
GigaScience

Experimenting with Reproducibility: a case study of Robustness in Bioinformatics
--Manuscript Draft--

Manuscript Number: GIGA-D-17-00317R2

Full Title: Experimenting with Reproducibility: a case study of Robustness in Bioinformatics

Article Type: Review

Funding Information: Institut Pasteur (FR) Not applicable

H2020 Health Not applicable

Institut National des Sciences de
l'Univers, Centre National de la
Recherche Scientifique (FR)

Not applicable

Université Paris Diderot (FR) Not applicable

Conny-Maeva Charitable Foundation Not applicable

Cognacq-Jay Foundation Not applicable

Orange Not applicable

Fondation pour la Recherche Médicale Not applicable

GenMed Labex Not applicable

BioPsy Labex Not applicable

Abstract: Reproducibility has been shown to be limited in many scientific fields. This question is
a fundamental tenet of scientific activity, but the related issues of reusability of scientific
data are poorly documented. Here, we present a case study of our difficulties to
reproduce a published bioinformatics method even though code and data were
available. First, we tried to re-run the analysis with the code and data provided by the
authors. Second, we reimplemented the whole method in a Python package to avoid
dependency on a MATLAB license and ease the execution of the code on a HPCC
(High-Performance Computing Cluster). Third, we assessed reusability of our
reimplementation and the quality of our documentation, testing how easy it would be to
start from our implementation to reproduce the results. In a second section, we
propose solutions from this case study and other observations to improve
reproducibility and research efficiency at the individual and collective level.
While finalizing our code, we created case specific documentation and tutorials for the
associated Python package StratiPy. Readers are thus invited to experiment with our
reproducibility case study by generating the two confusion matrices of Fig 3 (see more
in 2.2.2).
 Here we decided to propose two options: 1) a step-by-step process to follow in a
Jupyter/IPython notebook; or 2) a Docker container ready to be built and run.
Availability: the latest version of StratiPy (Python) with two examples of reproducibility
and dataset are available via GitHub https://github.com/GHFC/Stratipy and archived in
Zenodo.

Corresponding Author: Yang-Min KIM
Institut Pasteur
Paris, Île-de-France FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Institut Pasteur

Corresponding Author's Secondary
Institution:

First Author: Yang-Min KIM, M.Sc.

First Author Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Order of Authors: Yang-Min KIM, M.Sc.

Jean-Baptiste Poline, PhD

Guillaume Dumas, PhD

Order of Authors Secondary Information:

Response to Reviewers: Dear Editor,

We answered point-by-point all the insightful reviewer comments, with a specific focus
on clarification in the text. We hope the revised manuscript conforms to the journal
standards.

Best regards,
Yang-Min KIM, on the behalf of all the authors

************** [Reviewer comments] **************

!! Conversion from word to PDF has changed some section numbers in the old version
but we keep the correct numbers in this response.

Reviewer #1

************** (1)"2.2 Robustness: from MATLAB to Python" and "2.3 Reproducibility of
Robustness: from Python to Python" seem have a little overlap, because in
Background they were parallel concept. Please reorganize the contents in these two
parts. **************

Since 2.2 is about robustness (change in code) and 2.3 is about re-running the python
code on different platforms, it seems to us that this two sections can be kept separate,
but the description of figure 2 has been moved from the end of paragraph 2.2.1
(Metadata and File formats, page 4, line 86) to the end of paragraph 2.2.3
(Documentation and examples, page 5, line 115) to conclude the robustness section.
We also agree that the subheadings were not entirely consistent and reorganize some
of the text (see below).

************** (2) The subtitles need to be more logical, for example, 2.2.1 Metadata and
File formats, and 2.2.2 Codes and parameters, but 2.2.3 Jupyter/IPython. The first two
subtitles are describing the effect of data, format and code, parameter on the
robustness, but the "Jupyter/IPython" is not a parallel concept with the first two
subtitles on the robustness, they are only platform or shell environment. Please well
design the subtitles or this subsection "Jupyter/IPython" can be integrated into the
2.2.2, in brief, please make it more logical for reading. In fact, in this paper, similar
problems exist several places. **************

We worked to make the logic of the text easier to follow and more consistent. In
particular, we renamed several subsections like the “jupyter” subsection 2.2.3 into
“Documentation and examples” (page 5, line 115), "environment" subsection 3.1.1 into
"Publish software and their environment" (page 7, line 175) and "metadata" subsection
3.1.2 into "Document with appropriate Metadata" (page 7, line 187).
We also split subsection “2.3 Reproducibility of Robustness: from Python to Python”
into two parts: “2.3 Collaborative coding and best practices” (page 5, line 132) and “2.4
Reproducibility of Robustness: from Python to Python” (page 6, line 143).

************** (3) Please pay attention to the first sentence of a paragraph, it should give
the main spirit of the paragraph instead of just starting a new talking. For example,

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

"Once the environment, file format and data issues were resolved, the code was finally
executed"… For another example, "Given the observed difficulties, in this section we
draw some conclusions on this reproducibility case study experiment and suggest
some tools and best practices.", why always "some conclusion"? why cannot directly
summarize the conclusion here? Another example, "3.1.1 Environment In 1995,
Buckheit and Donoho were already thinking about reproducible research in computer
science", this is a composition or fiction genre instead of a scientific paper.
(4) After rewriting all first sentences for each paragraphs, please reorganize the
content of their following sentences referring to other published scientific articles.

We rewrote the first sentences of the paragraph across the paper.

Page 4, line 100, paragraph 2.2.2 Codes and parameters: we changed the sentence
"Once the environment, file format and data issues were resolved, the code was finally
executed" into "Beyond documentation and file formats, code initialization and
parameters settings are also key for reproducibility."

