SUPPORTING INFORMATION

FOR

Chemiluminescent Biosensors for Detection of Second Messenger Cyclic di-GMP

Andrew B. Dippel¹, Wyatt A. Anderson¹, Robert S. Evans², Samuel Deutsch^{2,3,4}, and Ming C. Hammond^{1,5*}

¹Department of Chemistry, University of California, Berkeley, 94720, USA

²DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA

³Environmental Genomics and Systems Biology Division, and ⁴Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

⁵Department of Molecular & Cell Biology, University of California, Berkeley, 94720, USA

*Corresponding author

Table of Contents

Additional methods	S3-S5
Figure S1. Workflow for lysate-based biosensor assay	S6
Figure S2. Lysate-based screen of <i>Ec</i> YcgR biosensor mutant and linker variants	S7
Figure S3. Analysis of mCherry tag as measure of biosensor stability	S8
Figure S4. Lysate-based screen of phylogenetic library variants	S9
Figure S5. In vitro characterization of biosensor variants	S10
Table S1. Oligonucleotides used in this study	S11-S12
Table S2. Phylogenetic sequence variants	S13-S16
Table S3. Amino acid sequences of biosensor plasmids	S17
Table S4. Nucleotide sequences of biosensor plasmids	S18-S19
Supplemental Notes	S20-S21
References	S21

ADDITIONAL METHODS

General reagents and oligonucleotides. Cyclic dinucleotides were purchased from Axxora, LLC. Coelenterazine-h was purchased from NanoLight Technologies and stored as a ~6.15 mM stock in EtOH at -80 °C. Oligonucleotides used in molecular cloning were purchased from Elim Biopharmaceuticals.

Molecular cloning. The pRSET_B-Nano-lantern plasmid was a gift from Takeharu Nagai (Addgene plasmid # 51969). Plasmids encoding YhjH, WspR alleles, and PleD were available in our lab. For expression and purification, all biosensor constructs were cloned into the pRSET_B plasmid between the NdeI and EcoRI sites with an N-terminal His-tag. Overlap-extension PCR was used to add the three N-terminal residues back to RLuc8 to create pRSET_B-Nano-lantern (1.1). All NL biosensor constructs using *Ec*YcgR were cloned into pRSET_B using Gibson Assembly¹ in which both linear backbone and insert fragments were amplified by PCR. The *Ec*YcgR sequence was amplified from BL21 Star genomic DNA and mutant alleles were generated using site-directed mutagenesis. For lysate or live-cell based experiments, YNL and *Ec*YcgR biosensor constructs were amplified by PCR and ligated into pET21 and/or pET24 plasmids between NdeI and HindIII sites and included a C-terminal His-tag. To create mCherry tagged versions of these plasmids, mCherry was amplified by PCR to add a flexible linker (GSGGSGGS) at the N-terminus then ligated between BamHI and HindIII sites of the empty plasmid to generate pET21-linker-mCherry and pET24-linker-mCherry. YNL and *Ec*YcgR biosensor constructs were then amplified by PCR and ligated into the pET24-linker-mCherry plasmid between NdeI and BamHI sites.

Protein purification. *E. coli* BL21 (DE3) Star cells (Life Technologies) were transformed with the pRSET_B vector encoding N-terminally His-tagged NL biosensor variants. Transformants were cultured in 2xYT medium at 37 °C until OD reached ~0.8–1.0, followed by induction of protein expression with 0.1 mM IPTG for 20 h at 20 °C. Cells were collected and lysed by sonication in lysis buffer [50 mM Tris (pH 7.5), 150 mM NaCl, 20 mM imidazole, 5% (v/v) glycerol] with 300 μ g/mL lysozyme and 1 mM PMSF added. Clarified lysate was bound to Ni-NTA agarose (Thermo Scientific), and resin was washed with lysis buffer supplemented with 500 mM NaCl prior to elution with lysis buffer supplemented with 300 mM imidazole. Using Amicon Ultra-15 Centrifugal Filter Units (molecular weight cutoff 10 kDa; Millipore), the elution fractions were

concentrated and dialyzed to storage buffer [50 mM HEPES (pH 7.2), 100 mM KCl, 10% (v/v) glycerol]. Concentrated protein was flash frozen in liquid nitrogen then stored at -80 °C in small aliquots to prevent repetitive freeze-thaw cycles. Protein concentrations were determined using the absorption of Venus at 515 nm (extinction coefficient = 92200 M^{-1} cm⁻¹). In stated cases, cells were co-transformed with the pCOLA-PdeH plasmid lacking a His-tag to enable purification of the biosensor without c-di-GMP bound.

Phylogenetic library generation. YcgR sequence variants employed were selected using the Pfam database. Briefly, Pfam was searched for all PilZ-domain containing proteins with a domain architecture similar to EcYcgR (YcgR-PilZ), which were presumed to undergo conformational changes upon binding c-di-GMP. The query resulted in 840 total sequences (258 sequences with YcgR-PilZ, 582 sequences with YcgR_2-PilZ), then a subset of 92 sequences were chosen for synthesis and cloning into the biosensor scaffold (pET21- and pET24-biosensor-mCherry). All sequences from suspected thermophilic organisms were given priority, and all remaining sequences were chosen from a large variety of bacterial genomes. The selected genes were codon optimized and 'polished' to remove DNA synthesis constraints using BOOST.² Double stranded DNA was obtained from Gen9 (Gingko Bioworks). For cloning into the pET21 and pET24 derived vectors using Gibson cloning,¹ 25 bp linkers at the beginning and end of the sequences were included. Eight colonies per construct were sequenced verified using PACBIO RSII system (Pacific Biosciences), and variant calling was performed using the GATK software package.³

Cellular c-di-GMP measurements with biosensor co-expression. Single colonies of BL21(DE3) star *E. coli* cells co-transformed with pET21-biosensor-mCherry plasmids and pCOLA-PdeH or pCOLA-WspR-D70E were resuspended in 500 µL of P-0.5G non-inducing media [0.5% glucose, 25 mM (NH4)₂SO4, 50 mM KH₂PO4, 50 mM Na₂HPO4, 1 mM MgSO4]⁴ supplemented with 100 µg/mL kanamycin and 50 µg/mL carbenicillin in 2.2 mL 96-well deep well plates (VWR), then grown at 37 °C, 325 rpm, for 24 h to generate pre-cultures. A 5 µL aliquot of each pre-culture was used to inoculate 500 µL of ZYP-5052 auto-induction media [25 mM (NH4)₂SO4, 50 mM KH₂PO4, 50 mM MgSO4, 0.5% (v/v) glycerol, 0.05% glucose, 0.2% α-lactose, 1% tryptone, and 0.5% yeast extract]⁴ supplemented with 100 µg/mL kanamycin and 50 µg/mL carbenicillin in 2.7 °C, 325 rpm, for 20 h

to allow for protein expression. For live cell measurements, cultures were harvested by centrifugation, media was removed, and cell pellets were resuspended in 500 μ L PBS. A 100 μ L aliquot of each culture was transferred to an opaque white 96-well plate, and the plate was incubated at 28 °C for 10 min. The mCherry fluorescence intensity was measured for each well, 20 μ L chemiluminescent substrate was added manually to each well, and then total chemiluminescence was monitored over 10 min. Luminescent signal was calculated as the total chemiluminescence at 10 min divided by the mCherry fluorescence intensity to normalize differences in biosensor expression between biological replicates.

For lysate measurements, cultures were harvested and clarified lysates were prepared as described for the lysate-based assay for biosensor activity, except each culture was resuspended in 240 μ L screening buffer. A 100 μ L aliquot of each clarified lysate was carefully pipetted into an opaque white 96-well plate, and the plate was incubated at 28 °C for 10 min. The mCherry fluorescence intensity was measured for each well, then chemiluminescent substrate was injected and chemiluminescence was measured as described in the lysate-based assay. Luminescent signal was calculated as the total chemiluminescence divided by the mCherry fluorescence intensity to normalize differences in biosensor expression between biological replicates.

