter notebooks for demonstration and tutorial [26,27,31]. We suggest to adopt such practices, not only for 238

writing code but also manuscripts [5]. At the community level, we should enhance the cooperation between academic education 239

and industry to foster a new generation of well-trained scientists in software development. For instance, Academia-Industry 240

Software Quality & Testing summit (AISTQ) organizes conference in order to encourage collaboration between Academia and 241

Industry [47]. This is also in line with the work of the Software or Data carpentry organizations [40,41]. Here, we propose a 242

testing ecosystem where the community uses standard, well-identified datasets to validate tools and their versions. The scope of a 243

proposed method could be continuously evaluated on new datasets. Eventually, data and software can be versioned and cited to 244

give credit to the individuals who have contributed to these building blocks of Science. This testing ecosystem is not only a 245

reproducibility validation tool; it is an attempt to make research product more reusable using online platforms and open source 246

tools, beyond the publication of a PDF file. Such system could be seen as a generalization of already existing workflow systems 247

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

such as Galaxy or GATK, integrating data and software provenance [48,49]. Some top-down initiatives already provide some 248

incentives for such a process i.e. Horizon 2020 (H2020) [50] project of the European Commission (EC) mandates open access of 249

research data, while respecting security and liability. H2020 supports OpenAIRE [51] a technical infrastructure of the open access, 250

which allows the interconnection between projects, publications, datasets, and author information across Europe. Thanks to 251

common guidelines, OpenAIRE interoperates with other web-based generalist scientific data repositories such as Zenodo, hosted 252

by CERN, which allows combining data and GitHub repository using DOI. The Open Science Framework also hosts data and 253

software for a given project [52]. Respecting standard guidelines to transparently communicate the scientific work is a key step 254

towards tackling irreproducibility and insures a robust scientific endeavor. 255

Key points 256

 Main barrier for reproducibility is in the lack of compatibility between environments, programming languages, software 257

versions, etc. 258

 At the individual level, the key is in research practices such as well written, tested and documented code, and well 259

curated data and the use of online repositories and collaborative tools. 260

 At the community level, we propose a testing ecosystem where standard consensus datasets are used to validate new 261

methods and foster their generalizability. 262

Declarations 263

 Ethics approval and consent to participate 264

We used the uterine endometrial carcinoma data as they were downloaded on January 1st, 2013 from the The Cancer Genome 265

Atlas (TCGA) portal by Hofree and colleagues [1]. 266

 Consent for publication 267

Not applicable 268

 Availability of data and material 269

Last version of StratiPy (Python) with two examples of reproducibility and dataset are available at GitHub [2]. 270

Zenodo DOI: https://doi.org/10.5281/zenodo.1042546 [3] 271

 Competing interests 272

The authors declare that they have no competing interests. 273

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://doi.org/10.5281/zenodo.1042546

11

 Funding 274

This work was supported by: 275

o Institut Pasteur (http://dx.doi.org/10.13039/501100003762) 276

o H2020 Societal Challenges (http://dx.doi.org/10.13039/100010676) 277

o Centre National de la Recherche Scientifique (http://dx.doi.org/10.13039/501100004794) 278

o Université Paris Diderot (http://dx.doi.org/10.13039/501100005736) 279

o Conny-Maeva Charitable Foundation 280

o Cognacq-Jay Foundation 281

o Orange (http://dx.doi.org/10.13039/501100003951) 282

o Fondation pour la Recherche Médicale (http://dx.doi.org/10.13039/501100002915) 283

o GenMed Labex 284

o BioPsy Labex. 285

 Authors' contributions 286

Y-M. K., J-B. P., and G.D. wrote the manuscript, Y-M. K. and G.D. developed the StratiPy module. 287

All authors read and approved the final manuscript. 288

 Acknowledgements 289

We thank Thomas Rolland and Freddy Cliquet for sharing their advices and comments. 290

 Authors' information 291

Yang-Min KIM 1,2,3,4,* is a PhD student at Human Genetics and Cognitive Functions unit at the neuroscience department of the 292

Institut Pasteur in Paris. Her research on next-generation sequencing data and biological networks is focused on stratification of 293

patients with Autism. 294

Keywords: Autism Spectrum Disorder; Network; Protein-Protein Interaction; Personalize Medicine; Network-Based Stratification; 295

