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found in simulations

We proceed here with a more detailed description of the results shown in Fig. 1 of the

main text, in order to highlight some noticeable features of the hybrid chiral DWs.

We noticed that (a) the DW width varies through the multilayer thickness ; (b) the

z component of the DW magnetisation mz cannot be simply assumed to follow an

arctan function in all layers and none of the usual models allow to fit correctly the

DW magnetisation structure.

Regarding point (a), we reproduce here in Fig. S1 the different representations of

the DW profile from Fig. 1 in the main text, with the detailed layer by layer θ(x)

profiles: as can be seen from the θ(x) profiles of Figs. 1e–h, the DW width varies

significantly among the different layers. Again due to dipolar effects, the central,

Bloch wall part is more compact than the Néel wall parts at top and bottom which

extend over a larger width. Overall, the DW widths in the different layers vary

significantly, by more than a factor of 2, as can be seen from the slopes at the center

of the θ(x) profiles.

Regarding point (b), we find that in any individual layer of the stack, the DW

profile cannot be properly described by the classical models. On the graphs of Figs.

1e–h, we add the average over all layers of the θ(x) profile of the micromagnetic model

(orange lines), the DW profile (uniform along z) predicted by the so-called Keff model

(black lines), a model in which the multilayer is treated as an effective magnetic media

and the DWs as non-interacting (see Methods for details), and the DW profile (also
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uniform along z) predicted by the (∆,λ,ψ) model (15) (green lines). It can be clearly

seen that the two latter profiles fail to reproduce both the exact shape of the DW,

notably in the region of the tail, as well as the DW width. Notably, this difference

demonstrates that the actual DW shapes are different from the commonly used arctan

profile. Moreover, as can be seen from the strongly x dependent ψ(x) profiles in Figs.

1i–l, the Bloch-Néel character of the DW in each layer varies across the DW (along x),

instead of being fixed. As a consequence of the DW being partially Bloch, and only

in the intermediate layers (combined x and z dependence of ψ), with varying DW

widths, the average transverse magnetisation of the DWs is altered and DW energies

turn to be significantly different from any simple model predictions. We note that

when D exceeds 2.5 mJ m−2, the DWs resemble pure Néel DWs, and classical models

get accurate, with a good agreement between micromagnetic and classical models.

micromagnetic simulations

We describe in this section our method for determining the magnitude of the DMI

even in the presence of hybrid chiral spin textures. We first remind how, in the usual

case of homochiral DWs and assuming that the demagnetised state observed with

MFM is very close to the state of minimum energy given parallel stripe domains, it

is possible to determine the DW energy σdw and deduce a rough estimation of the

DMI magnitude |D| from the domain periodicity λ with the so-called Keff model. For

uncoupled, independent DWs, separating domains of size λ/2 much larger than the
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DW width ∆ =
√
A/K, there exist two straightforward approximations for K and

thus for the DW energy (47). For single and ultrathin layers (of thickness t � ∆),

the demagnetising fields favour in-plane magnetisation inside the DW so that the

anisotropy affecting the DW is the effective perpendicular anisotropy K = Ku −

µ0M
2
s /2. On the contrary, for thick layers (t� ∆), the in-plane alignment inside the

DW is disfavoured and K = Ku+µ0M
2
s /2. However, these approximations cannot be

applied in the intermediate thickness regime, which is the relevant case for magnetic

multilayers such as the ones considered here, where both ∆ and t are in the order of

10 nm. Following Ref. (47), we can refine the formula of the DW anisotropy K by

assuming that for calculating demagnetising fields roughly, the DW can be considered

as a monodomain magnetic body of width 2∆, height t and infinite length. Due to

the arctan profile of the DW, an elliptic shape is a good approximation. Inserting the

demagnetising factors of the elliptic cylinder (48)

Nx =
t

t+ 2∆

Nz =
2∆

t+ 2∆

in the effective anisotropy K gives a simple expression which allows to find the DW

width by solving

∆ =

√
A

Ku + µ0M2
s

2
(t−2∆)
(t+2∆)

