
1 
 

Supplementary Online Information 

 
 

Concerted pulsatile and graded neural dynamics 
enables efficient chemotaxis in C. elegans 

 

Itskovits et al. 
 

 

 

 

 

Table of contents: 

Supplementary notes 

1. Microfluidic-based system for generating smooth gradients 

a. Modeling system dynamics for generating temporal gradients 

b. Practical constraints of the system 

c. Parameters used for generating the various gradient types 

 

2. Chemotaxis simulations 

 

Supplementary figures 

Supplementary references 

 
  



2 
 

Supplementary notes 
 

1. Microfluidic-based system for generating smooth gradients 

a. Modeling system dynamics for generating temporal gradients 

To generate each of the gradients we modelled the system dynamics, and analytically found the 

right parameters to be used for generating the chemical gradient of interest. The following 

section provides a detailed description of this model. 

 

Let r(t) be the flow rate function of the syringe pump which carries the chemical of interest. We 

use a total constant flow rate R, meaning that the buffer syringe pump flow rate is R-r(t). We 

denote V to be the mixing chamber volume and F(t) to be the volume of odorant solution (in 𝜇𝜇𝜇𝜇) 

inside the mixing chamber. The change of F(t) in time is given by the difference between the 

odorant entering the mixing chamber and the odorant exiting it: 

 

(1)   
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑟𝑟(𝑡𝑡) − 𝑅𝑅 ⋅
𝐹𝐹(𝑡𝑡)
𝑉𝑉

 

 

Here r(t) is the odorant volume entering the mixing chamber every second, and 𝑅𝑅 ⋅ 𝐹𝐹(𝑡𝑡)
𝑉𝑉

 is the 

amount leaving the chamber, as R is the total volume leaving the chamber and 𝐹𝐹(𝑡𝑡)
𝑉𝑉

 is the 

fraction of the volume in the mixing chamber originating from the odorant syringe. 

 

As we are interested to control the concentration of the odorant exiting the mixing chamber 

(which eventually enters the microfluidic device), we need to find the flow rate that will provide 

𝐶𝐶(𝑡𝑡) = 𝐹𝐹(𝑡𝑡)
𝑉𝑉

. Hence, the pump rate should be: 

 

(2)   𝑟𝑟(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑅𝑅 ⋅
𝐹𝐹(𝑡𝑡)
𝑉𝑉

= 𝑉𝑉 ⋅
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑅𝑅 ⋅ 𝐶𝐶(𝑡𝑡) 

 

This provides the flow rates needed for generating the desired function. For example, a linear 

temporal gradient is described by 𝐶𝐶(𝑡𝑡) = 𝑎𝑎 ⋅ 𝑡𝑡 and therefore: 

 

(3)      𝑟𝑟(𝑡𝑡) = 𝑉𝑉 ⋅ 𝑎𝑎 + 𝑅𝑅 ⋅ 𝑎𝑎 ⋅ 𝑡𝑡 
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Our system parameters include 𝑉𝑉 (the chamber size) and 𝑅𝑅, the constant flow rate to the 
chamber. These parameters dictate the maximal instantaneous change in concentration (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
) 

that the system can support. We will derive the relationship between these parameters, and the 
maximal concentration change. The maximal flow 𝑟𝑟(𝑡𝑡) is bounded by R thus, from equation 2 : 
 

(4)   
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

⋅ 𝑉𝑉 + 𝐶𝐶(𝑡𝑡) ⋅ 𝑅𝑅 ≤ 𝑅𝑅 ⇒
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

≤
𝑅𝑅(1 − 𝐶𝐶(𝑡𝑡))

𝑉𝑉
 

 
On the other hand, 𝑟𝑟(𝑡𝑡) cannot be negative: 
 

(5)    
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

⋅ 𝑉𝑉 + 𝐶𝐶(𝑡𝑡) ⋅ 𝑅𝑅 ≥ 0 ⇒
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

≥
−𝑅𝑅 ⋅ 𝐶𝐶(𝑡𝑡)

𝑉𝑉
 

 
Thus, to achieve a larger instantaneous concentration change rate, one can increase the 
constant flow rate or decrease the chamber’s volume. 
 