Computational Biology. 296

 297

Jean-Baptiste Poline 5,6 is a researcher at Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, 298

University of California, Berkeley, California, USA. His research focuses on neuroimaging methods, imaging-genetic biostatistics 299

and neuroinformatics. 300

Keywords: Neuroinformatics; Statistical methods; Brain imaging; Imaging genomics. 301

 302

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

Guillaume Dumas 1,2,3,4 is research fellow of the Human Genetics and Cognitive Functions unit at the neuroscience department of 303

the Institut Pasteur in Paris. His interdisciplinary work is at the cross-road of social psychology, cognitive neuroscience, and 304

system biology. 305

Keywords: Open Science; Complex Systems; Computational Biology; Cognitive Science; Social Neuroscience; Autism Spectrum 306

Disorder. 307

 308

Reference 309

1. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods [Internet]. 310

2013 [cited 2015 Aug 12];10. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866081/ 311

2. Stratipy: Graph regularized nonnegative matrix factorization (GNMF) in Python [Internet]. GHFC; 2017. Available from: 312

https://github.com/GHFC/Stratipy 313

3. Kim Yang-Min, Poline Jean-Baptiste, Dumas Guillaume. StratiPy [Internet]. Zenodo; 2017. Available from: 314

https://zenodo.org/record/1042546 315

4. Baker M. 1,500 scientists lift the lid on reproducibility. Nat News. 2016;533:452. 316

5. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLOS 317

Comput Biol. 2017;13:e1005510. 318

6. Hothorn T, Leisch F. Case studies in reproducibility. Brief Bioinform. 2011;12:288–300. 319

7. Shapin S, Schaffer S. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life (New in Paper). Princeton 320

University Press; 2011. 321

8. Peng RD. Reproducible research in computational science. Science. 2011;334:1226–7. 322

9. Whitaker K. Showing your working: a how to guide to reproducible research [Internet]. 2017. Available from: 323

https://figshare.com/articles/Showing_your_working_a_how_to_guide_to_reproducible_research/5443201 324

10. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev 325

Genet. 2012;13:667–72. 326

11. HutsonFeb. 15 M, 2018, Pm 12:30. Missing data hinder replication of artificial intelligence studies [Internet]. Sci. AAAS. 327

2018 [cited 2018 Mar 13]. Available from: http://www.sciencemag.org/news/2018/02/missing-data-hinder-replication-artificial-328

intelligence-studies 329

12. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. 330

Camb J Econ. 2014;38:257–79. 331

13. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 332

2015;16:551–63. 333

14. Loth E, Spooren W, Ham LM, Isaac MB, Auriche-Benichou C, Banaschewski T, et al. Identification and validation of 334

biomarkers for autism spectrum disorders. Nat Rev Drug Discov. 2016;15:70–73. 335

15. Introducing MEX Files - MATLAB & Simulink - MathWorks France [Internet]. [cited 2017 Aug 18]. Available from: 336

https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html?requestedDomain=www.mathworks.com 337

16. Tursa. MTIMESX - Fast Matrix Multiply with Multi-Dimensional Support - File Exchange - MATLAB Central [Internet]. 338

2009 [cited 2017 Apr 24]. Available from: http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-339

multiply-with-multi-dimensional-support 340

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

17. tim.lewis. Specifications [Internet]. OpenMP. [cited 2017 Aug 18]. Available from: http://www.openmp.org/specifications/ 341

18. Python Software Foundation. History and License — Python 3.6.1 documentation [Internet]. 2017 [cited 2017 Apr 24]. 342

Available from: https://docs.python.org/3/license.html#licenses-and-acknowledgements-for-incorporated-software 343

19. Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N, Lepage C, et al. Reproducibility of neuroimaging analyses across 344

operating systems. Front Neuroinformatics. 2015;9:12. 345

20. Michael Droettboom, Thomas A Caswell, John Hunter, Eric Firing, Jens Hedegaard Nielsen, Antony Lee, et al. 346

matplotlib/matplotlib v2.2.2 [Internet]. Zenodo; 2018. Available from: https://zenodo.org/record/1202077 347

21. Pauli Virtanen, Ralf Gommers, Evgeni Burovski, Travis E. Oliphant, David Cournapeau, Warren Weckesser, et al. 348

scipy/scipy: SciPy 1.0.1 [Internet]. Zenodo; 2018. Available from: https://zenodo.org/record/1206941 349