Figure S1. Workflow for lysate-based biosensor assay. *E. coli* transformed with biosensor variants are grown in non-inducing media in deep-well plates to generate pre-cultures. The following day, pre-cultures are used to inoculate auto-induction media and cultures are grown overnight. The next day, a small aliquot of cells is analyzed via flow cytometry to determine relative biosensor expression and stability. The remaining cells are harvested and lysed in screening buffer. Clarified lysates are mixed with c-di-GMP in an opaque white, 96-well plate, chemiluminescent substrate is added, and total chemiluminescent signal is measured to determine signal fold-changes.

Figure S2. Lysate-based screen of EcYcgR biosensor mutant and linker variants. (a) Schematic of EcYcgR-91 biosensor showing different mutations to EcYcgR and the different linkers tested. (b) Signal change for EcYcgR-91 biosensors and mutants in the lysate-based assay. Data are from 2 biological replicates represented as mean \pm SD. (c) Biosensor binding affinity measurements with purified EcYcgR-91 mutants. Data are presented as mean of 3 replicates. Error bars are omitted for clarity. (d) Signal change for EcYcgR-91 linker variants in the lysate-based assay. Data are from 2 biological replicates SD.

Figure S3. Analysis of mCherry tag as measure of biosensor stability. (a) SDS-PAGE of purified proteins showing presence of truncated protein products for NL biosensor constructs. (b) Normalized mCherry/Venus MFI ratios of cells expressing mCherry tagged NL constructs as measured by flow cytometry. Ratios are normalized to the ratio for EcYcgR-91-mCh and show that the ratio correlates with relative protein stability. Data are from 3 biological replicates represented as mean \pm SD. (c) Signal change for NL constructs in the lysate-based assay show the mCherry tag has no negative effect on biosensor performance. Data are from 2 biological replicates represented as mean \pm SD.

Figure S4. Lysate-based screen of phylogenetic library variants. (a) Signal fold-change for the 84 active phylogenetic biosensor variants. Labeled sequences were chosen for further characterization due to apparent high affinity, large signal change, or negative signal change. See Table S2 for numbering. Data are from 2 biological replicates represented as mean \pm SD. (b) Signal fold-change for selected high affinity variants. Selected variants were re-screened in the lysate-based assay with lower concentrations of c-di-GMP. Data are from 3 biological replicates represented as mean \pm SD.

◀ full length biosensor (~94 kDa) 🛛 ┥ full length YNL (~65 kDa) 🛛

Figure S5. In vitro characterization of biosensor variants. (a) Same data as in Figure 3b, but presented as signal fold-change. Values are normalized to no c-di-GMP for selected high affinity and high Δ signal variants, and values are normalized to 20 μ M c-di-GMP for negative Δ signal variants. Signal change data is summarized in Table 1. Data are from 3 replicates represented as mean \pm SD. (b) SDS-PAGE of all purified biosensor variants used for in vitro characterization showing the presence of a truncated protein product that is fluorescent.

Name	Sequence (5' to 3')
REV-RLuc228-YcgR-insert	ACGATCTGCACCACGTCGGGCTTGCCGAGCTCGTCGCGCACTTTGTCCGC
FWD-RLuc228-YcgR-insert	GATCCCCCTGGTGAAGGGCCCATGGATGAGTCATTACCATGAGCAGTTCC
REV-RLuc228-YcgR-vector	AACTGCTCATGGTAATGACTCATCCATGGGCCCTTCACCAGGGGGATCTC
FWD-RLuc228-YcgR-vector	GGGAAAAAGCGGACAAAGTGCGCGACGAGCTCGGCAAGCCCGACGTGGTG
FWD-RLuc91-YcgR-insert	AGAGCGGCAACGGCAGCccatggATGagtcattaccatgagcagttcctg
REV-RLuc91-YcgR-insert	GTACTTGTAGTGGTCCAGCAGCCTGTAgagctcgtcgcgcactttgtccg
FWD-RLuc91-YcgR-vector	ggacaaagtgcgcgacgagctcTACAGGCTGCTGGACCACTACAAGTACC
REV-RLuc91-YcgR-vector	aggaactgctcatggtaatgactCATccatggGCTGCCGTTGCCGCTCTT
FWD-Venus (-C10)-BamHi	gtagtagGgatccgATGGTGAGCAAGG
REV-Venus (-C10)-add RLuc N3	CCTTGCTGGCCATggtaccCCCGGCGG
FWD-RLuc-add RLuc N3	ggtaccATGGCCAGCAAGGTGTACGACCCCGAGC
REV-RLuc-EcoRI	gtagtagGAATTcTTACTGCTCGTTCTTCAGCA
FWD-Rluc91-YcgR-GS-insert	AGAGCGGCAACGGCAGCggcagcATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-GS-insert	GTACTTGTAGTGGTCCAGCAGCCTGTAgctgccgtcgcgcactttgtccg
REV-Rluc91-ycgr-GS-vector	aggaactgctcatggtaatgactCATgctgccGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-GS-vector	ggacaaagtgcgccggcagcTACAGGCTGCTGGACCACTACAAGTACC
FWD-Rluc91-ycgr-SEG-insert	GCGGCAACGGCAGCagcgagggcATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-SEG-insert	CTTGTAGTGGTCCAGCAGCCTGTAgccctcgctgtcgcgcactttgtccg
REV-Rluc91-ycgr-SEG-vector	aactgctcatggtaatgactCATgccctcgctGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-SEG-vector	caaagtgcgcgacagcgagggcTACAGGCTGCTGGACCACTACAAGTACC
FWD-Rluc91-ycgr-GGSG-insert	GCAACGGCAGCggcggcagcggcATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-GGSG-insert	GTAGTGGTCCAGCAGCCTGTAgccgctgccgccgtcgcgcactttgtccg
REV-Rluc91-ycgr-GGSG-vector	tgctcatggtaatgactCATgccgctgccgccGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-GGSG-vector	agtgcgcgacggcggcagcggcTACAGGCTGCTGGACCACTACAAGTACC
FWD-Rluc91-ycgr-AP-insert	AGAGCGGCAACGGCAGCgcccccATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-AP-insert	GTACTTGTAGTGGTCCAGCAGCCTGTAgggggggggcgtcgcgcactttgtccg
FWD-Rluc91-ycgr-AP-vector	ggacaaagtgcgcgacgcccccTACAGGCTGCTGGACCACTACAAGTACC
REV-Rluc91-ycgr-AP-vector	aggaactgctcatggtaatgactCATggggggcGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-APAP-insert	GCAACGGCAGCgcccccgcccccATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-APAP-insert	GTAGTGGTCCAGCAGCCTGTAggggggggggggggggggg
REV-Rluc91-ycgr-APAP-vector	tgctcatggtaatgactCATgggggggggggggGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-APAP-vector	agtgcgcgacgcccccgcccccTACAGGCTGCTGGACCACTACAAGTACC
FWD-Rluc91-ycgr-EAAAK-insert	ACGGCAGCgaggccgccgccaagATGagtcattaccatgagcagttcctg
REV-Rluc91-ycgr-EAAAK-insert	GTGGTCCAGCAGCCTGTActtggcggcggcctcgtcgcgcactttgtccg
REV-Rluc91-ycgr-EAAAK-vector	tcatggtaatgactCATcttggcggcggcctcGCTGCCGTTGCCGCTCTT
FWD-Rluc91-ycgr-EAAAK-vector	gcgcgacgaggccgccgccaagTACAGGCTGCTGGACCACTACAAGTACC
FWD-YcgR-R113L quikchange	caccttatggtttgtacaactacgccgatatttccg
REV-YcgR-R113L quikchange	cggaaatatcggcgtagttgtacaaaccataaggtg
FWD-YcaR-R118D-rth	GAcateteegeeceactee