Moreover, it is clear from the derivation above that the upper and lower bound on 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 are 

concentration dependent. If 𝐶𝐶(𝑡𝑡) ≈ 1(mixing chamber is almost full with odorant) then 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is 

bounded from above to be close to 0. And on the other hand, for 𝐶𝐶(𝑡𝑡) ≈ 0, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is bounded from 

below by −𝑅𝑅⋅𝐶𝐶(𝑡𝑡)
𝑉𝑉

→ 0, which means the slope of the gradient has to become shallower as it 
approaches 0. Thus, as the gradient is approaching its maximal and minimal point, there are 
strict limitations on  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
. Due to these constraints, we avoided generating gradients that rise fast 

near the maximal concentration or drop fast near 0. For example, our sinusoidal gradient only 
reached a maximal point of 80% (𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) = 0.8) from the maximal concentration in the syringe. 
In our experiments (Figs. 1,3,4), we used flow rates ranging between 𝑅𝑅 = 25 𝜇𝜇𝜇𝜇

𝑠𝑠𝑠𝑠𝑠𝑠
 and 𝑅𝑅 = 150 𝜇𝜇𝜇𝜇

𝑠𝑠𝑠𝑠𝑠𝑠
 

and mixing chambers with volumes ranging between 𝑉𝑉 = 50𝜇𝜇𝜇𝜇 and 𝑉𝑉 = 200𝜇𝜇𝜇𝜇. 
 

b.  Practical constraints of the system 

In addition to the theoretical constraints of the model, there are also practical constraints. In 

order for our mathematical description to hold, we assumed that the flow rate, set by the syringe 

pump, is the same flow rate to enter the mixer. For this to hold we had to avoid expansions due 

to flow pressure in the syringes or the tygon tubing that connects the syringes to the mixer. To 

allow this, we used a low resistance microfluidic chip (a wide and short tunnel), which requires 

low pressures to operate, and minimized tubing length from the syringes to the mixing chamber. 

Most importantly, we used glass syringes to reduce possible expansion due to the building 

pressure inside. Another requirement is that the fluid in the mixing chamber will have enough 

time to mix within it before it leaves towards the microfluidic chip. Assuming few turns of the 

magnetic stirring bar are enough to uniformly mix the fluids, this requires stirring at a rate of ~2 
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hz to allow smoothing of our minutes-long gradients. This rate was easily achieved using a 

standard commercial magnetic stirrer. Another point for consideration is the diffusion and 

turbulent processes during and along the flow inside the tube which may cause a small amount 

of the odorant to arrive prior to the expected timing based on calculations. This results in a 

neural response which may be observed ~1 minute ahead of its expected timing. An example of 

such a case is shown in Figure 1d. 

 

c.  Parameters used for generating the various gradient types 

Throughout all experiments, except for the shallower linear gradient, the stimulus syringe 
contained the same diacetyl concentration (volumetric dilution of 10-4 diacetyl/buffer, equivalent 
to 1.15 mM). 
 
Linear gradients. We used two linear gradients: one with a constant increasing slope of 20 𝜇𝜇𝜇𝜇

𝑚𝑚𝑚𝑚𝑚𝑚
 

and a second, ten-times shallower, with a slope of 2 𝜇𝜇𝜇𝜇
𝑚𝑚𝑚𝑚𝑚𝑚

 . For the shallower linear slope, the 
stimulus syringe contained diacetyl in concentration of 0.115 mM. 
 
Exponential gradients. For the exponential gradients, we wished to avoid the abrupt and 

intense activation right at the beginning of the experiment which is associated with s the first 

drops of diacetyl that enter the mixing chamber. Therefore, we deliberately started by first 

generating a 10% step in the concentration followed by five minutes during which the neuron 

adapted to this low concentration. Only then, we started to exponentially increase the 

concentration for 13 minutes (Supplementary movie 4). Correlations based on the neural 

activity from these times are presented in supplementary fig. 7. 

 

Hyperbolic tangent gradients. To generate a symmetric first-derivative sigmoid gradient, we 

used a hyperbolic tangent function. Four different types of gradients were used (Fig. 3b). For 

the longer gradient (Fig. 3 biii), we added a small increase in the concentration prior to the 

sigmoid start point to control for possible jump-start fluctuations in the system (similar to the 

exponential gradients above). 

 

Sinusoidal gradients. Sinusoidal gradients were composed of four cycles, each lasted for five 

minutes. We set the basal concentration of the sine wave to 300 μM (Fig. 4a, top). 
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2. Chemotaxis simulations 

Herein we provide the full description of the simulations, the wide range of parameters used, 

and the analytical solution for the case of linear gradients. 