22. NumPy — NumPy [Internet]. [cited 2018 Apr 3]. Available from: http://www.numpy.org/ 350

23. TCGA [Internet]. Cancer Genome Atlas - Natl. Cancer Inst. [cited 2017 Apr 24]. Available from: 351

https://cancergenome.nih.gov/ 352

24. Eads. Hierarchical clustering (scipy.cluster.hierarchy) — SciPy v0.19.0 Reference Guide [Internet]. 2007 [cited 2017 Apr 24]. 353

Available from: https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html 354

25. Hierarchical Clustering - MATLAB & Simulink - MathWorks France [Internet]. [cited 2017 Apr 24]. Available from: 355

https://fr.mathworks.com/help/stats/hierarchical-clustering-12.html 356

26. A gallery of interesting Jupyter Notebooks · jupyter/jupyter Wiki [Internet]. [cited 2017 Aug 18]. Available from: 357

https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks 358

27. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control with Git and GitHub. PLoS Comput Biol. 359

2016;12:e1004668. 360

28. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific Computing. Eisen 361

JA, editor. PLoS Biol. 2014;12:e1001745. 362

29. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. Bourne PE, 363

editor. PLoS Comput Biol. 2013;9:e1003285-4. 364

30. Buckheit JB, Donoho DL. WaveLab and Reproducible Research. Wavelets Stat [Internet]. Springer, New York, NY; 1995 365

[cited 2018 Mar 13]. p. 55–81. Available from: https://link.springer.com/chapter/10.1007/978-1-4612-2544-7_5 366

31. Boettiger C. An introduction to Docker for reproducible research, with examples from the R environment. ACM SIGOPS 367

Oper Syst Rev. 2015;49:71–9. 368

32. Introduction [Internet]. Vagrant HashiCorp. [cited 2017 Oct 13]. Available from: https://www.vagrantup.com/intro/index.html 369

33. Singularity | Singularity [Internet]. [cited 2017 Oct 13]. Available from: http://singularity.lbl.gov/ 370

34. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS ONE. 371

2017;12:e0177459. 372

35. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhancing reproducibility for computational methods. 373

Science. 2016;354:1240–1. 374

36. Hill SL. How do we know what we know? Discovering neuroscience data sets through minimal metadata. Nat Rev Neurosci. 375

2016;17:735–6. 376

37. PEP 8 -- Style Guide for Python Code [Internet]. Python.org. [cited 2017 Aug 21]. Available from: 377

https://www.python.org/dev/peps/pep-0008/ 378

38. PEP 257 -- Docstring Conventions [Internet]. Python.org. [cited 2017 Aug 21]. Available from: 379

https://www.python.org/dev/peps/pep-0257/ 380

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

39. Eglen SJ, Marwick B, Halchenko YO, Hanke M, Sufi S, Gleeson P, et al. Toward standard practices for sharing computer 381

code and programs in neuroscience. Nat Neurosci. 2017;20:770–3. 382

40. Software Carpentry [Internet]. Softw. Carpentry. [cited 2017 Aug 22]. Available from: http://software-383

carpentry.org//index.html 384

41. Data Carpentry [Internet]. Data Carpentry. [cited 2017 Aug 22]. Available from: http://www.datacarpentry.org/ 385

42. MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges [Internet]. [cited 2017 Aug 23]. Available 386

from: http://yann.lecun.com/exdb/mnist/ 387

43. Bourne PE, Polka JK, Vale RD, Kiley R. Ten simple rules to consider regarding preprint submission. PLOS Comput Biol. 388

2017;13:e1005473. 389

44. Preprints in biology. Nat Methods. 2016;13:277–277. 390

45. Stodden V, Seiler J, Ma Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc Natl 391

Acad Sci. 2018;115:2584–9. 392

46. Day RA, Gastel B. Historical Perspectives. Write Publ Sci Pap Seventh Ed. ABC-CLIO; 2011. p. 6–8. 393

47. Academia – Industry Software Quality & Testing summit - ISTQB® International Software Testing Qualifications Board 394

