

advances.sciencemag.org/cgi/content/full/4/7/eaar8260/DC1

Supplementary Materials for

A physical model for efficient ranking in networks

Caterina De Bacco*, Daniel B. Larremore*, Cristopher Moore*

*Corresponding author. Email: cdebacco@santafe.edu (C.D.B.); daniel.larremore@colorado.edu (D.B.L.);

moore@santafe.edu (C.M.)

Published 20 July 2018, Sci. Adv. 4, eaar8260 (2018)
DOI: 10.1126/sciadv.aar8260

This PDF file includes:

Section S1. Deriving the linear system minimizing the Hamiltonian
Section S2. Poisson generative model
Section S3. Rewriting the energy
Section S4. Ranks distributed as a multivariate Gaussian distribution
Section S5. Bayesian SpringRank
Section S6. Fixing c to control for sparsity
Section S7. Comparing optimal β for predicting edge directions
Section S8. Bitwise accuracy σb
Section S9. Performance metrics
Section S10. Parameters used for regularizing ranking methods
Section S11. Supplementary tables
Section S12. Supplementary figures
Table S1. Pearson correlation coefficients between various rankings of faculty hiring networks.
Table S2. Statistics for SpringRank applied to real-world networks.
Fig. S1. Performance (Pearson correlation) on synthetic data.
Fig. S2. Statistical significance testing using the null model distribution of energies.
Fig. S3. Edge prediction accuracy over BTL for NCAA basketball data sets.
Fig. S4. Bitwise edge direction prediction.
Fig. S5. Edge prediction accuracy with twofold cross-validation.
Fig. S6. Summary of SpringRank applied to computer science faculty hiring network.
Fig. S7. Summary of SpringRank applied to history faculty hiring network.
Fig. S8. Summary of SpringRank applied to business faculty hiring network.
Fig. S9. Summary of SpringRank applied to Asian elephants network.
Fig. S10. Summary of SpringRank applied to parakeet G1 network.
Fig. S11. Summary of SpringRank applied to parakeet G2 network.
Fig. S12. Summary of SpringRank applied to Tenpaṭṭi social support network.
Fig. S13. Summary of SpringRank applied to Alakāpuram social support network.
Reference (46)

Supporting Information (SI)

Deriving the linear system minimizing the Hamiltonian

The SpringRank Hamiltonian Eq. (2) is convex in s and we set its gradient rH(s) = 0 to obtain the global
minimum

@H

@si
=
X

j

[Aij (si � sj � 1)�Aji (sj � si � 1)] = 0 (S1)

Let the weighted out-degree and in-degree be dout
i

=
P

j
Aij and din

i
=
P

j
Aji, respectively. Then Eq. (S1) can be

written as
�
dout
i

+ din
i

�
si �

�
dout
i

� din
i

�
�
X

j

[Aij +Aji] sj = 0 (S2)

We now write the system of N equations together by introducing the following matrix notation. Let Dout =
diag(dout1 , . . . , dout

N
) and Din = diag(din1 , . . . , din

N
) be diagonal matrices, let 1 be the N -dimensional vector of all ones.

Then Eq. (S2) becomes
⇥
Dout +Din �

�
A+AT

�⇤
s =

⇥
Dout �Din

⇤
1 (S3)

This is a linear system of the type B s = b, where B =
⇥
Dout +Din �

�
A+AT

�⇤
and b =

⇥
Dout �Din

⇤
1. The rank

of B is at most N � 1 and more generally, if the network represented by A consists of C disconnected components, B
will have rank N � C. In fact, B has an eigenvalue 0 with multiplicity C, and the eigenvector 1 is in the nullspace.
B is not invertible, but we can only invert in the N �C-dimensional subspace orthogonal to the nullspace of B. The
family of translation-invariant solutions s⇤ is therefore defined by

s⇤ =
⇥
Dout +Din �

�
A+AT

�⇤�1 ⇥
Dout �Din

⇤
1 (S4)

in which the notation [·]�1 should be taken as the Moore-Penrose pseudoinverse.

In practice, rather than constructing the pseudo-inverse, it will be more computationally e�cient (and for large
systems, more accurate) to solve the linear system in an iterative fashion. Since we know that solutions may be
translated up or down by an arbitrary constant, the system can be made full-rank by fixing the position of an
arbitrary node 0. Without loss of generality, let sN = 0. In this case, terms that involve sN can be dropped from
Eq. (S2), yielding

�
dout
i

+ din
i

�
si �

�
dout
i

� din
i

�
�

N�1X

j=1

[Aij +Aji] sj = 0 , i 6= N (S5)

�
�
dout
N

� din
N

�
�

N�1X

j=1

[ANj +AjN] sj = 0 (S6)

Adding Eq. (S5) to Eq. (S6) yields

�
dout
i

+ din
i

�
si �

�
dout
i

+ dout
N

� din
i
� din

N

�
�

N�1X

j=1

[Aij +ANj +Aji +AjN] sj = 0 (S7)

which can be written in matrix notation as
h
Dout +Din � Å

i
s =

⇥
Dout �Din

⇤
1+

�
dout
N

� din
N

�
1 (S8)

where

Åij = Aij +ANj +Aji +AjN (S9)

In this formulation, Eq. (S8) can be solved to arbitrary precision using iterative methods that take advantage of the
sparsity of Å. The resulting solution may then be translated by an arbitrary amount as desired.