Page 5, line 133, paragraph 2.3 Collaborative code development and best practices:
“Throughout the project we used the version control system (VCS) Git to document the
development of our Python package.”

Page 6, line 144, paragraph 2.4 Reproducibility of Robustness: from Python to Python:
“Knowing how difficult it can be to re-run someone else’s code, we then attempted to
start the analysis from scratch and to reproduce the results on another platform from
our newly developed python package.”

Page 7, line 172, paragraph 3.1 Act locally: simple practices and available tools: we
replaced the sentence "Given the observed difficulties, in this section we draw some
conclusions on this reproducibility case study experiment and suggest some tools and
best practices." by “We conclude from this reproducibility case study experiment by
suggesting tools and best practices following the programming best practices”.

Page 7, line 176, paragraph 3.1.1 Publish software and their environment: regarding
the sentence about Buckheit and Donoho, we totally rewrote it as follow: "Increased
reproducibility and replicability can be obtained by following Buckheit and Donoho’s
long standing motto: “When we publish articles containing figures which were
generated by computer, we also publish the complete software environment which
generates the figures” by offering a complete and free package (WaveLab) to
reproduce the published output [30]."

Page 7, line 195, paragraph 3.1.3 Write readable code: we changed the sentence
“Anyone who has spent time to understand someone else’s code would advise some
simple basic rules to help make the code readable and understandable.” into “We draw
some conclusion from our experience in working with others code.”. We then follow the
reviewer advice to directly summarize the conclusion.

************** (5) Based on the size of core content of this article, please cut it down.

We removed some of the text to make it more dense.. Especially in the conclusion, we
adopt a straightforward bullet-point list of key messages and recommandations:

Page 11, line 297: "To summarize, our experiment at reproducing initial results led to
the following conclusions and recommendations:
- Improve life scientists software development skills
- Use online repositories and tools to help other scientists in their exploration of the
method [26,27,31]
- Enhance the cooperation between academic education and industry [40,41,47]
- Develop an open source continuous testing ecosystem with community standards,
well-identified datasets to validate tools across versions and datasets, and go beyond
the publication of a PDF file”

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

In total we have reduced 217 words.

Reviewer #2

************** The authors have successfully responded to my comments. I congratulate
the authors for a simple and nice paper. **************

We thank reviewer 2 for all his helpful comments and interest in our paper.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

No

If not, please give reasons for any
omissions below.

 as follow-up to "Experimental design
and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

"

This review is especially based on the reproducibility issues. The illustrated method is
directly based on the original paper by Hofree et al, 2013. We nevertheless described
any specific variations.

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

 1

Experimenting with Reproducibility: a case study of 1

Robustness in Bioinformatics 2

Authors 3

Yang-Min KIM 1,2,3,4,* , Jean-Baptiste Poline 5,6 , Guillaume Dumas 1,2,3,4 4

1Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France, 2CNRS UMR 3571 Genes, Synapses and 5

Cognition, Institut Pasteur, Paris, France, 3University Paris Diderot, Sorbonne Paris Cité, Paris, France, 4Centre de 6

Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 Institut Pasteur and CNRS), Paris, France, 5Montreal 7

Neurological Institute, Brain Imaging Center, Ludmer Center, McGill University, 6Henry H. Wheeler Jr. Brain Imaging Center, 8

Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA 9

 10

*To whom correspondence should be addressed 11

Correspondence: yang-min.kim@pasteur.fr, ORCID: 0000-0002-1583-3297; jbpoline@gmail.com; ORCID: 0000-0002-12

9794-749X; guillaume.dumas@pasteur.fr, ORCID: 0000-0002-2253-1844 13

Abstract 14

Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of scientific activity, 15

but the related issues of reusability of scientific data are poorly documented. Here, we present a case study of our difficulties to 16

reproduce a published bioinformatics method even though code and data were available. First, we tried to re-run the analysis with 17

the code and data provided by the authors. Second, we reimplemented the whole method in a Python package to avoid dependency 18

on a MATLAB license and ease the execution of the code on a HPCC (High-Performance Computing Cluster). Third, we assessed 19

reusability of our reimplementation and the quality of our documentation, testing how easy it would be to start from our 20

implementation to reproduce the results. In a second section, we propose solutions from this case study and other observations to 21

improve reproducibility and research efficiency at the individual and collective level. 22

While finalizing our code, we created case specific documentation and tutorials for the associated Python package StratiPy. 23

Readers are thus invited to experiment with our reproducibility case study by generating the two confusion matrices of Fig 3 (see 24

more in 2.2.2). 25

 Here we decided to propose two options: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker 26

container ready to be built and run. 27

Availability: the latest version of StratiPy (Python) with two examples of reproducibility and dataset are available via GitHub 28

https://github.com/GHFC/Stratipy and archived in Zenodo. 29

Manuscript Click here to access/download;Manuscript;Experimenting with
Reproducibility.docx

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:guillaume.dumas@pasteur.fr
http://www.editorialmanager.com/giga/download.aspx?id=43112&guid=7eed1b92-b488-4be6-ba1e-e1a8a6847751&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=43112&guid=7eed1b92-b488-4be6-ba1e-e1a8a6847751&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=813&rev=2&fileID=43112&msid=1aa0b6be-2948-4a57-a94a-f4b24a4813a0

2

Keywords 30

● Reproducibility; Robustness; Reusability; Network Based Stratification (NBS); Standard consensus dataset; Cancer 31