[Internet]. [cited 2017 Aug 23]. Available from: http://www.istqb.org/special-initiatives/istqb-conference-network-2istqb-395

conference-network-academia/academia-%E2%80%93-industry-software-quality-testing-summit.html 396

48. Kanwal S, Khan FZ, Lonie A, Sinnott RO. Investigating reproducibility and tracking provenance – A genomic workflow case 397

study. BMC Bioinformatics. 2017;18:337. 398

49. Karim MR, Michel A, Zappa A, Baranov P, Sahay R, Rebholz-Schuhmann D. Improving data workflow systems with cloud 399

services and use of open data for bioinformatics research. Brief Bioinform [Internet]. [cited 2017 Jul 31]; Available from: 400

https://academic.oup.com/bib/article/doi/10.1093/bib/bbx039/3737318/Improving-data-workflow-systems-with-cloud 401

50. Open Research Data in Horizon 2020 [Internet]. [cited 2017 Aug 23]. Available from: 402

https://ec.europa.eu/research/press/2016/pdf/opendata-infographic_072016.pdf 403

51. Open Access in Horizon 2020 - EC funded projects [Internet]. [cited 2017 Aug 23]. Available from: 404

https://www.openaire.eu/edocman?id=749&task=document.viewdoc 405

52. Foster ED, Deardorff A. Open Science Framework (OSF). J Med Libr Assoc JMLA. 2017;105:203–6. 406

 407

Figure legends 408

Figure 1: Hidden reproducibility issues like underwater iceberg. Scientific journals readers have the impression that they can 409

almost see the full work of method. But in reality, articles do not take into account adjustment and configuration for significant 410

replication in most cases. Therefore, there is a significant gap between apparent executable work (i.e. above water portion of 411

iceberg) and necessary effort in practice (i.e. full iceberg). 412

 413

Figure 2: Analogy between robustness issues and road transport. The aim is to achieve same output (i.e. to reach the same 414

location) using published methods (i.e. engine). Despite the same input data (i.e. gasoline), we obtained different results due to 415

different programming languages —e.g. MATLAB and Python— (i.e. different roadways) and environments (i.e. different 416

vehicles). 417

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

 418

Figure 3: Normalized confusion matrices between original and replicated results. Before (a) and after (b) applying 419

appropriate value of graph regularization factor on NBS method. Each row or column corresponds to a subgroup of patients (here 420

three subgroups). The diagonal elements show the frequency of correct classifications for each subgroup: a high value indicates a 421

correct prediction. 422

 423

Figure 4: Working principles of testing ecosystem with private data. Figure 4a shows a classical case: (a.1) Authors take 424

private data (e.g. blue data) then publish their method and corresponding results; (a.2) Users having their own data (e.g. orange 425

data) find a relevant paper but will be lost in the labyrinth of reproducibility. Figure 4b shows testing ecosystem with standard 426

consensus dataset: (b.1) If authors work with their own data, they must identify corresponding standard data tag(s) (e.g. blue data); 427

(b.2) Authors initiate to develop their method with corresponding standard data and reproducibility profile will be progressively 428

built. Bar length on iceberg corresponds to progression of replication test; (b.3) Users can test proposed method with other 429

standard data (e.g. orange and green data) and thus participate to enhancement of the reproducibility profile; (b.4) Thanks to the 430

collective work on testing, the method could be optimized and authors can upgrade their initial paper (versioning). 431

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 2 Click here to download Figure fig2_cars_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=38006&guid=8ad8078c-3cfe-44d4-95d0-f7ed44c19636&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38006&guid=8ad8078c-3cfe-44d4-95d0-f7ed44c19636&scheme=1

Figure 3 Click here to download Figure fig3_confusion_matrices_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=38007&guid=408c8756-20e8-4c58-a856-f92a82368ee4&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38007&guid=408c8756-20e8-4c58-a856-f92a82368ee4&scheme=1

Figure 1 Click here to download Figure fig1_iceberg_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=38005&guid=96489ab9-a987-4cfe-9f6f-836df1130a70&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38005&guid=96489ab9-a987-4cfe-9f6f-836df1130a70&scheme=1

Figure 4 Click here to download Figure fig4_testing_ecosystem_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=38009&guid=b0bb69af-14dd-432c-9e3c-5449cc7267ff&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38009&guid=b0bb69af-14dd-432c-9e3c-5449cc7267ff&scheme=1