Section S1.

S2. Poisson generative model

The expected number of edges from node i to node j is c exp
h
��

2 (si � sj � 1)2
i
and therefore the likelihood of

observing a network A, given parameters �, s, and c is

P (A | s,�, c)=
Y

i,j

h
c e�

�
2 (si�sj�1)2

iAij

Aij !
exp

h
�c e�

�
2 (si�sj�1)2

i
(S10)

Taking logs yields

logP (A | s,�, c)=
X

i,j

Aij log c�
�

2
Aij (si � sj � 1)2 � log [Aij !]� ce�

�
2 (si�sj�1)2 (S11)

Discarding the constant term log [Aij !], and recognizing the appearance of the SpringRank Hamiltonian H(s), yields

L(A | s,�, c)=��H(s) +
X

i,j

Aij log c�
X

i,j

ce�
�
2 (si�sj�1)2 (S12)

Taking @L/@c and setting it equal to zero yields

ĉ =

P
i,j

Aij

P
i,j

e�
�
2 (si�sj�1)2

(S13)

which has the straightforward interpretation of being the ratio between the number of observed edges and the expected
number of edges created in the generative process for c = 1. Substituting in this solution and letting M =

P
i,j

Aij

yields

L(A | s,�)=��H(s) +M log ĉ�
X

i,j

ĉ e�
�
2 (si�sj�1)2

=��H(s) +M logM �M log

2

4
X

i,j

e�
�
2 (si�sj�1)2

3

5�M (S14)

The terms M logM and M may be neglected since they do not depend on the parameters, and we divide by �,
yielding a log-likelihood of

L(A | s,�)=�H(s)� M

�
log

2

4
X

i,j

e�
�
2 (si�sj�1)2

3

5 (S15)

Note that the SpringRank Hamiltonian may be rewritten as H(s) = M
⇥
1
2 hAij(si � sj � 1)2iE

⇤
where h·iE denotes

the average over elements in the edge set E. In other words, H(s) scales with M and the square of the average spring
length. This substitution for H(s) allows us to analyze the behavior of the log-likelihood

L(A | s,�)=�M

8
<

:
1

2

D
Aij (si � sj � 1)2

E

E

+
1

�
log

2

4
X

i,j

e�
�
2 (si�sj�1)2

3

5

9
=

; (S16)

Inside the logarithm there are N2 terms of finite value, so that the logarithm term is of order O(logN

�
). Thus, for well-

resolved hierarchies, i.e. when � is large enough that the sampled edges consistently agree with the score di↵erence
between nodes, the maximum likelihood ranks ŝ approach the ranks s⇤ found by minimizing the Hamiltonian. In
practice, exactly maximizing the likelihood would require extensive computation, e.g. by using local search heuristic
or Markov chain Monte Carlo sampling.

Section

S3. Rewriting the energy

The Hamiltonian Eq. (2) can be rewritten as

2H(s) =
NX

i,j=1

Aij (si � sj � 1)2

=
NX

i,j=1

Aij

�
s2
i
+ s2

j
� 2sisj + 1� 2si + 2sj

�

=
NX

i

s2
i

NX

j=1

Aij +
NX

j

s2
j

NX

i=1

Aij � 2
X

i

si
X

j

Aijsj +M

�2
NX

i=1

si

NX

j=1

Aij + 2
NX

j=1

sj

NX

i=1

Aij

=
NX

i

s2
i

�
dout
i

+ din
i

�
� 2

X

i

si
�
dout
i

� din
i

�
+M � 2

X

i

si
X

j

Aijsj (S17)

From Eq. (S2) we have
X

j

s2
i

�
dout
i

+ din
i

�
�
X

i

si
�
dout
i

� din
i

�
=
X

i

si
X

j

[Aij +Aji] sj (S18)

We can substitute this into Eq. (S17)

2H(s) =
X

i

si
X

j

[Aij +Aji] sj �
X

i

si
�
dout
i

� din
i

�
+M � 2

X

i

si
X

j

Aijsj

=
X

i

si
�
din
i
� dout

i

�
+M

=
X

i

hisi +M (S19)

where hi ⌘ din
i
� dout

i
.