Table S1. Oligonucleotides used in this study

REV-YcgR-R118D-rth	gaaatatcggcgtcgttgtacaaacc
FWD-YcgR-S147A-rth	Gcgttaggcggcatggg
REV-YcgR-S147A-rth	caaatcatacaggcggaaacg
FWD-YNL-Ndel	tattcacatATGGTGAGCAAGGGCGAGG
REV-YNL-HindIII (no stop)	CgtaagcttCTGCTCGTTCTTCAGCACTCTCTC
REV-YNL-BamHI (no stop)	ataggatccCTGCTCGTTCTTCAGCACTCTCTC
FWD-mCherry w/ linker-BamHI	ataggatccggcggcagcggcggcagcATGGTGAGCAAGGGCGA
REV-mCherry-HindIII (no stop)	tataagcttCTTGTACAGCTCGTCCATGCC
FWD-YNL-pRSET insert	GACGATGACGATAAGgatccgATGGTGAGCAAGGGCGAG
REV-YNL-pRSET insert	CCGGATCAAGCTTCGAATTcTTACTGCTCGTTCTTCAGCACTCTC

Table S2. Phylogenetic sequence variants

Notes: Orange highlighted organism names are predicted thermophiles. Any sequence without a number label (numbering used in Figure S4) produced very low luminescence activity in the lysate-based screen and was not included in any data shown.

UniProt accession	Description	Organism	Domain arch	Length	Number	Name
	Cyclic di-GMP	Vibrio cholerae serotype O1 (strain ATCC 39315 / ELTor				
YCGRL_VIBCH	VCA0042	Inaba N16961)	YcgR2-PilZ	252	1	
YCGR_PSEPK	Flagellar brake protein YcgR	Pseudomonas putida (strain KT2440)	YcgR-PilZ	247	2	
	Flagellar brake	Salmonella typhimurium (strain LT2 / SGSC1412 /				
YCGR_SALTY	protein YcgR	ATCC 700720)	YcgR-PilZ	244	3	
OUHVD2 DSEAE	Uncharacterized	Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PPS 101 (PAO1)		262		
QUITES_FOLAL	Putative	Symbiobacterium		203	4	
	uncharacterized	thermophilum (strain T / IAM		00.4	-	
Q67PC2_SYMTH	protein	14863) Thermobrachium celere	YcgR2-PilZ	234	5	
R7RRU9_9CLOT	Flagellar protein	DSM 8682	YcgR2-PilZ	223	6	
B5Y7A9_COPPD	Type IV pilus assembly protein PilZ	Coprothermobacter proteolyticus (strain ATCC 35245 / DSM 5265 / BT)	YcgR2-PilZ	233	7	Ср
	Type IV pilus	Spirochaeta thermophila (strain ATCC 700085 / DSM				
G0GFW8_SPITZ	assembly PilZ	6578 / Z-1203)	YcgR2-PilZ	369		
M1E4L7_9FIRM	Type IV pilus assembly PilZ	Thermodesulfobium narugense DSM 14796	YcgR2-PilZ	246	8	
G0GFW8_SPITZ	Type IV pilus assembly PilZ	Spirochaeta thermophila (strain ATCC 700085 / DSM 6578 / Z-1203)	YcgR2-PilZ	357		
B7GHM9_ANOFW	Predicted glycosyltransferase	Anoxybacillus flavithermus (strain DSM 21510 / WK1)	YcgR2-PilZ	239		
B2A369_NATTJ	Type IV pilus assembly PilZ	Natranaerobius thermophilus (strain ATCC BAA-1301 / DSM 18059 / JW/NM-WN- LF)	YcgR2-PilZ	225	9	Nt
	Uncharacterized	Bacillus sporothermodurans	VcaR2-Pil7	216	10	Bc
	Type IV pilus	Thermosinus		210	10	-
A1HN17_9FIRM		carboxydivorans Nor1	YCGR2-PIIZ	211	11	IC
A0A124FJ12 9FIRM	Type IV pilus assembly PilZ	Thermoanaerobacterales bacterium 50 218	YcaR2-PilZ	220	12	Tb
D5XFF1_THEPJ	Type IV pilus assembly PilZ	Thermincola potens (strain JR)	YcgR2-PilZ	219	13	
A0A0S3QVC2_9AQUI	Type IV pilus assembly PilZ	Thermosulfidibacter takaii ABI70S6	YcgR2-PilZ	242	14	
B8CYP6_HALOH	Type IV pilus assembly PilZ	Halothermothrix orenii (strain H 168 / OCM 544 / DSM 9562)	YcgR2-PilZ	216	15	
D7CM20_SYNLT	Type IV pilus assembly PilZ	Syntrophothermus lipocalidus (strain DSM 12680 / TGB-C1)	YcgR2-PilZ	216	16	
BOK9S5 THEP3	Type IV pilus	Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E)	YcaR2-Pil7	209	17	
			· · · · · · · · · · · · · · · · · · ·		1	1

		Thermoanaerobacterium				
I3VWB4_THESW	Type IV pilus assembly PilZ	saccharolyticum (strain DSM 8691 / JW/SL-YS485)	YcgR2-PilZ	209	18	
	Type IV pilus	Desulfotomaculum				
K8EBV6_9FIRM	assembly PilZ	18033	YcgR2-PilZ	227	19	
A0A090IV04_9BACI	Glycosyltransferase	Bacillus thermoamylovorans	YcgR2-PilZ	220	20	Bt
		(strain ATCC BAA-301 /				
A8F4V2 PSELT	Type IV pilus assembly PilZ	DSM 14385 / NBRC 107922 / TMO)	YcaR2-PilZ	234	21	
	Type IV pilus	Pseudothermotoga				
F7YXY9_9THEM	assembly PilZ	thermarum DSM 5069	YcgR2-PilZ	227	22	
		Thermotoga maritima (strain				
Q9X007_THEMA	Flagellar protein	3109 / JCM 10099)	YcgR2-PilZ	229	23	Tm
		Pelotomaculum				
		DSM 13744 / JCM 10971 /				_
A5D0H5_PELTS	Glycosyltransferase	SI) Thermosediminibacter	YcgR2-PilZ	219	24	Pt
		oceani (strain ATCC BAA-				
D9S3A4_THEOJ	assembly PilZ	1034 / DSM 16646 / JW/IW- 1228P)	YcgR2-PilZ	212	25	
		Thermacetogenium phaeum				
K4LH04_THEPS	assembly PilZ	DSM 12270 / PB)	YcgR2-PilZ	220	26	
	Type IV pilus	Thermosipho melanesiensis (strain DSM 12029 / CIP				
A6LMY0_THEM4	assembly PilZ	104789 / BI429)	YcgR2-PilZ	220	27	
A0A101EVB1_9THEM	Type IV pilus assembly PilZ	Thermotoga sp. 50_1627	YcgR2-PilZ	227	28	Tu
	Putativo	Thermobacillus composti				
L0EE96_THECK	glycosyltransferase	13945 / KWC4)	YcgR2-PilZ	217	29	То
		Clostridium thermocellum (strain ATCC 27405 / DSM				
	Town D (with a	1237 / NBRC 103400 /				
A3DCP7_CLOTH	assembly PilZ	4536 / VPI 7372)	YcgR2-PilZ	224	30	
		Thermaerobacter				
	Type IV pilus	700841 / DSM 12885 / JCM				
E6SJP9_THEM7	assembly PilZ	10246 / 7p75a) Moorella thermoacetica	YcgR2-PilZ	220	31	
	Glycosyltransferase-	(strain ATCC 39073 / JCM		210	22	
		Thermanaerovibrio		219	52	
	Type IV pilus	acidaminovorans (strain ATCC 49978 / DSM 6589 /				
D1B6A2_THEAS	assembly PilZ	Su883)	YcgR2-PilZ	227	33	
	Type IV pilus	Desulfotomaculum hydrothermale Lam5 = DSM				
K8EH43_9FIRM	assembly PilZ	18033	YcgR2-PilZ	208	34	
		Rahnella aquatilis (strain				
	Flagellar brake	A FCC 33071 / DSM 4594 / JCM 1683 / NBRC 105701 /				
H2INW0_RAHAC	protein YcgR	NCIMB 13365 / CIP 78.65)	YcgR-PilZ	248	35	
A0A080M6H4 9PROT	Flagellar brake protein YcgR	Candidatus Accumulibacter sp. SK-02	YcaR-Pil7	266	36	
	Flagellar brake	Stenotrophomonas				
A0A0R0ARV1_9GAMM	protein YcgR	panacihumi	YcgR-PilZ	265	37	
	Flagellar brake	Burkholderia an Jia20	VcaP Dil7	251	20	
TOMOODEN I BOOKN	protein rugk	Durkholuena sp. llysu		201	20	

