Supplementary Information

Figure A: RMSD of MAO-A

Figure A shows the RMSD of MAO-A in a simulation of 5 ns

Figure B: RMSD of MAO-B

Figure B shows the RMSD of MAO-B in a simulation of 5 ns

Figure C: RMSD of SERT

Figure C shows the RMSD of SERT in a simulation of 5 ns

Figure D: RMSD of DAT

Figure D shows the RMSD of DAT in a simulation of 5 ns

Figure E: ProsaII evaluation of DAT

Α

В

Figure E shows the evaluation of the homology model of the human DAT

1. Ramachandran Plot statistics

	No. of residues	%-tage
Most favoured regions [A,B,L]	422	92.5%
Additional allowed regions [a,b,l,p]	33	7.2%
Generously allowed regions [~a,~b,~l,~p]	1	0.2%
Disallowed regions [XX]	Θ	0.0%
Non-glycine and non-proline residues	456	100.0%
End-residues (excl. Gly and Pro)	2	
Glycine residues	47	
Proline residues	23	
Total number of residues	528	

2. G-Factors

Parameter	Score	Average Score
Dihedral angles:-		
Phi-psi distribution	0.08	
Chi1-chi2 distribution	-0.43	
Chi1 only	-0.15	
Chi3 & chi4	0.56	
Omega	-1.07**	
2		-0.39
		=====
Main-chain covalent forces:-		
Main-chain bond lengths	-1.27**	
Main-chain bond angles	-1.37**	
		-1.32**
		=====
OVERALL AVERAGE		-0.24
		=====

Figure F shows the evaluation of the homology model of the human DAT

Figure G: RMSD between SERT and DAT

Figure G shows the structure alignment of SERT and DAT, which contains 466 equivalent positions with an RMSD of 3.0 Å (left top: DAT, left bottom: SERT). The structure alignment and the RMSD value were obtained using FatCat server (http://fatcat.burnham.org)

Figure H shows the average of similarity between all patterns around each dummy atom in DAT versus all patterns around each dummy atom in MAO-B (red). The dummy atoms inserted in DAT are represented on the Y axis, sorted by the Z coordinate. The dummy atoms inserted in MAO-B are represented on the X axis, sorted by the Z coordinate. The average of the PMScore is represented on the Z axis. Each colored block represents the mean of the PMScores obtained after comparing all patterns (3-10 Å). Red represents high similarity scores (PMScore > 0.5). Blue represents low similarity scores (PMScore < 0.5).

Figure I: Average of Similarity between all dummy atoms in SERT and MAO-A.

Figure I shows the average of similarity between all patterns around each dummy atom in SERT versus all patterns around each dummy atom in MAO-A (red). The dummy atoms inserted in SERT are represented on the Y axis, sorted by the Z coordinate. The dummy atoms inserted in MAO-A are represented on the X axis, sorted by the Z coordinate. The average of the PMScore is represented on the Z axis. Each colored block represents the mean of the PMScores obtained after comparing all patterns (3-10 Å). Red represents high similarity scores (PMScore > 0.5). Blue represents low similarity scores (PMScore < 0.5).

Table A: Binding sites similarities between MAOA/SERT, MAOA/DAT, MAOB/SERT and MAOB/DAT

Protein A	Protein B	PMScore
Mao-A	SERT	78,05 %
Mao-B	SERT	68,94 %
Mao-A	DAT	92,61 %
Mao-B	DAT	95,92 %

Table A shows the PMScore using MTA as ligand between the active site of MAOs and the S2 binding site of the transporters.

Figure J: Representation of a sequence-based alignment between SERT and MAO-A.