S4. Ranks distributed as a multivariate Gaussian distribution

Assuming that the ranks are random variables distributed as a multivariate Gaussian distribution of average s̄ and
covariance matrix⌃, we have

P (s) / exp

✓
�1

2
(s� s̄)|⌃�1(s� s̄)

◆
(S20)

We can obtain this formulation by considering a Boltzman distribution with the Hamiltonian Eq. (2) as the energy
term and inverse temperature � so that

P (s) / exp

0

@��

2

NX

i,j=1

Aij (si � sj � 1)2

1

A (S21)

Manipulating the exponent of Eq. (S20) yields

1

2
(s� s̄)T⌃�1(s� s̄) =

1

2

�
sT⌃�1s� 2sT⌃�1s̄+ s̄T⌃�1s̄

�
(S22)

whereas the parallel manipulation of Eq. (S21) yields

�

2

NX

i,j=1

Aij (si � sj � 1)2 =
�

2

⇥
sT

�
Dout +Din �AT �A

�
s+ 2 sT (Din �Dout)1+M

⇤
(S23)

Section

Section

where 1 is a vector of ones and Din are diagonal matrices whose entries are the in- and out-degrees, Dout
ii

=
P

j
Aij

and Din
ii

=
P

j
Aji and M =

P
i,j

Aij . Comparing these last two expressions and removing terms that do not depend
on s because irrelevant when accounting for normalization, we obtain

⌃ = 1
�

�
Dout +Din �AT �A

��1
and s̄ = � ⌃

�
Dout �Din

�
1 = s⇤ (S24)

S5. Bayesian SpringRank

Adopting a Bayesian approach with a factorized Gaussian prior for the ranks, we obtain that the s that maximizes
the posterior distribution is the one that minimizes the regularized SpringRank Hamiltonian Eq. (4), i.e. the s that
solves the linear system Eq. (5). In fact, defining

P (s) = Z�1(�,↵)
Y

i2V

e��
↵
2 (si�1)2 = Z�1(�,↵)

Y

i2V

e�� ↵ H0(si) (S25)

where Z(�,↵) =
h

2⇡
� ↵

iN/2
is a normalization constant that depends on ↵ and �, and following the same steps as

before we get

logP (s |A) =
X

i,j

logP (Aij | s)� �↵
X

i2V

H0(si) + log (Z (�,↵))

=� �

"
H(s) + ↵

X

i2V

H0(si)

#
+ C (S26)

where C is a constant that does not depend on the parameters, and thus may be ignored when maximizing logP (s |A).

S6. Fixing c to control for sparsity

The parameter c included in the generative model (7) controls for network’s sparsity. We can indeed fix it so to
obtain a network with a desired expected number of edges hMi as follows

hMi ⌘
X

i,j

hAiji = c
X

i,j

e�
�
2 (si�sj�1)2

For a given vector of ranks s and inverse temperature �, the c realizing the desired sparsity will then be

c =
hMi

P
i,j

e�
�
2 (si�sj�1)2

=
hkiN

P
i,j

e�
�
2 (si�sj�1)2

(S27)

where hki is the expected node degree hki =
P

N

i=1

⇥
din
i
+ dout

i

⇤
. Similar arguments apply when considering a generative

model with Bernoulli distribution.

S7. Comparing optimal � for predicting edge directions

In the main text, (12) and Eq. (13) define the accuracy of edge prediction, in terms of the number of edges predicted
correctly in each direction and the log-likelihood conditioned on the undirected graph. Here we compute the optimal
values of � for both notions of accuracy. In both computations that follow, the following two facts will be used

P 0
ij
(�) = 2 (si � sj) e

�2�(si�sj) P 2
ij
(�) (S28)

and

1 =
Pij(�)

1� Pij(�)
e�2�(si�sj) (S29)

Section

Section

Section

A. Choosing � to optimize edge direction accuracy

We take the derivative of Eq. (12) with respect to �, set it equal to zero, and solve as follows

0 ⌘ @�a(�)

@�
=

@

@�

2

41� 1

2m

X

i,j

|Aij � (Aij +Aji) Pij(�)|

3

5 (S30)

In preparation to take the derivatives above, note that P 0
ij
(�) = �P 0

ji
(�) and that whenever the (i, j) term of �a(�)

takes one sign, the (j, i) term takes the opposite sign

Aij � (Aij +Aji)Pij(�) = � [Aji � (Aij +Aji)Pji(�)] (S31)

Without loss of generality, assume that the (i, j) term is positive and the (j, i) term is negative. This implies that

@

@�
|Aij � (Aij +Aji)Pij(�)| = � (Aij +Aji)P

0
ij
(�) (S32)

and

@

@�
|Aji � (Aij +Aji)Pji(�)| = � (Aij +Aji)P

0
ij
(�) (S33)

In other words, the derivatives of the (i, j) and (j, i) terms are identical, and the sign of both depends on whether the
quantity [Aij � (Aij +Aji)Pij(�)] is positive or negative. We can make this more precise by directly including the
sign of the (i, j) term, and by using Eq. (S28), to find that

@

@�
|Aij � (Aij +Aji)Pij(�)| = �2 (Aij +Aji) (si � sj) e

�2�(si�sj) P 2
ij
⇥ sign

�
Aij � (Aij +Aji)Pij(�)

(S34)

Expanding P 2
ij

and reorganizing yields

@

@�
|Aij � (Aij +Aji)Pij(�)| = �2

(Aij +Aji) (si � sj)

2 cosh [2� (si � sj)] + 2
⇥ sign

�
Aij � (Aij +Aji)Pij(�)

(S35)

Combining terms (i, j) and (j, i), the optimal inverse temperature for local accuracy �̂a is that which satisfies

0 =
NX

(i,j)2U(E)

(Aij +Aji) (si � sj)

cosh
h
2�̂a (si � sj)

i
+ 1

⇥ sign
�
Aij � (Aij +Aji)Pij(�̂a)

(S36)

which may be found using standard root-finding methods.