	Flagellar brake	Varsinia postic	VegP Dil7	252	20	
QICK30_TEKFE		Methylomicrobium album		202		
H8GFW9_METAL	protein YcgR	BG8	YcgR-PilZ	239	40	
B4E8L7_BURCJ	Flagellar brake protein YcgR	Burkholderia cenocepacia (strain ATCC BAA-245 / DSM 16553 / LMG 16656 / NCTC 13227 / J2315 / CF5610)	YcgR-PilZ	251	41	
S6B8T9_9PROT	Flagellar brake protein YcgR	Sulfuricella denitrificans skB26	YcgR-PilZ	257	42	
A0A0D5V569_9BURK	Flagellar brake protein YcgR	Paraburkholderia fungorum	YcgR-PilZ	263	43	
YCGR LARHH	Flagellar brake	Laribacter hongkongensis (strain HLHK9)	YcaR-PilZ	271	44	
H1SBM0 9BURK	Flagellar brake protein YcgR	Cupriavidus basilensis OR16	YcgR-PilZ	233	45	Cb
E1TCJ5_BURSG	Flagellar brake protein YcgR	Burkholderia sp. (strain CCGE1003)	YcgR-PilZ	263	46	
D8IT03_HERSS	Flagellar brake protein YcgR	Herbaspirillum seropedicae (strain SmR1)	YcgR-PilZ	251	47	
C5AEG4_BURGB	Flagellar brake protein YcgR	Burkholderia glumae (strain BGR1)	YcgR-PilZ	250	48	
YCGR_NITEC	Flagellar brake protein YcgR	Nitrosomonas eutropha (strain C91)	YcgR-PilZ	269		
YCGR_THIDA	Flagellar brake protein YcgR	Thiobacillus denitrificans (strain ATCC 25259)	YcgR-PilZ	255	49	
A0A126T293_9GAMM	Flagellar brake protein YcgR	Methylomonas denitrificans	YcgR-PilZ	249	50	
H5V7W3_ESCHE	Flagellar brake protein YcgR	Escherichia hermannii NBRC 105704	YcgR-PilZ	243	51	
YCGR1_DECAR	Flagellar brake protein YcgR 1	Dechloromonas aromatica (strain RCB)	YcgR-PilZ	264	52	
A9MP65_SALAR	Flagellar brake protein YcgR	Salmonella arizonae (strain ATCC BAA-731 / CDC346- 86 / RSK2980)	YcgR-PilZ	244	53	
E6WB98_PANSA	Flagellar brake protein YcgR	Pantoea sp. (strain At-9b)	YcgR-PilZ	244	54	
S6ALU3_PSERE	Flagellar brake protein	Pseudomonas resinovorans NBRC 106553	YcgR-PilZ	264	55	
YCGR_METML	Flagellar brake protein YcgR	Methylotenera mobilis (strain JLW8 / ATCC BAA-1282 / DSM 17540)	YcgR-PilZ	253	56	
L1LXK9_PSEPU	Uncharacterized protein	Pseudomonas putida CSV86	YcgR-PilZ	247	57	Рр
A0A080MAN3_9PROT	Flagellar brake protein YcgR	Candidatus Accumulibacter sp. BA-91	YcgR-PilZ	259	58	
A0A0L0GIP1_9ENTR	Flagellar brake protein YcgR	Trabulsiella odontotermitis	YcgR-PilZ	243	59	
A0A0K1K509_9BURK	Flagellar brake protein YcgR	Massilia sp. NR 4-1	YcgR-PilZ	253	60	
A0A024HEU5_PSEKB	Flagellar brake protein YcgR	Pseudomonas knackmussii (strain DSM 6978 / LMG 23759 / B13)	YcgR-PilZ	249	61	
A0A0S8DMJ3_9GAMM	Flagellar brake protein YcgR	Gammaproteobacteria bacterium SG8_47	YcgR-PilZ	252	62	

Q97H69_CLOAB	Uncharacterized protein, YPFA B.subtilis ortholog	Clostridium acetobutylicum (strain ATCC 824 / DSM 792 / JCM 1419 / LMG 5710 / VKM B-1787)	YcgR2-PilZ	222	63	
A0A0U9HJ89_9THEO	C-di-GMP-binding flagellar brake protein YcgR	Tepidanaerobacter syntrophicus	YcgR2-PilZ	213	64	
A0A140LAQ7_9THEO	Flagellar brake protein YcgR	Fervidicola ferrireducens	YcgR2-PilZ	212	65	
	Type IV pilus	Denitrovibrio acetiphilus	VogP2 Dil7	210	66	Dn
D4H107_DENAZ		Deferribacter desulfuricans (strain DSM 14783 / JCM		219	00	
D3PCV1_DEFDS	Type IV pilus assembly protein PilZ	11476 / NBRC 101012 / SSM1)	YcgR2-PilZ	223	67	
A8FEM7_BACP2	Pilus assembly protein PilZ	Bacillus pumilus (strain SAFR-032)	YcgR2-PilZ	215	68	
W6N5K7_CLOTY	Flagellar protein	Clostridium tyrobutyricum DIVETGP	YcgR2-PilZ	216	69	
A4J746_DESRM	Type IV pilus assembly PilZ	Desulfotomaculum reducens (strain MI-1)	YcgR2-PilZ	221	70	
A0A151B6Q5_9CLOT	Flagellar protein YcgR	Clostridium tepidiprofundi DSM 19306	YcgR2-PilZ	217	71	
C6C102 DESAD	Type IV pilus assembly PilZ	Desulfovibrio salexigens (strain ATCC 14822 / DSM 2638 / NCIB 8403 / VKM B- 1763)	YcaR2-PilZ	229		
 A6M180_CLOB8	Type IV pilus assembly PilZ	Clostridium beijerinckii (strain ATCC 51743 / NCIMB 8052)	YcgR2-PilZ	213		
R1AST9_9CLOT	Flagellar protein	Caldisalinibacter kiritimatiensis	YcgR2-PilZ	222	72	
F7NL64_9FIRM	Type IV pilus assembly PilZ	Acetonema longum DSM 6540	YcgR2-PilZ	215	73	
L0FC86_DESDL	Putative glycosyltransferase	Desulfitobacterium dichloroeliminans (strain LMG P-21439 / DCA1)	YcgR2-PilZ	214	74	
R7C6C4_9CLOT	Type IV pilus assembly PilZ	Clostridium sp. CAG:62	YcgR2-PilZ	236	75	
A0A139D977_9FIRM	Flagellar protein	Halanaerobium sp. T82-1	YcgR2-PilZ	213	76	
R7R388_9FIRM	Flagellar protein	Roseburia sp. CAG:100	YcgR2-PilZ	255	77	
A0A0E3W3A0_9FIRM	PilZ domain	OL-4	YcgR2-PilZ	216	78	
D5CSE9_SIDLE	Type IV pilus assembly PilZ	Sideroxydans lithotrophicus (strain ES-1)	YcgR2-PilZ	311		
I8RFB4_9FIRM	Type IV pilus assembly PilZ	Pelosinus fermentans B4	YcgR2-PilZ	215	79	
Q24T82_DESHY	Putative uncharacterized protein	Desulfitobacterium hafniense (strain Y51)	YcgR2-PilZ	200		
W1SJT3_9BACI	l ype iv pilus assembly pilz	Bacillus vireti LMG 21834	YcgR2-PilZ	207	80	Bv
A3WPA0_9GAMM	Predicted glycosyltransferase	Idiomarina baltica OS145	YcgR2-PilZ	233	81	
K8DYS2_9FIRM	Putative Type IV pilus assembly PilZ	Desulfotomaculum hydrothermale Lam5 = DSM 18033	YcgR2-PilZ	209	82	
W0JLH8_DESAE	Uncharacterized protein	Desulfurella acetivorans A63	YcgR2-PilZ	224	83	
A0A0E4HD84_9BACL	Type IV pilus assembly protein PilZ	Paenibacillus riograndensis SBR5	YcgR2-PilZ	186	84	