1 Background 32

The collective endeavor of science depends on researchers being able to replicate the work of others. In a recent survey of 1,576 33

researchers, 70% of them admitted having difficulty in reproducing experiments proposed by other scientists [1]. For 50%, this 34

reproducibility issue even concerns their own experiments. Despite the growing attention on the replication crisis in science [2,3], 35

this controversial subject is far from being new: already in the 17th century, scientists criticized the air pump invented by physicist 36

Robert Boyle because it was too complicated and expensive to build [4]. 37

Several concepts for reproducibility in computational science are closely associated [5,6]. Here we define them as mentioned by 38

K. Whitaker [6]: obtaining the same results using same data and same code is Reproducibility; if code is different, it is 39

Robustness. If we used different data but with the same code, it is Replicability. Lastly, using different data and different code is 40

referred as Generalizability. Here we will primarily elaborate on Reproducibility and Robustness, and acknowledge that new 41

datasets or hardware environment introduce additional hurdles [7]. Reproducibility is a key first step, for instance, among the 400 42

algorithms published during the major artificial intelligence conferences, only 6% offered the code [8]. Even when authors 43

provide data and code, the outcome can vary either marginally or fundamentally [9]. Tackling irreproducibility in bioinformatics 44

thus requires considerable effort beyond code and data availability, an effort that is still poorly recognized in the current 45

publication based research community. In most cases, there is a significant gap between apparent executable work (Fig 1 - i.e. 46

above water portion of iceberg) and necessary effort in practice (Fig 1 - i.e. full iceberg). Such effort is necessary to increase the 47

consistency of the literature and efficiency of the scientific research process by making research products easily reusable. 48

2 Reproducibility and Robustness in bioinformatics: a case study 49

2.1 Reproducibility: from MATLAB to MATLAB, OS and environment 50

Our team studies Autism Spectrum Disorders (ASD), a group of neurodevelopmental disorders well known for its heterogeneity. 51

One of the current challenges of our research is to uncover homogeneous subgroups of patients (i.e. stratification) with more 52

precise clinical outcomes, improving their prognosis and treatment [10,11]. An interesting stratification method was recently 53

proposed in the field of cancer research [12], where the authors proposed to combine genetic profiles of patients’ tumors with 54

protein-protein interaction networks to uncover meaningful homogeneous subgroups, a method called Network Based 55

Stratification (NBS). 56

Before using NBS method on our data, we studied the method by reproducing results from the original study. We are very grateful 57

to the main authors who kindly provided online all the related data and code, and gave us invaluable input upon request. The 58

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 3

authors of this study did much more to help reproduce their results than is generally done. Despite their help we experienced a 59

number of difficulties that we document here, hoping that this report will help future researchers to improve the reproducibility of 60

results and reusability of research products. 61

The first step of our project was to execute the original method code with the given data: reproducibility (Table 1). To improve 62

execution speed, the original authors used a library for MATLAB on a Linux platform, using executable compiled code MEX file 63

[13]: MTIMESX 14], a library allowing acceleration of large matrix multiplication. MEX files however are specific to the 64

architecture and have to be recompiled for each Operating System (OS). Since our lab was using Mac OS X Sierra, the 65

compilation of this MEX file into a mac64 binary required a new version of MTIMESX. It was also necessary to install and to 66

configure properly OpenMP [15], a development library for parallel computing. After this, the original MATLAB code was 67

successfully run in our environment. 68

 Code Data Technical issues Other issues

Reproducibility Same: MATLAB

Same OS: MEX file specificity linked to OS (e.g.

Linux → OSX)

Robustness MATLAB → Python Same File format: we can load sparse matrices from

.mat file but cannot save them into HDF5 using

h5py package

Default parameters: linkage method use for

the hierarchical clustering

• MATLAB (MathWorks): UPGMA

(average)

• Python (SciPy): single

• Metadata structure

• Important parameter

value not explained in

the original paper

• Remaining discarded

work (‘code ruins’) and

traces of debugging

Reproducibility

of Robustness

Same: Python Same OS: Numpy package and BLAS library

compiled for specific OS (e.g. OSX → Linux)

Documentation

Table 1: Technical problems encountered during our reproducibility and robustness case study. 69

These issues are classic but may not be overcome by researchers with little experience in compilation or installation issues. For 70

these reasons alone, many individuals may turn down the opportunity of reusing code and therefore the method. 71

The next part will focus on code re-implementation, a procedure, which can help understanding the method, but is even more time 72

consuming. 73

2.2 Robustness: from MATLAB to Python, language and organization 74

To fully master the method, we developed a complete open source toolkit of genomic stratification in Python [16]. Python is also 75

an interpreted programming language, but contrary to MATLAB is free of use and has a GPL-compatible license [17], which 76

fosters both robustness and generalizability. Recoding in another language in a different environment will lead to be some 77

unavoidable problems such as variation in low level libraries (e.g. glibc): it is likely that the outcomes will vary even if the same 78

algorithm is implemented [18]. In addition, we rely on Python packages to perform visualization or linear algebra computations 79

(e.g. Matplotlib, SciPy, NumPy [19–21]), and results may depend on these packages versions. Python is currently in a transitional 80

period between two major versions 2 and 3. We chose to write the code in Python 3, which is the current recommendation. 81

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

2.2.1 Metadata and file formats 82

Even if the original code could be run, we had to handle several file formats to check and understand the structure of the original 83

data. For instance the data were provided by The Cancer Genome Atlas (TCGA) [22] and made available in a MATLAB .mat file 84

format v7.2 as compressed data (sparse matrices). Thanks to SciPy, Python can load those MATLAB files version. We wanted to 85

use the open format HDF5 for saving the results, however Scipy’s sparse matrices could not be stored in HDF5 format (Table 1). 86