B. Choosing � to optimize the conditional log likelihood

We take the derivative of Eq. (13) with respect to �, set it equal to zero, and partially solve as follows

0 ⌘ @�L(�)

@�
=

@

@�

2

4
X

i,j

log

✓
Aij +Aji

Aij

◆
+ log

h
Pij(�)

Aij [1� Pij(�)]
Aji

i
3

5 (S37)

Combining the (i, j) and (j, i) terms, we get

0 ⌘ @

@�

X

(i,j)2U(E)

log

✓
Aij +Aji

Aij

◆
+ log

✓
Aij +Aji

Aji

◆
+ [Aij logPij(�) +Aji log [1� Pij(�)]]

=
X

(i,j)2U(E)


Aij

Pij(�)
� Aji

1� Pij(�)

�
@Pij(�)

@�

=
X

(i,j)2U(E)

2 (si � sj) [Aij � (Aij +Aji) Pij(�)]
Pij(�)

1� Pij(�)
e�2�(si�sj) (S38)

Applying both Eq. (S28) and Eq. (S29), the optimal inverse temperature for the conditional log likelihood �̂L is that
which satisfies

0 =
X

(i,j)2U(E)

2 (si � sj)
h
Aij � (Aij +Aji) Pij(�̂L)

i
(S39)

which, like Eq. (S36) may be found using standard root-finding methods. Comparing equations Eq. (S36) and
Eq. (S39), we can see that the values of � that maximize the two measures may, in general, be di↵erent. Table S2
shows for optimal values for �̂L and �̂a for various real-world datasets.

S8. Bitwise accuracy �b

Some methods provide rankings but do not provide a model to estimate Pij , meaning that Eq. (12) and Eq. (13)
cannot be used. Nevertheless, such methods still estimate one bit of information about each pair (i, j): whether the
majority of the edges are from i to j or vice versa. This motivates the use of a bitwise version of �a, which we call
�b,

�b = 1� 1

N2 � t

X

i,j

⇥(si � sj)⇥ (Aji �Aij) (S40)

where⇥(x) = 1 if x > 0 and⇥(x) = 0 otherwise, and N is the number of nodes and t is the number of instances in
which Aij = Aji; there are N2 � t total bits to predict. Results in terms of this measure on the networks considered
in the main text are shown in Figure S4. In the special case that the network is unweighted (A is a binary adjacency
matrix) and there are no bi-directional edges (if Aij = 1, then Aji = 0), then 1 � �b is the fraction of edges that
violate the rankings in s. In other words, for this particular type of network, 1� �b is the minimum violations rank
penalty normalized by the total number of edges in the network, i.e., 1

M

P
i,j

⇥(si � sj)Aji.

S9. Performance metrics

When evaluating the performance of a ranking algorithm in general one could consider a variety of di↵erent measures.
One possibility is to focus on the ranks themselves, rather than the outcomes of pairwise interactions, and calculate
correlation coe�cients as in Fig. 1; this is a valid strategy when using synthetic data thanks to the presence of ground
truth ranks, but can only assess the performance with respect of the specific generative process used to generate
the pairwise comparisons, as we point out in the main text. This strategy can also be applied for comparisons with
observed real world ranks, as we did in Table S11 and it has been done for instance in [19, 20] to compare the ranks
with those observed in real data in sports. However, the observed ranks might have been derived from a di↵erent
process than the one implied by the ranking algorithm considered. For instance, in the faculty hiring networks, popular
ranking methods proposed by domain experts for evaluating the prestige of universities do not consider interactions
between institutions, but instead rely on a combination of performance indicators such as first-year student retention
or graduation rates. The correlation between observed and inferred ranks should thus be treated as a qualitative
indicator of how well the two capture similar features of the system, such as prestige, but should not be used to
evaluate the performance of a ranking algorithm.

Alternatively, one can look at the outcomes of the pairwise comparisons and relate them to the rankings of the
nodes involved as in Eqs. (12) and (13) for testing prediction performance. A popular metric of this type is the number
of violations (also called upsets), i.e., outcomes where a higher ranked node is defeated by a lower ranked one. This
is very similar to the bitwise accuracy defined in (S40), indeed when there are no ties and two nodes are compared
only once, then they are equivalent. These can be seen as low-resolution or coarse-grained measures of performance:
for each comparison predict a winner, but do not distinguish between cases where the winner is easy to predict and
cases where there is almost a tie. In particular, an upset between two nodes ranked nearby counts as much as an
upset between two nodes that are far away in the ranking. The latter case signals a much less likely scenario. In order
to distinguish these two situations, one can penalize each upset by the nodes’ rank di↵erence elevated to a certain
power d. This is what the agony function does [18] with the exponent d treated as a parameter to tune based on the
application. When d = 0 we recover the standard number of unweighted upsets.