By summing the contributions of exchange, DMI, anisotropy and demagnetising fields

in the elliptic body (10), the DW energy is then

σdw = 2A/∆ + 2Ku∆− π |D|+
µ0M

2
s

2
2∆

(
t− 2∆

t+ 2∆

)



Concerning the demagnetising energy arising from the domains, in the zero width (as

λ� ∆ ∼ 0) model we get (42)

εdemag = 2µ0M
2
s

λ

t

1

π3

∞∑
n>1,odd

1

n3

(
1− e−2πnt/λ

)
which allows one to find σdw from the observed λ. Indeed, by minimising the total

energy εtot = 2σdw/λ+ εdemag relative to λ we get

σdw = µ0M
2
s

λ2

t

1

π3

∞∑
n>1, odd

1

n3

(
1− e−2πnt/λ − 2πnt

λ
e−2πnt/λ

)

which allows one to find D by equaling it to the previous expression of σdw as we know

Ms, Ku, and A estimated to be 10 pJ m−1. A was obtained by determining the Curie

temperature from temperature-dependent SQUID measurements. To apply this Keff

model, the multilayer is treated as an effective magnetic medium filled with diluted

moments. Note that this assumption is valid as long as the periodicity of the stack is

not significantly larger than the DW size (15), which is always verified for the samples

considered here.

This characterisation method has led to the evidence of a significant DMI in

magnetic multilayers with broken inversion symmetry (7, 12). It has however been

pointed out recently that such measurements can be largely erroneous when neglecting

stray-field effects on the DW size and spacing, so that a more comprehensive model

is required for multilayers (15). When dipolar interactions become significant but

the DW internal configuration remains uniform, a more detailed model such as the

(∆,λ,ψ) is more accurate (15). Nevertheless, we now suspect that complex DW

or skyrmion structures can arise in magnetic multilayers depending of the relative



strengths of dipolar interactions and DMI, which calls for a more careful analysis of

their spin textures (16–18).

In order to find the strength of the DMI in the stripe domains configuration

without making assumptions on the DW profiles, we performed micromagnetic simu-

lations with the Mumax3 solver (49) in a 3D mesh accounting for the full geometry of

the multilayers. The simulation volume is λ± dλ × 32 nm × Np, respectively, in the

x, y and z directions. Two DWs separating up, down and up domains are initialised

at (−λ ± dλ)/4 and (λ ± dλ)/4, which corresponds to the λ ± dλ periodicity of the

stripes. Periodic boundary conditions inclusive of the periodic stray fields calculated

for 64 × 64 identical neighbors in the x and y directions were introduced. The x

cell size was 0.25 nm for the XRMS multilayers series. The z cell size was 0.2 nm, or

0.1 nm when required by the values of layer spacing p and thickness t. Simulations

are performed at 0 K.

Given the experimental value of λ, the simulation is initialised with its DWs having

a ψ = 45◦ in-plane tilt of internal moments for x sizes λ−2 nm,λ−1 nm,λ,λ+1 nm,λ+2 nm.

Each system is relaxed in order to find the ground state energy density ε(λ), so that

we get the local value of dε/dλ at λ. Performing this operation for various values of

D allows to find Dfull such that dε/dλ = 0 by interpolation.

S3 MFM on the different samples

We present here in Fig. S2 the Magnetic Force Microscopy (MFM) images of the

demagnetised multilayers that have been used in order to extract the mean domain

.Section
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We want here to derive an analytical formula descriminating DWs that will exhibit

hybrid chirality. For this we consider the fields acting on the top layer for the case

of D > 0 (which is equivalent to consider fields on the bottom layer for D < 0). In

order to find the dipolar field in the top layer of the multilayer, we have to find the

solution for the potential φ of Laplace equation ∇2φ = ρV with ρV the volume charges

and boundary conditions related to surface charges ρS. As was done in Lemesh et

al. (15) we separate volume and surface magnetic charges contributions. We consider

λ-periodic stripe domains in the x direction (uniform along y) and approximate the

DW profile by the arctan profile (which we know to be an approximation). We note

t the magnetic layer thickness, p the multilayer periodicity and N the total number

of layers. Assuming a perfectly Néel DW in all layers, we can obtain the DW width

∆ from the (∆,λ,ψ) model.