Table S3: Amino acid sequences of biosensor plasmids

Notes: His-tag, Venus Δ C10, RLuc8 (4-91), EcYcgR, RLuc8 (92-311), mCherry tag; phylogenetic biosensor variants use the same sequences, except the phylogenetic variant is used in place of EcYcgR.

pRSET-YNL- EcYcgR-91	MRGSHHHHHHGMASMTGGQQMGRDLYDDDDKDPMVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD ATYGKLTLKLICTTGKLPVPWPTLVTTLGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNY KTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGV QLADHYQQNTPIGDGPVLLPDNHYLSYQSKLSKDPNEKRDHMVLLEFVTAAGGTKVYDPEQRKRMITGPQ WWARCKQMNVLDSFINYYDSEKHAENAVIFLHGNATSSYLWRHVVPHIEPVARCIIPDLIGMGKSGKSGN GSPWMSHYHEQFLKQNPLAVLGVLRDLHKAAIPLRLSWNGGQLISKLLAITPDKLVLDFGSQAEDNIAVL KAQHITITAETQGAKVEFTVEQLQQSEYLQLPAFITVPPPTLWFVQRRRYFRISAPLHPPYFCQTKLADN STLRFRLYDLSLGGMGALLETAKPAELQEGMRFAQIEVNMGQWGVFHFDAQLISISERKVIDGKNETITT PRLSFRFLNVSPTVERQLQRIIFSLEREAREKADKVRDELYRLLDHYKYLTAWFELLNLPKKIIFVGHDW GAALAFHYAYEHQDRIKAIVHMESVVDVIESWDEWPDIEEDIALIKSEEGEKMVLENNFFVETVLPSKIM RKLEPEEFAAYLEPFKEKGEVRRPTLSWPREIPLVKGGKPDVVQIVRNYNAYLRASDDLPKLFIEGDPGF FSNAIVEGAKKFPNTEFVKVKGLHFLQEDAPDEMGKYIKSFVERVLKNEQ*stop
ETO 4 /0.4	
pE121/24-	MVSKGEELFTGV/PILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTLGYGLQ
YNL-	CFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGH
EcYcgR-91	KLEYNYNSHNYY I TADROKNGI KANFK I RHNI EDGGVQLADHYQQNTP I GDGPVLLPDNHYLSYQSKLSK
-	DPNEKRDHWVLLEFVTAAGGTKVYDPEQRKRMITGPQWWARCKQMNVLDSFINYYDSEKHAENAVIFLHG
	NATSSYLWRHVVPHIEPVARCIIPDLIGMGKSGKSGNGSPWMSHYHEQFLKQNPLAVLGVLRDLHKAAIP
	LRLSWNGGQLISKLLAITPDKLVLDFGSQAEDNIAVLKAQHITITAETQGAKVEFTVEQLQQSEYLQLPA
	FITVPPPTLWFVQRRRYFRISAPLHPPYFCQTKLADNSTLRFRLYDLSLGGMGALLETAKPAELQEGMRF
	AQIEVNMGQWGVFHFDAQLISISERKVIDGKNETITTPRLSFRFLNVSPTVERQLQRIIFSLEREAREKA
	DKVRDELYRLLDHYKYLTAWFELLNLPKKIIFVGHDWGAALAFHYAYEHQDRIKAIVHMESVVDVIESWD
	EWPDIEEDIALIKSEEGEKMVLENNFFVETVLPSKIMRKLEPEEFAAYLEPFKEKGEVRRPTLSWPREIP
	${\tt LVKGGKPDVVQIVRNYNAYLRASDDLPKLF} {\tt IEGDPGFFSNAIVEGAKKFPNTEFVKVKGLHFLQEDAPDE}$
	MGKYIKSFVERVLKNEQ <mark>KLAAALEHHHHHH</mark> *stop
nET21/24-	MVSKGEELFTGVVDILVELDGDVNGHKESVSGEGEGDATYGKLTLKLTCTTGKLDVDWDTLVTTLGYGLO
	CFARYPDHMKOHDEFK SAMPEGYVOERT I FFKDDGNYKT FAFVK FEDDTLVNR I ELKGI DFK FDGN I LGH
	KI FYNYNSHNYI I TADKOKNGI KANFKI RHNI EDGGVOL ADHYOONT I GDGPULLDDNHYL SYOSKI SK
ECYCGR-91-	DENEKROHMULLEFYTAAGGTKVYDEEORKRMITGEOWARCKOMVLDSFINYYDSEKHAENAVIFLHG
mCherry	NATSSYLWRHVVPHTEDVARCTIPDLIGMGKSGKSGNGSDWMSHYHEOFLKONPLAVLGVLRDIHKAATP
	TPI SWNGGOLTSKI, A TYDRY WI DEGGOAFDNI AVI KAOHTYTYTÄFOGAKVEFYVEOLOOSEVI OLDA
	ETWODENT WEVODENTED CAND UD COVERTADICAVITI TITAL VORCHT TERAVDART OPOMDE
	AVIE UNROUNDED TO DEVENT TAMEET INTO AVIE TO TAKE DAVOE TVERUDATA TAME SVARALEKA
	DRVRDE HIRLIDDIKI HAWF BILINIFKKI IF VGRUMGALDAF ATATENQDRTKATVANGSV UDVIESWED
	T INCOMDUMOTADINA AT DE CODO DATE ELECODORECNY TARCHARDARE ART ART ORDER AND ART ART ORDER AND ART
	EVREGREDVVQIVRNINATERASDDEPREFIEGDPGFFSNAIVEGARREPNIEFVRVKGEHFEQEDAPDE
	AVVEAUNAUNTVEDIISHNEDIIIVEÕIEKVEGKHSIGGMDEFIK <mark>VEVVAUPHHHHHH</mark> *SCOD