Note that optimization of agony is often used as a non-parametric approach to detect hierarchies [21], in particular
for ordinal ranks. For ordinal ranks, rank di↵erences are integer-valued and equal to one for adjacent-ranked nodes,
yet for real-valued scores this is not the case. Therefore the result of the agony minimization problem can vary

Section

Section

widely between ordinal and real valued ranking algorithms. (We note that the SpringRank objective function, i.e.,
the Hamiltonian in Eq. (2), can be considered a kind of agony. However, since we assume that nearby pairs are more
likely to interact, it is large for a edge from i to j if i is ranked far above or far below j, and more specifically whenever
si is far from sj + 1.)

In contrast to the coarse prediction above—which competitor is more likely to win?—we require, when possible,
more precise predictions in Eqs. (12) and (13), which ask how much more likely is one competitor to win? This,
however, requires the ranking algorithm to provide an estimate of Pij , the probability that i wins over j, which is
provided only by BTL and SpringRank; all other methods compared in this study provide orderings or embeddings
without probabilistic predictions.

The conditional log-likelihood �L as defined in Eq. (13) can be seen as a Log Loss often used as a classification loss
function [46] in statistical learning. This type of function heavily penalizes ranking algorithms that are very confident
about an incorrect outcome, e.g. when the predicted Pij is close to 1, i very likely to win over j, but the observed
outcome is that j wins over i. For this reason, this metric is more sensitive to outliers, as when in sports a very
strong team loses against one at the bottom of the league. The accuracy �b defined in Eq. (12) focuses instead in
predicting the correct proportions of wins/losses between two nodes that are matched in several comparisons. This
is less sensitive to outliers, and in fact if Pij is close but not exactly equal to 1, for a large number of comparisons
between i and j, we would expect that j should indeed win few times, e.g. if Pij = 0.99 and i, j are compared 100
times, �a is maximized when i wins 99 times and j wins once.

S10. Parameters used for regularizing ranking methods

When comparing SpringRank to other methods, we need to deal with the fact that certain network structures cause
other methods to fail to return any output. Eigenvector Centrality cannot, for example, be applied to directed trees,
yet this is precisely the sort of structure that one might expect when hierarchy becomes extreme.

More generally, many spectral techniques fail on networks that are not strongly connected, i.e., where it is not the
case that one can reach any node from any other by moving along a path consistent with the edge directions, since in
that case the adjacency matrix is not irreducible and the Perron-Frobenius theorem does not apply. In particular,
nodes with zero out-degree—sometimes called “dangling nodes” in the literature [13]—cause issues for many spectral
methods since the adjacency matrix annihilates any vector supported on such nodes. In contrast, the SpringRank
optimum given by Eq. (3) is unique up to translation whenever the network is connected in the undirected sense, i.e.,
whenever we can reach any node from any other by moving with or against directed edges.

A di↵erent issue occurs in the case of SyncRank. When edges are reciprocal in the sense that an equal number
of edges point in each direction, they e↵ectively cancel out. That is, if Aij = Aji, the corresponding entries in the
SyncRank comparison matrix will be zero, Cij = Cji = 0, as if i and j were never compared at all. As a result, there
can be nodes i such that Cij = Cji = 0 for all j. While rare, these pathological cases exist in real data and during
cross-validation tests, causing the output of SyncRank to be undefined.

In all these cases, regularization is required. Our regularized implementations of five ranking methods are described
below:

• Regularized Bradley-Terry-Luce (BTL). If there exist dangling nodes, the Minimization-Maximization
algorithm to fit the BTL model to real data proposed in [38] requires a regularization. In this case we set the
total number of out-edges dout

i
= 10�6 for nodes that would have di = 0 otherwise. This corresponds to Wi in

Eq.(3) of [38].

• Regularized PageRank. If there exist dangling nodes, we add an edge of weight 1/N from each dangling
node to every other node in the network. For each dataset we tried three di↵erent values of the teleportation
parameter, ↵ 2 {0.4, 0.6, 0.8}, and reported the best results of these three.

• Regularized Rank Centrality. If there exist dangling nodes, we use the regularized version of the algorithm
presented in Eq. (5) of [14] with ✏ = 1.

• Regularized SyncRank. If there are nodes whose entries in the comparison matrix C are zero, we add a
small constant ✏ = 0.001 to the entries of H in Eq. (13) of Ref. [20], so that D is invertible.

• Regularized Eigenvector Centrality. If the network is not strongly connected, we add a weight of 1/N to
every entry in A and then diagonalize.