Α

В

Score		Expect	Method	Identities	Positives	Gaps
16.9 bit	s(32)	2.4	Compositional matrix adjust.	9/32(28%)	15/32(46%)	3/32(9%)
Query	447	ITAVLDE	FPHVWAKRRERFVLAVVITCFF	475		
Sbjct	277	LTAKIHF	RPELPAERNQLIQRLPMGAVIKCMM	308		
Range 2:	25 to 4	2 Graphics		V Nex	t Match 🔺 Previou	us Match 🔺 First Mate
Score		Expect	Method	Identities	Positives	Gaps
15.4 bit	s(28)	7.8	Compositional matrix adjust.	8/18(44%)	8/18(44%)	0/18(0%)
Query	485	GAYVVKL	LEEYATGPAVL 502			
		G KL	I FY VI			
Sbjct	25	G KL GLSAAKL	L EY VL LTEYGVSVLVL 42			
Sbjct Range 3:	25 349 to	G KL GLSAAKL	L EY VL LTEYGVSVLVL 42	V Nex	t Match 🔺 Previo	us Match 💊 First Matc
Sbjct Range 3:	25 349 to	G KL GLSAAKL 386 <u>Graphics</u>	L EY VL LTEYGVSVLVL 42	Vex	t Match A Previou	us Match 🚡 First Matc
Sbjct Range 3: Score 15.4 bit	25 349 to s(28)	G KL GLSAAKL 386 <u>Graphics</u> Expect 7.9	L EY VL LTEYGVSVLVL 42 Method Compositional matrix adjust.	Vex Identities 5/38(13%)	t Match Previou Positives 20/38(52%)	us Match 🛕 First Matc Gaps 0/38(0%)
Sbjct Range 3: Score 15.4 bit Query	25 349 to s(28) 382	G KL GLSAAKL 386 <u>Graphics</u> Expect 7.9 VLGYMAE	L EY VL LTEYGVSVLVL 42 Method Compositional matrix adjust. MRNEDVSEVAKDAGPSLLFITYAEAI	Identities 5/38(13%) ANMPA 419	t Match Previou Positives 20/38(52%)	us Match 👔 First Mate Gaps 0/38(0%)
Sbjct Range 3: Score 15.4 bit Query Sbjct	25 349 to s(28) 382 349	G KL GLSAAKL 386 <u>Graphics</u> Expect 7.9 VLGYMAEI ++G++ IMGFILA	L EY VL LTEYGVSVLVL 42 Method Compositional matrix adjust. MRNEDVSEVAKDAGPSLLFITYAEAI + + ++++ K+ YA + RKADRLAKLHKEIRKKKICELYAKVL	Vex Identities 5/38(13%) ANMPA 419 + A GSQEA 386	t Match Previou Positives 20/38(52%)	us Match 👔 First Mato Gaps 0/38(0%)
Sbjct Range 3: Score 15.4 bit Query Sbjct	25 349 to s(28) 382 349	GLSAAKL GLSAAKL 386 <u>Graphics</u> Expect 7.9 VLGYMAEI ++G++ IMGFILA	L EY VL LTEYGVSVLVL 42 Method Compositional matrix adjust. MRNEDVSEVAKDAGPSLLFITYAEAI + + ++++ K+ + YA+ + RKADRLAKLHKEIRKKKICELYAKVL	Identities 5/38(13%) ANMPA 419 + A GSQEA 386	t Match Previou Positives 20/38(52%)	us Match 👔 First Mate Gaps 0/38(0%)
Sbjct Range 3: Score 15.4 bit Query Sbjct	25 349 to s(28) 382 349	GLSAAKL GLSAAKL 386 <u>Graphics</u> Expect 7.9 VLGYMAEI ++GY++ IMGFILA	L EY VL LTEYGVSVLVL 42 Method Compositional matrix adjust. MRNEDVSEVAKDAGPSLLFITYAEAI + + ++++ K+ + YA+ + RKADRLAKLHKEIRKKKICELYAKVL	Identities 5/38(13%) ANMPA 419 + A GSQEA 386	t Match Previou Positives 20/38(52%)	us Match 👔 First Mat Gaps 0/38(0%)

A) Blastp alignment between human SERT and MAO-A. B) Some key residues of the binding sites of MAO-A and SERT are remarked in boxes.