Table S4: Nucleotide sequences of biosensor plasmids

Notes: Corresponding nucleotide sequences of amino acid sequences presented in Table S3

pHSE1_HVIL- ECYGR-91 ATGCGAGATGACGTACGAGGAGGACGTAAACGGCCACGAGGAGGAGGAGGAGCACGAGGAGGGGGGCCCCA TCCTGGCGAGCTGACGTGAGGGAGGAGGAGGAAGGAGGAGGAGGAGGAGGAGGAG		
pET21/24- YNL- EcYcgR-91 ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGAGGCGAAGCTGACCCTGAGCCGCAAGCTGACCCCGGCCACGGCGAGGCGAAGCCGCACCCTGGGCAAGCTGACCCCGGCCACGGCGAGGCGACCACCCGGCCACGCCGCGGCG	pRSET-YNL- EcYcgR-91	ATGCGGGGTTTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGA TCGTGACGACGATGACGATAAAGgatccgATGTGAGCAAGGCGAGGGCGAGGCGAGGCCCA TCCTGGTCGACGTGACGCGACGTAAACGGCCACAAGGTCACGCGGCGAGGCGAGGCCAAGCC ACCTACGGCAAGCCTGAACCGTAAACGGCCACAAGTTCACCGGCAAGCCCCTGGTCCACCCTGG ACCTACGGCAAGCCTGACGCCGAGGGCACCCCTGGTCAACGCCCCGGCCACCCCTGGCCCAACCTCAAGGACGACGCCACCATCAAGGACGACGCACCACTACAAGACC AGCCCCCTGGCCCGAAGGCTACGCCCGGCACACCCTGGTGAACCGCCCGACCACCACGACGCCGCACCACCACGCCGACGA
PE121/24- YNL- EcYcgR-91 AndsTedeCAAGGCCGGCGGCGGCGGGGGGGGGGGGGGGCGACCCTACGGCCAAGCTGGACGCCGGACGGCGACGGCCAAGCTGGACGCCTGGGCCAAGCTGGACGCCTGGACGACGCCGGGCGAAGGCGGCAAGCTGCGAGGCGACGACGACGACGACGACGACGACGACGACGAC		
EcYcgR-91 TCGCCCGCCCGCCGGCCGGCGGCGCCCCCCCCCCCCCC	pET21/24- YNL-	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTGA
CCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTGCAGGGGCACGGCGCACATCTGGGGCACAAGCTG GAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGAGAACGGCATCAAGGCAAGCACCCCAAT CAAGATCCGCCACAACATCGAGGACGGCGGCGTGCAGCTCGCCGACCACTACCAGGCAGAACACCCCCAAC GCGACGGCCCCGTGCTGCTGCCGCCGACAACCACTACCTGAGCTAACCAGTCCAAGCTGAGCAAAGACCCCCAAC GAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGCGGGggtaccAAGGTGTACGACCCCGA GCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGACGACGCCGCGA GCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGAGAGCGCGGCACGCC TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGGATCTTCCTGCACGGCAACGCCCCTAGC AGCTACCTGTGGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGGCGGCAACGGCCGAGGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGGCGGCAACGGCCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAACGGCGCAACGGCCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAACGGCGCAACGGCCGCGCGTGGCCAGGTGCATCATCCCCGGATCTGATCGG CATGGGCAAGAGCGGCAACGGCGCAACGGCCGAGCCCatggATGagtcattaccatgagcagttcctgaaac aaaatccgttagccgtcctgggcgtgttacgcgatttgcacaaagccgcaattcctttgcgtctcagttgg aatggcgggcagctgatcagcaaattactggcaataacccggaaactcagggggcgaag tcgagttactgttgaacaactacagcaggagtgaatacttgcagcttccggcaaactcagggggggaagg ccagaccaaactggcggataacagtacgttacgt	EcYcgR-91	
GAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGCAACATCCTGGGGCACAAGCTG GAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGAAAGAA		
CAAGAACTACTACAACGCCACAACGTCTATATCACCGCCGACGACGACGACGACGACGACCACTACGAGGAGACGCCAACCT CAAGATCCGCCCACAACACTCGAGGACGCGGCGGCGGCGCGCGACCACTACCAGGCGAGAACACCCCCAAC GCGACGGCCCCGTGCTGCCGCCGCCGACAACCACTACCAGGCCAAGCTCAAGGTGAACGACCCCCAAC GAGAAGCGCGATCACATGGTCCTGCTGGAGGTCGTGGACCGCCGCGGGggtaccAAGGTGAACGACCCCGA GCAGAGGAAGAGGATGATCACCGGCCCCAGTGGTGGGCCAGGTGCAAGCAGACGTGGACAGCT TCATCAACTACTACGACGGCGAGAAGCACGCCGAGAACGCCGTGGACCAGCTGACCGTCGACCGCCG AGCTACCTGTGGGAGGCACGGCGGCGACGCCGTGGCCAGGTGCATCATCCCCGGACAACGCCaCTAGC AGCTACCTGTGGGAGGCACGGCGGCGACGCCCACGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCCACGGCAGGTGCATCATCCCCGGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCCCatggATGagtcattaccatgagcagttcctgaaca aaatccgttagccgtcctgggcgtgttacggcattgcacaagccgcaattcctttgcgtctcagttgg aatggcgggcagctgatcagcaaattactggcaataccccggataaactggtgctggattcggcagtca agccgaagacaacatcgccgtgctaaaggcacagtaacctgcgcgcaattccttgcgcctatttttg ccagaccaaactggcgggataacagtacgttacggttccggcctcggcattattaccatcggcgcatggcg cattactggaacaagcagcagccgaattaccaggagggatgattcggccgacatgggcg cattactggaaacagcaagccgccgaattaccaggaggggcgcaaagtgatgaggcaggg ggcaatgggggtttttcactttgacgcccagttaatctccatcagcgagcg		UUUIGGIGAAUUGUAIUGAGUIGAAGGGUATUGAUTTUAAGGAGGACGGUAAUATUUTGGGGUAAGATG
GCGACGGCCCGTGCTGCTGCCGACAACCACTACCTGAGCTACCAGCCCAAGCAGAACACCCCCAAC GCGACGGCCCCGTGCTGCTGCCGCCGACAACCACTACCTGACCAGCCCAGGCGAGGCAAGACACCCCCAAC GAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCGGGggtaccAAGGTGTACGACCCCCGA GCAGAGGAAGAGGATGATCACCGGCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTCGGCACGCC TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGGCCAGGTGCATCATCCCCGATCTGGACGCCACGC AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCCGCGGCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCCAGGGCAACGGCGACGGCCAGGTGGCCAGGTGCATCATCCCCGATCTGATCGG aaaatccgttagccgtcctgggcgtgttacgcgattgcacaaagccgcaattcctttgcgtctcagttgg aatgcggagcagctgatcagcaaattactggcaataaccccggataaactggtgctggattccggcag tcgagtttactgttgaacaactacagcagagtgaatacttgcagcttccggcattattaccgtaccgcct cccaccttatggttgtacaacgacgccgatattccgcctgctgagctgcagcggcagcggcagcggcagcggcagcggcagcggcaactggcgcaactggcgcaactggcgcaactgggcg cattactggaaacagcaagccgcgaattaccaggaggcagcgctcgct		
GAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCGCGGGGggtaccAAGGTGTACGACCCCGA GCAGAGAGAGGATGATCACCGGCCCCAGTGGTGGGCCAGGCGAAGCAGATGAACGTGCTGGACAGCT TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGGTCTCCTGCACGGCAAGGCAGCGCCAGGTGACCCTGGACGCCAGCGCAAGGCGCAAGGCGCACGGCCAGGTGCATCATCCCCGATCTGATCGG AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCGACGGCCAGGTGGCCAGGTGCATCATCCCCGATCTGATCGG aaaatccgttagccgtcctgggcgtgttacgcgattgcacaaagccgcaattcctttgcgtcctggaac aaaatccgttagccgtcctgggcgtgttacgcgattgcacaaagccgcaattccttgcgtccagttgg aatgcggagacaacatcgccgtgctaaaggcacagcaca		
GCAGAGGAAGAGGATGATCACCGGCCCCAGTGGTGGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCT TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGGTCTTCCTGCACGGCAACGCCGATCAACGCCACGTGGTGCCCCACATCGAGCCGCGGCAACGCCGAGGCAACGCCGAGATGAACGCCGATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCCACGCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCCACGGCAGGCCAGGTGGATCATCCCCGATCTGATCGG aatgccggacgactgatcagcaaattactggcaataaccccggataaactggtgctggattccggcagt aatgccgaagacaacatcgccgtgctaaaggcacagcacattaccattaccgccgaaactcagggtgcgaag tcgagtttactgttgaacaactacagcagagtgaatacttgcagctccggcattattaccgtaccgcct cccaccttatggttgtacaacgacgccgatattccgcctgtatgattgtcgtagggcatgggcg cattactggaaacagcaagccgcgattaccagaaggcatgcgcttcggtcaaactg gggcaatggggtgttttcactttgacgcccagttaatctccatcagcgagggcaaggtgaatactg gagttaactgcaaactaccgccgactatccagcagagcagcagcaactag gggcaatggggtgtttttcactttgacgcccagttaatctccatcagcgagcg		GAGAAGCCCCGATCACATGGTCCTGCTGCAGTTCGTGACCCCCCCC
TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGGACGGCAACGCCACTAGC AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCCatggATGagtcattaccatgagcagttcctgaac aaaatccgttagccgtcctgggcgtgttacgcgattggcacaagccgcaattcctttgcgtctcagttgg aatggcgggcagctgatcagcaaattactggcaataaccccggataaactggtgctggattccggcaag tcgagttactgttgaacaactacagcagagtgaatacttgcagctccggcattattaccatcagggtgcgacag ccaccttatggttgtacaacgacgcgatattccgcctgtatgattgccatcagcgcgcattctttg ccagaccaaactggcggataacagtacgttacgt		GCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCT
AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCCatggATGagtcattaccatgagcagttcctgaaac aaaatccgttagccgtcctgggcgtgttacggaattggcacaagccgcaattcctttgcgtctcagttgg aatggcgggcagctgatcagcaaattactggcaataaccccggataaactggtgctggattccggcaag tcgagttactgttgaacaactacagcagagtgaatacttgcagctccggcattattaccgtacggcg ccaccttatggttgtacaacgacgtgatacgttccgcctgattgtgcattattaccgtacggcg cagaccaaactggcggataacagtacgttccgcctgtatgatttgtcgtagggcatgggcg cattactggaacagcaagccgacattaccagcagggcgacagggcgacagg gggcaatggggtgttttcacttgacgcccagttaatctccatcagcgagcg		TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCaCTAGC
CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGGCactggATGagtcattaccatgagcagttcctgaac aaaatccgttagccgtcctgggcgtgttacgcgattgcacaaagccgcaattcctttgcgtctcagtgg aatggcggcagctgatcagcaaattactggcaataaccccggataaactggtgctggattccggcaaag tcgagttactgttgaacaactacagcagagtgaatacttgcagctccggcattattaccgtaccgcct cccaccttatggttgtacaacgacgtacattccgcctgattccgcccactccatccgccttatttttg cagaccaaactggcggataacagtacgttacgt		AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCCGATCTGATCGG
aaaatccgttagccgtcctgggcgtgttacgcgatttgcacaaagccgcaattcctttgcgtctcagttgg aatggcggcagctgatcagcaaattactggcaataaccccggataaactggtgctggatttcggcagtca agccgaagacaacatcgccgtgctaaaggcacagcaca		CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCccatgqATGaqtcattaccatqaqcaqttcctqaaac
aatggcgggcagctgatcagcaaattactggcaataaccccggataaactggtgctggatttcggcagtca agccgaagacaacatcgccgtgctaaaggcacagcaca		aaaatccgttagccgtcctgggcgtgttacgcgatttgcacaaagccgcaattcctttgcgtctcagttgg
agccgaagacaacatcgccgtgctaaaggcacagcacattaccattaccgccgaaactcagggtgcgaaag tcgagtttactgttgaacaactacagcagagtgaatacttgcagcttccggcatttattaccgtaccgcct cccaccttatggtttgtacaacgacgccgatatttccgcatctccgcccactccatccgccttattttg ccagaccaaactggcggataacagtacgttacgt		aatggcgggcagctgatcagcaaattactggcaataaccccggataaactggtgctggatttcggcagtca
tcgagtttactgttgaacaactacagcagagtgaatacttgcagcttccggcatttattaccgtaccgcct cccaccttatggtttgtacaacgacgccgatatttccgcatctccgccccactccatccgccttattttg ccagaccaaactggcggataacagtacgttacgt		agccgaagacaacatcgccgtgctaaaggcacagcacattaccattaccgccgaaactcagggtgcgaaag
cccaccttatggtttgtacaacgacgccgatatttccgcatctccgccccactccatccgccttattttg ccagaccaaactggcggataacagtacgttacgt		tcgagtttactgttgaacaactacagcagagtgaatacttgcagcttccggcatttattaccgtaccgcct
ccagaccaaactggcggataacagtacgttacgtttccgcctgtatgatttgtcgttaggcggcatgggcg cattactggaaacagcaaagcctgccgaattacaagaaggcatgcgcttcgctcagattgaagtcaacatg gggcaatggggtgtttttcactttgacgcccagttaatctccatcagcgagcg		cccaccttatggtttgtacaacgacgccgatatttccgcatctccgccccactccatccgccttattttg
gggcaatggggtgtttttcactttgacgcccagttaatctccatcagcgagcg		ccagaccaaactggcggataacagtacgttacgtttccgcctgtatgatttgtcgttaggcggcatgggcg
qaatqaaaccatcaccactccccqtctqaqcttccqttttcttaacqtcaqcccqacqatqaaacqacaat		
		gaatgaaaccatcaccactccccgtctgagcttccgttttcttaacqtcaqcccqacqqtqqaqcqqcaat