Section

S11. Supplementary Tables

Comp. Sci. SpringRank MVR US News NRC Eig. C. PageRank
SpringRank - 0.96 0.80 0.72 0.84 0.57
MVR 0.96 - 0.81 0.73 0.80 0.48
US News 0.80 0.81 - 0.73 0.69 0.41
NRC 0.72 0.73 0.73 - 0.68 0.41
Eig. C. 0.84 0.80 0.69 0.68 - 0.74
PageRank 0.57 0.48 0.41 0.41 0.74 -

Business SpringRank MVR US News NRC Eig. C. PageRank
SpringRank - 0.98 0.74 - 0.92 0.75
MVR 0.98 - 0.72 - 0.92 0.69
US News 0.74 0.72 - - 0.68 0.60
NRC - - - - - -
Eig. C. 0.92 0.92 0.68 - - 0.72
PageRank 0.75 0.69 0.60 - 0.72 -

History SpringRank MVR US News NRC Eig. C. PageRank
SpringRank - 0.95 0.86 0.66 0.86 0.69
MVR 0.95 - 0.86 0.65 0.77 0.57
US News 0.86 0.86 - 0.66 0.72 0.51
NRC 0.66 0.65 0.66 - 0.59 0.44
Eig. C. 0.86 0.77 0.72 0.59 - 0.88
PageRank 0.69 0.57 0.51 0.44 0.88 -

Table S1. Pearson correlation coe�cients between various rankings of faculty hiring networks. All coe�cients are statistically
significant (p < 10�9). SpringRank is most highly correlated with Minimum Violations Ranks across all three faculty hiring
networks. Among US News and NRC rankings, SpringRank is more similar to US News. Values for US News and NRC were
drawn from Ref. [3] for comparison to the ranks available at the same time that the faculty hiring data were collected. The
NRC does not rank business departments.

DataSet Type N M H/M Acc. �a �̂L �̂a Viol. (%) / Bound Wt. viol. (per viol.) Depth p-value
Parakeet G1 [5] Anim. Dom. 21 838 0.174 0.930 2.70 6.03 76 (9.1%) / 42 0.008 (0.089) 2.604 < 10�4

Parakeet G2 [5] Anim. Dom. 19 961 0.193 0.932 2.78 18.12 75 (7.8%) / 36 0.011 (0.139) 1.879 < 10�4

Asian Elephants [37] Anim. Dom. 20 23 0.078 0.923 2.33 3.44 2 (8.7%) / 0 0.001 (0.040) 3.000 0.4466
Business [3] Fac. Hiring 112 7353 0.251 0.881 2.04 3.14 1171 (15.9%) / 808 0.019 (0.119) 2.125 < 10�4

Computer Science [3] Fac. Hiring 205 4033 0.220 0.882 2.23 8.74 516 (12.8%) / 255 0.013 (0.105) 2.423 < 10�4

History [3] Fac. Hiring 144 3921 0.186 0.909 2.39 5.74 397 (10.1%) / 227 0.012 (0.119) 2.234 < 10�4

Alakāpuram [2] Soc. Support 415 2497 0.222 0.867 1.98 7.95 347 (13.9%) / 120 0.011 (0.079) 3.618 < 10�4

Tenpat.t.i [2] Soc. Support 361 1809 0.241 0.858 1.89 8.20 262 (14.5%) / 120 0.012 (0.082) 3.749 < 10�4

Table S2. Statistics for SpringRank applied to real-world networks. Column details are as follows: N is the number
of nodes; M is the number of edges; H/m is the ground state energy per edge; Accuracy �a refers to accuracy in 5-fold
cross-validation tests using temperature �̂a; �̂L and �̂a are temperatures optimizing edge prediction accuracies �L and �a

respectively; Violations refers to the number of edges that violate the direction of the hierarchy as a number, as a percentage
of all edges, with a lower bound provided for reference, computed as the number of unavoidable violations due to reciprocated
edges; Weighted violations are the sum of each violation weighted by the di↵erence in ranks between the o↵ending nodes; Depth
is smax � smin; p-value refers to the null model described in the Materials and Methods. Relevant performance statistics for
NCAA datasets (53 networks) are reported elsewhere; see Fig. S3.

Section

S12. Supplementary Figures

=0.3 =2.1

A B

0 1 2 3 4 5
inverse temperature,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
ar

so
n

co
rre

la
tio

n,
 r

Rank Centr.
BTL
Colley
David’s Score
MVR
PageRank
Eigen. Centr.
SerialRank
SpringRank
SyncRank

=0.3 =2.1

C D

0 1 2 3 4 5
inverse temperature,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pe
ar

so
n

co
rre

la
tio

n,
 r

Rank Centr.
BTL
Colley
David’s Score
MVR
PageRank
Eigen. Centr.
SerialRank
SpringRank
SyncRank

Fig. S1. Performance (Pearson correlation) on synthetic data. Tests were performed as in Fig. 1, but here performance
is measured using Pearson correlation. This favors algorithms like SpringRank and BTL, that produce real-valued ranks, over
ordinal ranking schemes like Minimum Violation Ranking which are not expected to recover latent positions. (A) Linear
hierarchy diagrams show latent ranks splanted of 100 nodes, drawn from a standard normal distribution, with edges drawn
via the generative model Eq. (7) for indicated � (noise) values. Blue edges point down the hierarchy and red edges point
up, indicated by arrows. (B) Mean accuracies ± one standard deviation (symbols ± shading) are measured as the Pearson
correlation between method output and splanted for 100 replicates. (C, D) Identical to A and B but for hierarchies of N = 102
nodes divided into three tiers. All plots have mean degree 5; see Fig. 1 for performance curves for Spearman correlation r. See
Materials and Methods for synthetic network generation.