We thus decided to continue saving in .mat format. Moreover, the original authors had denoted download dates of patients’ data of 87

TCGA, thereby clarifying the data provenance. But in the absence of structural metadata, we had to explore the hierarchical 88

structure of the variables (e.g. patient ID, gene ID, phenotype). 89

2.2.2 Codes and parameters 90

Beyond documentation and file formats, code initialization and parameters settings are also keys for reproducibility. Upon 91

execution of the code, “unexpected” results were obtained. One cause was the application of the hierarchical clustering step for 92

which we used the clustering tools of SciPy. Both SciPy and MATLAB (MathWorks) functions offer seven linkage methods, 93

however, SciPy’s default option (single method) [23] differs from MATLAB’s default option (UPGMA or average method) [24], 94

which was used in the original study (Table 1). Another cause for the variation in results is the value of one of the most important 95

parameters of the method, the graph regulator factor, which was not clarified in the original paper. From the article, we believed 96

that this factor had a constant value of 1.0 until we found in the original code that its value varies across iterations and converges 97

to an optimal value around 1800. Therefore, we initially obtained very different results from the original NBS (Fig 3 a) with 98

heterogeneous subgroups. Once the optimal value was set up, we finally observed homogenous clusters (Fig 3 b). Moreover, 99

during our attempts to run the original code to understand the causes of the errors, we realized that some parts of the code were 100

not run anymore (e.g. discarded work, remaining traces of debugging) which made understanding the implementation harder. 101

To allow others to reproduce our results, we wrote some documentation and tutorials for the Python package StratiPy [16]. 102

Readers are thus invited to experiment with reproducibility by generating the two confusion matrices of Fig 3. This is described 103

by the following different tools: GitHub, Docker, and Jupyter/IPython notebook. 104

2.2.3 Documentation and examples 105

During the re-coding process, we used an enhanced Python interpreter to debug: IPython, an interactive shell supporting both 106

Python 2 and 3. Since the dataset is large and the execution takes a significant amount of time, we used IPython to re-run 107

interactively some sub-sections of the script, which is one of the most helpful features. IPython can be integrated in the web 108

interface Jupyter Notebook, offering an advanced structure for mixing code and documentation. While the Jupyter/IPython 109

notebook was therefore initially convenient, it does not scale well to large programs and is not well adapted to versioning. 110

However, ability of mixing code with document text is very useful for tutorials: a user of the code can read documentation 111

(docstring), text explanations, and see how to run the code, explore parameters and visualize results in the browser. Our work on 112

NBS, as related here, can be reproduced with a Jupyter/IPython notebook available via our GitHub repository [16]. One can find 113

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 5

more examples and several helpful links via this “gallery of interesting Jupyter Notebooks” [25], which contains a section about 114

“Reproducible academic publications”. 115

To conclude, we were able to test the robustness of the method with our python implementation, but this took approximately two 116

months of a senior researcher and six months of a master student. Fig 2 illustrate this work through an analogy between robustness 117

issues and road transport: driving in a different environment (e.g. OS), we attempt to obtain identical results (i.e. to reach the same 118

location) using the same input data (i.e. gasoline), but with different computational environment (i.e. cars), different 119

implementation of the method (i.e. engine) and different programming languages (i.e. MATLAB and Python roads). 120

2.3 Collaborative code development and best practices 121

Throughout the project we used the version control system (VCS) Git to document the development of our Python package. Git is 122

arguably one of the most powerful VCS, allowing easy development of branches and the distributed team (Paris, Berkeley, 123

Montreal) to work collaboratively on the project. This project, StratiPy, is hosted on GitHub, a web-based Git repository hosting 124

service [16]. While the original code was not available on GitHub, the main authors shared their code on a website. This should be 125

sufficient for reproducibility and replicability our purposes but makes it less easy to collaborate on the code. While working on 126

our GitHub repository, researchers from USA, India, China, and Europe contacted us about our robustness experiment. Not only 127

GitHub supports a better organization of projects, it also facilitates the collaboration on open-source software projects through, 128

thanks to its social network functions [26]. We adopted open source coding standards and learnt how to efficiently use Git and 129

GitHub. Both required considerable training efforts on the short-term but brought clear benefits on the long-term, especially 130

regarding collaboration and debugging. 131

2.4 Reproducibility of Robustness: from Python to Python 132

Knowing how difficult it can be to re-run someone else’s code, we then attempted to start the analysis from scratch and to 133

reproduce the results on another platform from our newly developed python package. While the Python code was developed under 134

Mac OS X Sierra (10.12), we used an Ubuntu 16.04.1 (Xenial) computer to test the Python implementation. Some additional 135

issues emerged (Table 1). First, our initial documentation did not include the list of the required packages and instructions to 136

launch the code. Second, the code was very slow to the extent that it was impractical to run it on a laptop because the Numpy 137

package had not been compiled with BLAS (Basic Linear Algebra Subprograms) that speeds up low-level routines performing 138

basic vector and matrix operations. Last, there was (initially) no easy way to check whether the results obtained on a different 139

architecture were the expected ones. We added documentation and tests on the results files md5sum to solve this. To summarize, 140

although the reuse and reproducibility of the results of the developed package were improved, these were far from being optimal 141

in the first attempt. 142

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

3 Potential solutions: from local to global 143

3.1 Act locally: simple practices and available tools 144

We conclude this reproducibility case study experiment by suggesting tools and best practices following the programming best 145

practices of Wilson et al., such as modularizing and re-using code, unit testing, document design, data management, and project 146

organization [2,27], as well as keeping data provenance and recording all intermediate results [28]. 147