	tacagcggattattttctctctcgagcgagaagcccgggaaaaagcggacaaagtgcgcgacgagctcTAC
	AGGCTGCTGGACCACTACAAGTACCTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTT
	CGTGGGCCACGACTGGGGCGCCgcCCTGGCCTTCCACTACgcCTACGAGCACCAGGACAgGATCAAGGCCA
	TCGTGCACatgGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATC
	GCCCTGATCAAGAGCGAGGAGGGGGGGGGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGAACCgTGCTGCC
	CAGCAAGATCATGAGAAAAGCTGGAGCCCGAGGAGTTCGCCGCCTACCTGGAGCCCTTCAAGGAGAAGGGCG
	AGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGAGATCCCCCTGGTGAAGGGCGGCAAGCCCGACGTGGTG
	CAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACCAGCCCAAGcTGTTCATCGAGggcGA
	CCCCGGCTTCTTCAGCAACGCCATCGTGGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGA
	AGGGCCTGCACTTCctCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAGAGCTTCGTGGAGAGA
	GTGCTGAAGAACGAGCAGaagettgeggeegeactegageaceaceaceaceaceatga
pET21/24-	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAA
YNL-	CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGCTGA
EcYcaR-91-	TCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGGGCTACGGCCTGCAGTGC
mChorny	TTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA
moneny	GGAGCGCACCATCTTCTTCAAGGACGACGACGACTACAAGACCCGCGCGCG
	CCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTG
	GAGTACAACTACAACAGCCACAACGTCTATATCACCGCCGACAAGCAGAAGAACGGCATCAAGGCCAACTT
	CAAGATCCGCCACAACATCGAGGACGGCGGCGGCGGCGAGCACCACCACCAGCAGAACACCCCCATCG
	GCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCTACCAGTCCAAGCTGAGCAAAGACCCCAAC
	GAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGggtaccAAGGTGTACGACCCCGA
	GCAGAGGAAGAGGATGATCACCGGCCCCCAGTGGTGGGCCAGGTGCAAGCAGATGAACGTGCTGGACAGCT
	TCATCAACTACTACGACAGCGAGAAGCACGCCGAGAACGCCGTGATCTTCCTGCACGGCAACGCCaCTAGC
	AGCTACCTGTGGAGGCACGTGGTGCCCCACATCGAGCCCGTGGCCAGGTGCATCATCCCCGATCTGATCGG
	${\tt CATGGGCAAGAGCGGCAAGAGCGGCAACGGCAGCccatggATGagtcattaccatgagcagttcctgaaac}$
	aaaatccgttagccgtcctgggcgtgttacgcgatttgcacaaagccgcaattcctttgcgtctcagttgg
	aatggcgggcagctgatcagcaaattactggcaataaccccggataaactggtgctggatttcggcagtca
	agccgaagacaacatcgccgtgctaaaggcacagcacattaccattaccgccgaaactcagggtgcgaaag
	tcgagtttactgttgaacaactacagcagagtgaatacttgcagcttccggcatttattaccgtaccgcct
	cccaccttatggtttgtacaacgacgccgatatttccgcatctccgccccactccatccgccttatttttg
	ccagaccaaactggcggataacagtacgttacgtttccgcctgtatgatttgtcgttaggcggcatgggcg
	cattactggaaacagcaaagcctgccgaattacaagaaggcatgcgcttcgctcagattgaagtcaacatg
	gggcaatggggtgtttttcactttgacgcccagttaatctccatcagcgagcg
	gaatgaaaccatcaccactccccgtctgagcttccgttttcttaacgtcagcccgacggtggagcggcaat
	tacagcggattattttctctctcgagcgagaagcccgggaaaaagcgggacaaagtgcgcgacgagctcTAC
	AGGCTGCTGGACCACTACAAGTACCTGACCGCCTGGTTCGAGCTCCTGAACCTGCCCAAGAAGATCATCTT
	CGTGGGCCACGACTGGGGCGCCgcCCTGGCCTTCCACTACgcCTACGAGCACCAGGACAgGATCAAGGCCA
	TCGTGCACatgGAGAGCGTGGTGGACGTGATCGAGAGCTGGGACGAGTGGCCAGACATCGAGGAGGACATC
	GCCCTGATCAAGAGCGAGGAGGGCGAGAAGATGGTGCTGGAGAACAACTTCTTCGTGGAGACCgTGCTGCC
	CAGCAAGATCATGAGAAAGCTGGAGCCCGAGGAGTTCGCCGCCTACCTGGAGCCCTTCAAGGAGAAGGGCG
	AGGTGAGAAGACCCACCCTGAGCTGGCCCAGAGAGAGACCCCCTGGTGAAGGGCGGCAAGCCCGACGTGGTG
	CAGATCGTGAGAAACTACAACGCCTACCTGAGAGCCAGCGACCAGCCCAAGcTGTTCATCGAGggcGA
	CCCCGGCTTCTTCAGCAACGCCATCGTGGAGGGCGCCAAGAAGTTCCCCAACACCGAGTTCGTGAAGGTGA
	AGGGCCTGCACTTCctCCAGGAGGACGCCCCCGACGAGATGGGCAAGTACATCAAGAGCTTCGTGGAGAGA
	GTGCTGAAGAACGAGCAGggatccggcggcagcggcggcagcATGGTGAGCAAGGGCGAGGAGGATAACAT
	GGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGA
	TCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGGC
	CCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCC
	CGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCG
	AGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAG
	CTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTC
	CGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCG
	GCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAAC
	GTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGCGCCGA
	GGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGaagcttgcggccgcactcgagcaccaccacc
	accaccactga