(a) US HS (b) US BS (c) US CS (d) Tenpat.t.i (e) Alakāpuram

(f) parakeet G1 (g) parakeet G2 (h) planted � = 5.0 (i) planted � = 0.1 (j) Asian elephant (k) ER

N = 100, hki = 3

Fig. S2. Statistical significance testing using the null model distribution of energies. Results are 1000 realizations
of the null model where edge directions are randomized while keeping the total number of interactions between each pair fixed,
for real and synthetic networks: a-c) US History (HS), Business (BS) and Computer Science (CS) faculty hiring networks [3];
d-e) social support networks of two Indian villages [2] considering 5 types of interactions (see main manuscript); f,g) aggression
network of parakeet Group 1 and 2 (as in [5]); h,i) planted network using SpringRank generative model with N = 100 and
mean degree hki = 5, Gaussian prior for the ranks with average µ = 0.5 and variance 1 (↵ = 1/�) and two noise levels � = 5.0
and � = 0.1; j) dominance network of asian elephants [37]; k) Erdős-Rényi directed random network with N = 100 and hki = 3.
The vertical line is the energy obtained on the real network. In all but the last two cases we reject the null hypothesis that
edge directions are independent of the ranks, and conclude that the hierarchy is statistically significant.

Section

Fig. S3. Edge prediction accuracy over BTL for NCAA basketball data sets. Distribution of di↵erences in performance
of edge prediction of SpringRank compared to BTL on NCAA College Basketball regular season matches for (top) Women and
(middle) Men, defined as (left) the probabilistic edge-prediction accuracy �a Eq. (12) and (right) the conditional log-likelihood
�L Eq. (13). Error bars indicate quartiles and markers show medians, corresponding to 50 independent trials of 5-fold cross-
validation, for a total of 250 test sets for each dataset. The bottom plot is obtained by considering the distributions over all
the seasons together. In terms of number of correctly predicted outcomes, SpringRank correctly predicts on average 8 to 16
more outcomes than BTL for each of the 20 Women NCAA seasons and up to 12 more outcomes for each of the 33 Men NCAA
seasons; for the latter dataset, BTL has an average better prediction in 3 out of the 33 seasons. The number of matches played
per season in the test set varies from the past to the most recents years from 747 to 1079.

Fig. S4. Bitwise edge direction prediction. Symbols show medians of bitwise edge prediction accuracies Eq. (S40) over
50 realization of 5-fold cross-validation (for a total of 250 trials) compared with the median accuracy for SyncRank; error bars
indicate quartiles. Thus, points above the dashed line at zero indicate better predictions than SyncRank, while values below
indicate that SyncRank performed better.

F . S5. Edge prediction accuracy with twofold cross-validation. Top: the accuracy of probabilistic edge prediction
of SpringRank compared to the median accuracy of BTL on real and synthetic networks defined as (top left) edge-prediction
accuracy �a Eq. (12) and (top right) the conditional log-likelihood �L Eq. (13); (bottom) bitwise edge prediction accuracies �b

Eq. (S40) of SpringRank and other algorithms compared with the median accuracy of SyncRank. Error bars indicate quartiles
and markers show medians, corresponding to 50 independent trials of 2-fold cross-validation, for a total of 100 test sets for
each network. The two synthetic networks are generated with N = 100, average degree 5, and Gaussian-distributed ranks as
in Fig. 1A, with inverse temperatures � = 1 and � = 5. Notice that these results are similar those of Fig. 3, obtained using
5-fold cross-validation.

ig

Computer Science

0 10

-0.5

0

0.5

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 50 100 150 200
1

50

100

150

200

800 1000 1200 1400 1600 1800 2000
Energy

0

200

400

600

800

1000

1200

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S6. Summary of SpringRank applied to computer science faculty hiring network (top-left) A linear
hierarchy diagram showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and
red edges point up. (top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned)
and the horizontal axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency
matrix; blue and red dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of
statistical significance test with randomized edge directions. The histogram represents the energies obtained in the randomized
samples: the dotted line is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted,
ordered by rank, from top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means
algorithm.

.