3.1.1 Publish software and their environment 148

Increased reproducibility and replicability can be obtained by following Buckheit and Donoho’s long standing motto: “When we 149

publish articles containing figures which were generated by computer, we also publish the complete software environment which 150

generates the figures” by offering a complete and free package (WaveLab) to reproduce the published output [29]. Container and 151

virtual machines technologies such as Docker [30], Vagrant [31], Singularity [32,33] (easily works in cluster environments) are 152

becoming a standard solution to mitigate installation issues. These rely however on competencies that we think too few biologists 153

possess today. While a container might encapsulate everything needed for a software execution, it can be hard to develop in a 154

container. For instance, running Jupyter/IPython notebooks in Docker containers requires knowledge on advanced port 155

forwarding, which may be discouraging for many biologists. Therefore, we decided to propose two options in our example 156

implementation of reproducibility: 1) a step-by-step process to follow in a Jupyter/IPython notebook; or 2) a Docker container 157

ready to be built and run. Mastering Docker –or other container tools– is increasingly becoming an important skill for biologists 158

who use computational tools. 159

3.1.2 Document with appropriate Metadata 160

Standard metadata are vital for an efficient documentation of both data and software. In our example, we still lack the standard 161

lexicon to document the data as well as documenting the software. We however aim to follow the recommendations by Stodden et 162

al. [34]: “Software metadata should include, at a minimum, the title, authors, version, language, license, Uniform Resource 163

Identifier/DOI, software description (including purpose, inputs, outputs, dependencies), and execution requirements”. The more 164

comprehensive is the metadata description, the more likely the reuse will be both efficient and appropriate [35]. 165

3.1.3 Write readable code 166

We draw some conclusion from our experience in working with others code. 167

First, the structure of the program should be clear and easily accessible. Second, good concise code documentation and naming 168

convention will help readability. Third, the code should not contain left-overs of previously tested solutions. When a solution 169

takes a long time to compute, an option to store it locally can be proposed. Using standard coding and documentation conventions 170

(e.g. PEP 8 and PEP 257 in Python [36,37]) with detailed comments and references of papers makes the code more accessible. 171

When an algorithm is used, any modification from the original reference should be explained and discussed in the article as well 172

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 7

as in the code. We advocate for researchers to write code “for their colleagues”, hence, ask for the opinion and review of co-173

working or partner laboratories. Furthermore, the collaboration between researchers working on different environments can more 174

easily isolate reproducibility problems. In the future, journals may consider review of code as part of the standard review process 175

[38]. 176

3.1.4 Test the code 177

To check if the code is yielding a correct answer, software developers associate test suites (unit tests or integration tests) with their 178

software. While we developed only a few tests in this project, we realize that this practice has a number of advantages, such as 179

checking if the software installation seems correct, check if updates in the code or in the operating system impact the results, etc. 180

In our case, we propose to check for the integrity of the data and for the results of some key processing. 181

3.2 Think globally: from education to community standards 182

3.2.1 Training the new generation of scientists to digital tools and practices 183

The training in coding and software development is still too limited for biologists. Often, it is limited to self-training from 184

searching answers on Stack Overflow or equivalent. Despite efforts by organizations such as Software [39] or Data Carpentry [40] 185

and the growing demand for ‘data scientists’ in life sciences, university training and assessment on coding practices is still not 186

generalized. The difficulty to access and understand code may lead to applying code blindly without checking the validity of the 187

results: often, scientists may prefer to believe that results are correct because checking the validity of the results may require 188

significant time. Mastering a package such that results are truly understood can take a long time, as it was the case in our 189

experiment. 190

Academia could - and we argue should - instruct young scientists in best practices for reproducibility. For instance, Hothorn and 191

Leisch organized a reproducibility workshop gathering mostly PhD students and young postdocs specialized in bioinformatics and 192

biostatistics. Then they evaluated 100 random sample papers from Bioinformatics [3]. Their study revealed how such a workshop 193

can raise young scientists awareness about “what makes reproduction easy or hard at first hand”. Indeed, they found out that only 194

a third of the original papers and two-thirds for applications notes had given access to the source code of software used. 195

3.2.2 Standard consensus dataset and testing ecosystem 196

We propose here that bioinformatics methods publications are systematically accompanied with a test dataset, code source and 197

some basic tests (given ethical and legal constraints). As the method is tested on new datasets, the number of tests and range of 198

applications would expand. We give a first example with our NBS re-implementation. 199

A schematic overview of a possible testing ecosystem generalizing our test study is shown in Fig 4. The core of this system would 200

be a set of standard consensus datasets used to validate methods. For instance in the field of machine learning, standard image 201

databases are widely used for training and testing (e.g. MNIST for handwritten digits [41]). In the case of our proposal, data could 202

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

be from different categories such as binary, text, image (shown as folders in different colors, Fig 4 b), and sub-categories to 203

introduce criteria such as size, quantitative/qualitative, discrete/continuous using a tagging system. Datasets could be issued from 204

simulations or from acquisition, and would validate a method on a particular component. This testing ecosystem will help 205

scientists that cannot release their data because of privacy issues (Fig 4 a.1) although these can often be overcome, but also give 206

access to data and tests to a wide community including establishments with little financial means. 207

We divide those who interact with scientific software or analysis code in two broad categories. First, the authors (“A”) who 208

propose a method and need to verify its validity and usefulness with open and/or private – data. Second, the users (“U”, e.g. 209

developers, engineers, bioinformaticians) who need to test and evaluate the proposed methods with other data. 210