SUPPLEMENTAL NOTES

*Ec*YcgR mutations. The R113L mutation (M1) in YNL-EcYcgR was predicted to change the c-di-GMP binding stoichiometry from 2:1 to 1:1 as well as reduce affinity for c-di-GMP based on analysis of the corresponding mutant in the YcgR protein PP4397 from *P. putida*.⁵ As expected, M1 showed reduced affinity in the lysate-based assay (Figure S2b). Measurements with purified protein confirmed the reduced affinity and showed that binding stoichiometry was very slightly reduced compared to WT (Figure S2c). The oligomeric states of c-di-GMP are dependent on the ions present, with potassium (present at 100 mM in the binding assay buffer) promoting the formation of higher order oligomeric complexes, which may have complicated measurements of the binding stoichiometry.^{5,6}

The R118D mutation (M2) in YNL-EcYcgR was predicted to knock out binding for c-di-GMP, as this residue should make key interactions with the phosphate linkage of c-di-GMP. This mutation effectively ablated binding to c-di-GMP, as expected.

The S147A mutation (M3) in the YNL-EcYcgR scaffold was predicted to modestly improve affinity for c-di-GMP based on literature measurements (Ryjenkov *et al.* reported a K_D change from 0.84 \pm 0.16 μ M to 0.69 μ M for full-length EcYcgR⁷), but our lysate-based measurements showed slightly reduced affinity instead. This discrepancy may be due to differences in the protein constructs, the assay methods (Ryjenkov *et al.* used equilibrium dialysis with purified protein), and buffer conditions. Interestingly, the corresponding mutant in PP4397 has a 4-fold reduced affinity as measured by ITC, which is in line with our result.⁵

Due to additive effects, the S147A/R113L double mutation (M4) showed poorer affinity than either M1 or M3 mutation alone.

M1, M3, and M4 mutations to YNL-EcYcgR unexpectedly led to decreased signal changes (Figure S2c). These mutations to the c-di-GMP binding pocket may subtly alter the conformation of the bound or unbound state of the sensor domain.

Linker screen. The different linker regions tested in YNL-EcYcgR all showed decreased signal changes compared to the original linker sequence used (Figure S2d). While no crystal structure is available for EcYcgR that would allow for a rational design of the linker regions, crystal structures of the homologous YcgR protein PP4397 from *P. putida* provide some degree of insight into the relative distance and orientation of the N- and C-termini in YcgR proteins. PP4397 was analyzed in the phylogenetic screen (sequence 2 in Figure S4a) and was found to behave very

similarly to EcYcgR, which suggests that their overall structures are likely similar. In the apo x-ray crystal structure of full length PP4397 (PDB ID: 2GJG), the distance between C α atoms of the N- and C-termini is ~25.7 Å. This distance appears to be too long to be bridged by the original linker that gave a functional YNL-EcYcgR biosensor, which was 2 residues. However, we note that the first ~11 N-terminal residues and the last ~3 C-terminal residues are largely unstructured, so may serve as flexible linkers on their own.

Prior to this structural analysis, we had designed new linkers to be either flexible or rigid with varying lengths from 2 to 5 residues. All of the linkers tested showed similarly decreased signal changes compared to the original linker, which suggests that they led to increased interaction of RLuc halves in the unbound state. These results indicate that shortening the linkers or truncating the YcgR protein may lead to improved signal change and/or brightness for YNL-EcYcgR, but these changes are unlikely to be directly translatable to other phylogenetic variants, which are of different lengths. Since the original linkers were applied successfully to YNL-EcYcgR and other Nano-lantern-based biosensors,⁸ they were carried forward to the phylogenetic screen.

Supplemental References

- Gibson, D. G., Young, L., Chuang, R. Y., Venter, J. C., Hutchison, C. A., and Smith, H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* 6, 343–345.
- (2) Oberortner, E., Cheng, J. F., Hillson, N. J., and Deutsch, S. (2017) Streamlining the Design-to-Build Transition with Build-Optimization Software Tools. *ACS Synth. Biol.* 6, 485–496.
- (3) McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010) The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 20, 1297–1303.
- (4) Studier, F. W. (2005) Protein production by auto-induction in high-density shaking cultures. *Protein Expr. Purif.* 41, 207–234.
- (5) Ko, J., Ryu, K. S., Kim, H., Shin, J. S., Lee, J. O., Cheong, C., and Choi, B. S. (2010) Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by pilz domain proteins. J. Mol. Biol. 398, 97–110.
- (6) Zhang, Z., Kim, S., Gaffney, B. L., and Jones, R. A. (2006) Polymorphism of the signaling molecule c-di-GMP. J. Am. Chem. Soc. 128, 7015–7024.
- (7) Ryjenkov, D. A., Simm, R., Römling, U., and Gomelsky, M. (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. *J. Biol. Chem.* 281, 30310–30314.
- (8) Saito, K., Chang, Y.-F., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida, M., Yoshida, Y., Matsuda, T., Arai, Y., and Nagai, T. (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. *Nat. Commun. 3*, 1262.