History

0 5 10
-1

-0.5

0

0.5

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 50 100
1

50

100

600 800 1000 1200 1400 1600 1800 2000
Energy

0

200

400

600

800

1000

1200

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S7. Summary of SpringRank applied to istory faculty hiring network. (top-left) A linear hierarchy diagram
showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges point up.
(top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the horizontal
axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix; blue and red
dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical significance
test with randomized edge directions. The histogram represents the energies obtained in the randomized samples: the dotted
line is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered by rank,
from top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

h

Business

0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 20 40 60 80 100
1

20

40

60

80

100

1500 2000 2500 3000 3500 4000
Energy

0

200

400

600

800

1000

1200

1400

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S8. Summary of SpringRank applied to faculty hiring network. (top-left) A linear hierarchy
diagram showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges
point up. (top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the
horizontal axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix;
blue and red dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical
significance test with randomized edge directions. The histogram represents the energies obtained in the randomized samples:
the dotted line is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered
by rank, from top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

business

Asian Elephants

0 5

-1.5

-1

-0.5

0

0.5

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 5 10 15 20

1

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Energy

0

500

1000

1500

2000

2500

H
is

to
gr

am
H 10000 randomizations
H0; p=0.4536

Fig. S9. Summary of SpringRank applied to Asian Elephants network. (top-left) A linear hierarchy diagram
showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges point up.
(top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the horizontal
axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix; blue and red
dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical significance
test with randomized edge directions. The histogram represents the energies obtained in the randomized samples: the dotted
line is the ground state energy obtained on the observed real network.

Parakeet G1

0 5

-1

-0.5

0

0.5

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 5 10 15 20

1

5

10

15

20

100 150 200 250 300 350 400 450
Energy

0

200

400

600

800

1000

1200

1400

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S10. Summary of SpringRank applied to parakeet G1 network. (top-left) A linear hierarchy diagram showing
inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges point up. (top-
middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the horizontal axis
is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix; blue and red dots
represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical significance test
with randomized edge directions. The histogram represents the energies obtained in the randomized samples: the dotted line
is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered by rank, from
top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

Parakeet G2

0 2 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 5 10 15 20

1

5

10

15

20

150 200 250 300 350 400 450 500
Energy

0

200

400

600

800

1000

1200

1400

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S11. Summary of SpringRank applied to arakeet G2 network. (top-left) A linear hierarchy diagram showing
inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges point up. (top-
middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the horizontal axis
is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix; blue and red dots
represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical significance test
with randomized edge directions. The histogram represents the energies obtained in the randomized samples: the dotted line
is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered by rank, from
top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

p

Tenpat.t.i

0 10 20

-2

-1.5

-1

-0.5

0

0.5

1

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 100 200 300
1

100

200

300

400 450 500 550 600 650 700 750 800
Energy

0

200

400

600

800

1000

1200

1400

1600

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S12. Summary of SpringRank applied to Tenpat.t.i social support network. (top-left) A linear hierarchy
diagram showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges
point up. (top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the
horizontal axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix;
blue and red dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical
significance test with randomized edge directions. The histogram represents the energies obtained in the randomized samples:
the dotted line is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered
by rank, from top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

Alakāpuram

0 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Sp
rin

gR
an

k
no

de
 p

os
iti

on
s,

 s

node count

1 100 200 300 400
1

100

200

300

400

500 600 700 800 900 1000 1100
Energy

0

200

400

600

800

1000

1200

1400

H
is

to
gr

am

H 10000 randomizations
H0; p<10 -4

Fig. S13. Summary of SpringRank applied to Alakāpuram social support network. (top-left) A linear hierarchy
diagram showing inferred SpringRank scores. Circles correspond to nodes; blue edges point down the hierarchy and red edges
point up. (top-middle) A histogram shows the empirical distribution of ranks: the vertical axis is the rank si (binned) and the
horizontal axis is the count of nodes having a rank in that bin. (top-right) A sparsity plot of rank-ordered adjacency matrix;
blue and red dots represent non-zero entries going down and up the hierarchy, respectively. (middle-right) Results of statistical
significance test with randomized edge directions. The histogram represents the energies obtained in the randomized samples:
the dotted line is the ground state energy obtained on the observed real network. (bottom) Nodes’ ranks are plotted, ordered
by rank, from top rank (left) to bottom rank (right), and shaded by tier. The tiers are calculated by the k-means algorithm.

	aar8260_SM_1
	aar8260_SM
	aar8260_SM
	aar8260_SupplementalMaterial_v3
	A physical model for efficient ranking in networks
	Abstract
	References
	Deriving the linear system minimizing the Hamiltonian
	Poisson generative model
	Rewriting the energy
	Ranks distributed as a multivariate Gaussian distribution
	Bayesian SpringRank
	Fixing c to control for sparsity
	Comparing optimal for predicting edge directions
	Choosing to optimize edge direction accuracy
	Choosing to optimize the conditional log likelihood

	Bitwise accuracy b
	Performance metrics
	Parameters used for regularizing ranking methods
	Supplemental Tables
	Supplemental Figures