When authors propose a new method, we propose that authors and users progressively build its reproducibility profile (Fig 4 b.3, 211

b.4) to document which method best work with which data. During the optimization of a project, the software code and associated 212

documentation should be accessible to foster collaboration on additional use cases and data. When the work achieves some level 213

of maturity, a full fledge article can be posted on a preprint servers such as bioRxiv [42,43] and be associated with a 214

GitHub/GitLab repository with a digital object identifier (DOI). With considerable effort, Stodden et al. conducted a 215

reproducibility study on 204 random articles of Science: despite some availability of the code, it had often been changed after 216

publication, causing difficulties in replication [44]. In our proposed testing ecosystem, users will be able to launch reproducibility 217

projects more easily thanks to code and article versioning. 218

Users who test and approve reproducibility on original or new data could be accredited and recognized by the scientific and 219

developer communities (i.e. Stack Overflow, GitHub). This testing ecosystem could thus facilitate collaborations between 220

methodology development and biological research communities. 221

4 Conclusion and perspective 222

In the 19th century, Pasteur introduced a detailed ”Methods” section in his report: this advanced approach was necessary to 223

reproduce his experiments and became the norm in the practice of science [45]. Today with the advent of computational science, 224

the reproducibility issue is seen as a growing concern. To summarize, our experiment at reproducing initial results led to the 225

following recommendations: 226

 Improve life scientists software development skills 227

 Use online repositories and tools to help other scientists in their exploration of the method [25,26,30] 228

 Enhance the cooperation between academic education and industry [39,40,46] 229

 Develop an open source continuous testing ecosystem with community standards, well-identified datasets to validate 230

tools across versions and datasets, and go beyond the publication of a PDF file 231

Verifying a previously published method can be a very time consuming, and is often poorly acknowledged. Some top-down 232

initiatives already provide some incentives for such a process i.e. Horizon 2020 (H2020) [47] project of the European Commission 233

(EC) mandates open access of research data, while respecting security and liability. H2020 supports OpenAIRE [48] a technical 234

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 9

infrastructure of the open access, which allows the interconnection between projects, publications, datasets, and author 235

information across Europe. Thanks to common guidelines, OpenAIRE interoperates with other web-based generalist scientific 236

data repositories such as Zenodo, hosted by CERN, which allows the combination of data and GitHub repository via DOIs. The 237

Open Science Framework also hosts data and software for a given project [49]. Respecting standard guidelines to transparently 238

communicate the scientific work is a key step towards tackling irreproducibility and insures a robust scientific endeavor. 239

Key points 240

● Main barrier for reproducibility is in the lack of compatibility between environments, programming languages, software 241

versions, etc. 242

● At the individual level, the key is in research practices such as well written, tested and documented code, and well 243

curated data and the use of online repositories and collaborative tools. 244

● At the community level, we propose a testing ecosystem where standard consensus datasets are used to validate new 245

methods and foster their generalizability. 246

Declarations 247

● Abbreviations 248

ASD: Autism Spectrum Disorders; BLAS: Basic Linear Algebra Subprograms; DOI: Digital Object Identifier; H2020: Horizon 249

2020; OS: Operating System; TCGA: The Cancer Genome Atlas; VCS: version control system. 250

● Ethics approval and consent to participate 251

We used the uterine endometrial carcinoma dataset downloaded on January 1st, 2013 from the TCGA portal as used by Hofree and 252

colleagues in their previous paper [12]. 253

● Consent for publication 254

Not applicable 255

● Availability of data and materials 256

The latest version of StratiPy (Python) with two examples of reproducibility and dataset are available at GitHub 16], and archived 257

via a Zenodo DOI [50] 258

● Competing interests 259

The authors declare that they have no competing interests. 260

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

● Funding 261

This work was supported by: 262

o Institut Pasteur (http://dx.doi.org/10.13039/501100003762) 263

o H2020 Societal Challenges (http://dx.doi.org/10.13039/100010676) 264

o Centre National de la Recherche Scientifique (http://dx.doi.org/10.13039/501100004794) 265

o Université Paris Diderot (http://dx.doi.org/10.13039/501100005736) 266

o Conny-Maeva Charitable Foundation 267

o Cognacq-Jay Foundation 268

o Orange (http://dx.doi.org/10.13039/501100003951) 269

o Fondation pour la Recherche Médicale (http://dx.doi.org/10.13039/501100002915) 270

o GenMed Labex 271

o BioPsy Labex. 272

● Authors' contributions 273

Y-M. K., J-B. P., and G.D. wrote the manuscript, Y-M. K. and G.D. developed the StratiPy module. 274

YMK: Conceptualization, Software, Validation, Writing – original draft, Writing – review & editing 275

JBP: Validation; Writing – original draft, Writing – review & editing 276

GD: Conceptualization, Software, Supervision, Validation, Writing – original draft, Writing – review & editing. 277

All authors read and approved the final manuscript. 278

● Acknowledgements 279

We thank Thomas Rolland and Freddy Cliquet for sharing their advice and comments. 280

● Authors' information 281

Yang-Min KIM 1,2,3,4,* is a PhD student at Human Genetics and Cognitive Functions unit at the neuroscience department of the 282

Institut Pasteur in Paris. Her research on next-generation sequencing data and biological networks is focused on stratification of 283

patients with Autism. 284

Keywords: Autism Spectrum Disorder; Network; Protein-Protein Interaction; Personalize Medicine; Network-Based Stratification; 285

Computational Biology. 286

 287

Jean-Baptiste Poline 5,6 is a researcher at Henry H. Wheeler Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, 288

University of California, Berkeley, California, USA. His research focuses on neuroimaging methods, imaging-genetic biostatistics 289

and neuroinformatics. 290

Keywords: Neuroinformatics; Statistical methods; Brain imaging; Imaging genomics. 291