We first solve for a single layer ∇2φ = 0 with ∂φ/∂z(x,±t/2−) = ∂φ/∂z(x,±t/2+)±

ρS(x). As ρS(x) corresponds to the charges of two opposite, alternate DW profiles

(up to down and down to up) localised every λ/2, we can write (15)

ρS(x) =
∞∑

k=−∞

fS(x) ∗ δ(x− kλ) +
∞∑

k−∞

−fS(x) ∗ δ(x− kλ− λ/2)

where f corresponds to a single DW profile fS(x) = Msmz(x) = Ms tanh (x/∆), that

is, by combining all Dirac functions and swapping the derivatives in the convolution

.Section S4 Domain wall fields Analytical derivation—



product,

ρS(x) =
f ′S(x)

2
∗ g(x)

with

g(x) =


1 x ∈ [kλ;λ/2 + kλ[

−1 x ∈ [λ/2 + kλ;λ+ kλ[

As the magnetic charge distribution is λ periodic we can decompose it in Fourier

series

ρS(x) =
∞∑

k=−∞

ρ̄S(k)e−
2πkx
λ

and solve

∇2φ̄(k, z) =
∂2φ̄(k, z)

∂z2
−
(

2πk

λ

)2

φ̄(k, z) = 0

with ∂φ̄/∂z(k,±t/2−) = ∂φ̄/∂z(±t/2+)± ρ̄S. By properties of the Fourier transform

defined as

f̄(ξ) =
1√
2π

∫
f(x)e−iξxdx

we know that

ρ̄S = f ′S/2 ∗ g =
√

2π
(
f ′S ḡ
)
/2 =

√
2πiξfS ḡ/2

so that for positive integer k

ρ̄S(
2πk

λ
) =

√
2πiπk

λ

[
−iMs∆

√
π

2
csch

(
π2∆k

λ

)][
− 4i√

2πk
sin2

(
kπ

2

)]
= −i

√
π

2

4πMs∆

λ
sin2

(
kπ

2

)
csch

(
π2∆k

λ

)
Using the boundary conditions to solve Laplace equation (45) above the layer we

find for z > t/2

φ(x, z) =
∞∑
k=1

2Ms∆

k
sin2

(
πk

2

)
csch

(
π2∆k

λ

)
sinh

(
πkt

λ

)
sin

(
2πkx

λ

)
e−

2πkz
λ



with x = 0 in the center of the DW between down and up domains. For a multilayer

there are N layers located at p/2 + kp with 0 ≤ k ≤ N − 1. In the top layer, the

interlayer interaction field will then be the sum of all other layers stray fields

Bdip,S(x) = −µ0
∂

∂x

[
N−1∑
n=1

φ(x, np)

]

that is by grouping the exponent sum

Bdip,S(x) = −µ0
∂

∂x

[
∞∑

k=1,odd

2Ms∆

k
csch

(
π2∆k

λ

)
sinh

(
πkt

λ

)
sin

(
2πkx

λ

)
e−

2πkp
λ − e−

2πkNp
λ

1− e−
2πkp
λ

]

= −µ0

∞∑
k=1,odd

4πMs∆

λ
csch

(
π2∆k

λ

)
sinh

(
πkt

λ

)
cos

(
2πkx

λ

)
e−

2πkp
λ − e−

2πkNp
λ

1− e−
2πkp
λ

which can be determined numerically.