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 11

 292

Guillaume Dumas 1,2,3,4 is research fellow of the Human Genetics and Cognitive Functions unit at the neuroscience department of 293

the Institut Pasteur in Paris. His interdisciplinary work is at the cross-road of social psychology, cognitive neuroscience, and 294

system biology. 295

Keywords: Open Science; Complex Systems; Computational Biology; Cognitive Science; Social Neuroscience; Autism Spectrum 296

Disorder. 297

References 298

 299

1. Baker M. 1,500 scientists lift the lid on reproducibility. Nat News. 2016;533:452. 300

2. Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLOS 301

Comput Biol. 2017;13:e1005510. 302

3. Hothorn T, Leisch F. Case studies in reproducibility. Brief Bioinform. 2011;12:288–300. 303

4. Shapin S, Schaffer S. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life (New in Paper). Princeton 304

University Press; 2011. 305

5. Peng RD. Reproducible research in computational science. Science. 2011;334:1226–7. 306

6. Whitaker K. Showing your working: a how to guide to reproducible research. Figshare. 2017. 307

https://doi.org/10.6084/m9.figshare.5443201.v1 308

7. Nekrutenko A, Taylor J. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility. Nat Rev 309

Genet. 2012;13:667–72. 310

8. Hutson M. Missing data hinder replication of artificial intelligence studies. Science. 2018. doi: 10.1126/science.aat3298 311

9. Herndon T, Ash M, Pollin R. Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. 312

Camb J Econ. 2014;38:257–79. 313

10. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 314

2015;16:551–63. 315

11. Loth E, Spooren W, Ham LM, Isaac MB, Auriche-Benichou C, Banaschewski T, et al. Identification and validation of 316

biomarkers for autism spectrum disorders. Nat Rev Drug Discov. 2016;15:70–73. 317

12. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013 318

Nov;10(11):1108-15. doi: 10.1038/nmeth.2651. 319

 320

13. Introducing MEX Files - MATLAB & Simulink - MathWorks France 321

https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html?requestedDomain=www.mathworks.com 322

Accessed 1st June 2018 323

14. Tursa. MTIMESX - Fast Matrix Multiply with Multi-Dimensional Support - File Exchange - MATLAB Central.. 2009 324

http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-multiply-with-multi-dimensional-support 325

Accessed 1st June 2018 326

15. tim.lewis. OpenMP Specifications. http://www.openmp.org/specifications/ Accessed 1st June 2018 327

16. Stratipy: Graph regularized nonnegative matrix factorization (GNMF) in Python. GHFC; 2017. 328

https://github.com/GHFC/Stratipy 329

17. Python Software Foundation. History and License — Python 3.6.1 documentation. 2017 330

https://docs.python.org/3/license.html#licenses-and-acknowledgements-for-incorporated-software Accessed 1st June 2018 331

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

18. Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N, Lepage C, et al. Reproducibility of neuroimaging analyses across 332

operating systems. Front Neuroinformatics. 2015;9:12. 333

19. Michael Droettboom, Thomas A Caswell, John Hunter, Eric Firing, Jens Hedegaard Nielsen, Antony Lee, … Peter Würtz. 334

(2018, March 17). matplotlib/matplotlib v2.2.2 (Version v2.2.2). Zenodo. http://doi.org/10.5281/zenodo.1202077 335

20. Pauli Virtanen, Ralf Gommers, Evgeni Burovski, Travis E. Oliphant, David Cournapeau, Warren Weckesser, … Tyler Reddy. 336

(2018, March 24). scipy/scipy: SciPy 1.0.1 (Version v1.0.1). Zenodo. http://doi.org/10.5281/zenodo.1206941 337

21. NumPy homepage http://www.numpy.org/ Accessed 1st June 2018 338

22. TCGA. Cancer Genome Atlas - Natl. Cancer Inst. https://cancergenome.nih.gov/ Accessed 1st June 2018 339

23. Eads. Hierarchical clustering (scipy.cluster.hierarchy) — SciPy v0.19.0 Reference Guide. 2007 340

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html Accessed 1st June 2018 341

24. Hierarchical Clustering - MATLAB & Simulink - MathWorks France. https://fr.mathworks.com/help/stats/hierarchical-342

clustering-12.html Accessed 1st June 2018 343

25. A gallery of interesting Jupyter Notebooks · jupyter/jupyter Wiki. https://github.com/jupyter/jupyter/wiki/A-gallery-of-344

interesting-Jupyter-Notebooks Accessed 1st June 2018 345

26. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control with Git and GitHub. PLoS Comput Biol. 346

2016;12:e1004668. 347

27. Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best Practices for Scientific Computing. Eisen 348

JA, editor. PLoS Biol. 2014;12:e1001745. 349

28. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. Bourne PE, 350

editor. PLoS Comput Biol. 2013;9:e1003285-4. 351

29. Buckheit JB, Donoho DL. WaveLab and Reproducible Research. Wavelets Stat.. Springer, New York, NY; 1995. p. 55–81. 352

https://link.springer.com/chapter/10.1007/978-1-4612-2544-7_5 353

30. Boettiger C. An introduction to Docker for reproducible research, with examples from the R environment. ACM SIGOPS 354

Oper Syst Rev. 2015;49:71–9. 355

31. Introduction. Vagrant HashiCorp.. https://www.vagrantup.com/intro/index.html Accessed 1st June 2018 356

32. Singularity homepage.. http://singularity.lbl.gov/ Accessed 1st June 2018 357

33. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLOS ONE. 358

2017;12:e0177459. 359

34. Stodden V, McNutt M, Bailey DH, Deelman E, Gil Y, Hanson B, et al. Enhancing reproducibility for computational methods. 360

Science. 2016;354:1240–1. 361

35. Hill SL. How do we know what we know? Discovering neuroscience data sets through minimal metadata. Nat Rev Neurosci. 362

2016;17:735–6. 363

36. PEP 8 -- Style Guide for Python Code. Python.org. [cited 2017 Aug 21]. https://www.python.org/dev/peps/pep-0008/ 364

37. PEP 257 -- Docstring Conventions. Python.org. https://www.python.org/dev/peps/pep-0257/ 365

38. Eglen SJ, Marwick B, Halchenko YO, Hanke M, Sufi S, Gleeson P, et al. Toward standard practices for sharing computer 366

code and programs in neuroscience. Nat Neurosci. 2017;20:770–3. 367

39. Software Carpentry website. http://software-carpentry.org//index.html Accessed 1st June 2018 368

40. Data Carpentry website. http://www.datacarpentry.org/ Accessed 1st June 2018 369

41. MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges. http://yann.lecun.com/exdb/mnist/ 370

42. Bourne PE, Polka JK, Vale RD, Kiley R. Ten simple rules to consider regarding preprint submission. PLOS Comput Biol. 371

2017;13:e1005473. 372

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 13

43. Preprints in biology. Nat Methods. 2016;13:277–277. 373

44. Stodden V, Seiler J, Ma Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc Natl 374

Acad Sci. 2018;115:2584–9. 375

45. Day RA, Gastel B. Historical Perspectives. Write Publ Sci Pap Seventh Ed. ABC-CLIO; 2011. p. 6–8. 376

46. Academia – Industry Software Quality & Testing summit - ISTQB® International Software Testing Qualifications Board. 377

http://www.istqb.org/special-initiatives/istqb-conference-network-2istqb-conference-network-academia/academia-%E2%80%93-378

industry-software-quality-testing-summit.html 379

47. Open Research Data in Horizon 2020. https://ec.europa.eu/research/press/2016/pdf/opendata-infographic_072016.pdf 380

48. Open Access in Horizon 2020 - EC funded projects https://www.openaire.eu/edocman?id=749&task=document.viewdoc 381

49. Foster ED, Deardorff A. Open Science Framework (OSF). J Med Libr Assoc JMLA. 2017;105:203–6. 382

50. Kim Yang-Min, Poline Jean-Baptiste, Dumas Guillaume. StratiPy. Zenodo; 2017. https://doi.org/10.5281/zenodo.1042546 383

 384

Figure legends 385

Figure 1: Hidden reproducibility issues are like an underwater iceberg. Scientific journals readers have the impression that 386

they can almost see the full work of method. But in reality, articles do not take into account adjustment and configuration for 387

significant replication in most cases. Therefore, there is a significant gap between apparent executable work (i.e. above water 388

portion of iceberg) and necessary effort in practice (i.e. the full iceberg). 389

 390

Figure 2: Analogy between robustness issues and road transport. The aim is to achieve same output (i.e. to reach the same 391

location) using published methods (i.e. engine). Despite the same input data (i.e. gasoline), we obtained different results due to 392

different programming languages —e.g. MATLAB and Python— (i.e. different roadways) and environments (i.e. different 393

vehicles). 394

 395

Figure 3: Normalized confusion matrices between original and replicated results. Before (a) and after (b) applying 396

appropriate value of graph regularization factor on NBS method. Each row or column corresponds to a subgroup of patients (here 397

three subgroups). The diagonal elements show the frequency of correct classifications for each subgroup: a high value indicates a 398

correct prediction. 399

 400

Figure 4: Working principles of testing ecosystem with private data. Figure 4a shows a classical case: (a.1) Authors take 401

private data (e.g. blue data) then publish their method and corresponding results; (a.2) Users having their own data (e.g. orange 402

data) find a relevant paper but will be lost in the labyrinth of reproducibility. Figure 4b shows testing ecosystem with standard 403

consensus dataset: (b.1) If authors work with their own data, they must identify corresponding standard data tag(s) (e.g. blue data); 404

(b.2) Authors initiate to develop their method with corresponding standard data and reproducibility profile will be progressively 405

built. Bar length on iceberg corresponds to progression of replication test; (b.3) Users can test proposed method with other 406

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

standard data (e.g. orange and green data) and thus participate to enhancement of the reproducibility profile; (b.4) Thanks to the 407

collective work on testing, the method could be optimized and authors can upgrade their initial paper (versioning). 408

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Fig 1 Click here to access/download;Figure;fig1_iceberg_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=43125&guid=96489ab9-a987-4cfe-9f6f-836df1130a70&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=43125&guid=96489ab9-a987-4cfe-9f6f-836df1130a70&scheme=1

Fig 2 Click here to access/download;Figure;fig2_cars_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=43124&guid=8ad8078c-3cfe-44d4-95d0-f7ed44c19636&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=43124&guid=8ad8078c-3cfe-44d4-95d0-f7ed44c19636&scheme=1

Fig 3 Click here to access/download;Figure;fig3_confusion_matrices_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=43122&guid=408c8756-20e8-4c58-a856-f92a82368ee4&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=43122&guid=408c8756-20e8-4c58-a856-f92a82368ee4&scheme=1

Fig 4 Click here to access/download;Figure;fig4_workflow_lzw.tif

http://www.editorialmanager.com/giga/download.aspx?id=43123&guid=a054aadb-167e-412b-9dd1-738a91b905c8&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=43123&guid=a054aadb-167e-412b-9dd1-738a91b905c8&scheme=1