We can now solve for a single layer ∇2φ = ρV (x) for |z| < t/2 and ∇2φ = 0 for

|z| > t/2, with continuity of ∂φ/∂z at z = ±t/2. We have again

ρV (x) =
∞∑

k=−∞

fV (x) ∗ δ(x− kλ) +
∞∑

k−∞

−fV (x) ∗ δ(x− kλ− λ/2)

with

fV (x) = −Ms∇ ·m = −Ms
∂mx

∂x
=
Ms

∆

tanh (x/∆)

cosh (x/∆)

the volume charges for a single DW. Similar to ρS we get ρV (x) = [f ′V (x) ∗ g(x)]/2

and for positive integer k,

ρ̄V (
2πk

λ
) = f ′V /2 ∗ g(k) =

√
2πi (2πk/λ) fV ḡ/2

=

√
2πiπk

λ

[
iMs∆

2πk

λ

√
π

2
sech

(
π2∆k

λ

)][
− 4i√

2πk
sin2

(
kπ

2

)]
= −i

√
π

2

−8π2Ms∆k

λ2
sech

(
π2∆k

λ

)
sin2

(
kπ

2

)



Using the boundary continuity to solve Laplace equation above the layer we find for

z > t/2

φ(x, z) =
∞∑
k=1

2Ms∆

k
sin2

(
πk

2

)
sech

(
π2∆k

λ

)
sinh

(
πkt

λ

)
sin

(
2πkx

λ

)
e−

2πkz
λ

so that

Bdip,V(x) = −µ0

∞∑
k=1,odd

4πMs∆

λ
sech

(
π2∆k

λ

)
sinh

(
πkt

λ

)
cos

(
2πkx

λ

)
e−

2πkp
λ − e−

2πkNp
λ

1− e−
2πkp
λ

One still has to consider the self-demagnetising field of the top layer itself. The

surface charges distribution does not contribute to the z-average of the field as it

generates a field antisymmetric in z. However the volume charges contribution must

be considered. Solving again the Laplace equation but inside the magnetic layer

(|z| < t/2) we find

Bdip(x, z) = µ0

∞∑
k=1,odd

4πMs∆

λ
sech

(
π2∆k

λ

)
cos

(
2πkx

λ

)[
cosh

(
2πkz

λ

)
e
πkt
λ − 1

]

that we can average between z = −t/2 and z = t/2 to obtain the horizontal compo-

nent of the self-interaction field of the top layer

Bdip,self(x) = µ0

∞∑
k=1,odd

4πMs∆

λ
sech

(
π2∆k

λ

)
cos

(
2πkx

λ

)[
1− e−

2πkt
λ

2

λ

πkt
− 1

]

The dipolar interlayer interaction pushing to reverse the DW is then

Bdip(x) = Bdip,S(x) +Bdip,V(x)

while the total dipolar field is finally

Bdip,t(x) = Bdip,S(x) +Bdip,V(x) +Bdip,self(x)



The DMI internal field along x of the Néel DW can be described by (10)

Bdmi(x) =
2D

Ms

∂mz

∂x
=

2D

Ms∆
sech2

( x
∆

)
as we approximate it to a classical tan profile.

In order to compare the strengths of Bdip and Bdmi, we evaluate their actions

locally by integration across the DW

A =
1

6∆

∫ 3∆

−3∆

B(x)mx(x)dx

that corresponds to the in-plane rotation driving force acting on the DW of the top

layer.



Fig. S1. a–d.Cross-sectional view of a half simulation volume for
[X(1)/Co(0.8)/Z(1)]20 multilayer with D = -1.0, 0.0, 1.0 and 2.0 mJ m−2, respecti-
vely. Arrows point in the direction of the magnetisation, mz is given by the colour of
the arrows from red (-1) to blue (+1), while my is displayed by the colour of the grid
from black (-1) to white (+1). e–h. Polar angle θ inside the DW in each layer for D = -
1.0–2.0 mJ m−2. The blue to red lines correspond to layers from bottom to top (see
colour scale in e. ), while the orange line is the average θ across the thickness. Green
and black lines are the profiles as given by the (∆,λ,ψ) and Keff models, respectively.
i–l. Azimuthal angle ψ inside the DW in each layer for D = -1.0–2.0 mJ m−2. The
blue to red lines again correspond to layers from bottom to top.

Detailed version of Fig. 1.
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Fig. S2.

demagnetised multilayer (IX).

i. Out-of-plane and j. in-plane demagnetised multilayer (VIII).

MFM images of domain structures in studied multilayers. a–g. In-plane

field demagnetised multilayers (I) to (VII). h. In-plane
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