  

To contrast chemotaxis performance of the two strategies, we simulated animals navigating in 

two arenas: (i) an infinite 2D linear gradient, and (ii) a radial Gaussian gradient formed from a 

point source. 

 

Both strategies rely on sensing the odorant concentration at each visited location and 

calculating the change in its concentration. We define C(t) to be the odorant concentration 

sensed at time t. 

 

According to the classical biased random walk strategy, thought to be implemented by E. coli 

bacteria 1, the action in the next time point,  t=T+1, depends solely on the sign of the first 

derivative currently sensed by the organism:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇). The organism thus follows this 

simple set of rules: 

1. If experienced a decrease in odor concentration in the last step (hence a negative 

derivative, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇) =  −1), then change direction with probability  𝑃𝑃−. 

2. If experienced an increase in odor concentration in the last step, (hence a positive 

derivative, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇) = 1), change direction with probability 𝑃𝑃+. Obviously, an 

advantageous strategy would be to require that   𝑃𝑃− > 𝑃𝑃+ . 

 

 

The decision is made only by  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇, the current sensed derivative. In all cases, when changing 

direction, the new direction was chosen randomly from a uniform distribution in the range of [0, 

2 ]. 

 

To implement the second strategy where animals can also adapt to the first derivative, we 

modified the model to remember a set of previously sensed concentration derivatives 

 [𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇−𝑀𝑀 . . . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇], where M is the memory length. Importantly, this minimal addition to the 

previous model incorporates only a small set of parameters. This strategy follows this set of 

rules: 
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1. If 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇) = −1, change direction with probability 𝑃𝑃−. This is the same rule used in 

the classical biased-random walk strategy. 

 

2. If 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇) = 1, treat 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 as a normal random variable and calculate the right sided Z-

test p value of 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇 compared to the derivative distribution of the last M steps: 

[𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇−𝑀𝑀 . . . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|𝑡𝑡=𝑇𝑇]. The turning probability for this step is 𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣 ⋅ 𝐴𝐴,  where  𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣 is the p-

value we have just calculated, and A is a positive constant (its relevance will become 

apparent below). 

 

Similarly, the new turning direction is chosen randomly and uniformly in the range of [0, 2 ]. 

 

Each of the above strategies can be described by the probability to turn when experiencing a 

positive first derivative (𝑃𝑃+) and by the probability to turn when experiencing a negative first 

derivative (𝑃𝑃−). In the case of classical biased random walk, the description is direct:  we choose 

𝑃𝑃−1 and 𝑃𝑃+1  prior to the simulation. In the case of the second strategy, 𝑃𝑃2+ = 𝑓𝑓(𝐴𝐴) ,  thus we can 

modify the value of parameter A to get any  𝑃𝑃+.  To correctly compare between the two 

strategies we compare them for the same values of 𝑃𝑃+ and  𝑃𝑃−. 

 

In practice, we chose 𝑃𝑃−1 and 𝑃𝑃−2 to be  𝑃𝑃−1 = 𝑃𝑃−2 = 𝑃𝑃−. For each 𝑃𝑃+, we chose 𝑃𝑃+1 = 𝑃𝑃+ and a 

value of A such that 𝑃𝑃+2 = 𝑓𝑓(𝐴𝐴) = 𝑃𝑃+.  To achieve this, following the simulation with a 

predetermined pair (𝑃𝑃−2, A), we measured the number of turns performed while experiencing a 

positive gradient, and from this deduce the empirical 𝑃𝑃+ value. Note that by increasing A, we 

increase the probability to perform a turn. This allows using A values to match the mean 

probability 𝑃𝑃+ for a turn. 

 

To quantify chemotaxis performance we used the widely-used estimate for chemotaxis 

efficiency, namely, the mean projection on the correct analytical maximal gradient direction 2. 

For the classical biased-random walk strategy in a linear gradient, the mean projection is 

analytically solvable: 
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We define a linear gradient in the X direction of the form C(x,y) =Kx. In this case, the mean 

projection along the gradient is simply  𝑋𝑋𝑛𝑛
𝑛𝑛

, where 𝑋𝑋𝑛𝑛 is the X position after n steps. For a 

random choice of a direction with a positive first derivative gradient, expectancy of the mean 

projection per step is therefore: E(+) = 1
𝜋𝜋 ∫ cos(𝜌𝜌)𝑑𝑑𝑑𝑑 = 2

𝜋𝜋
𝜋𝜋 2⁄
−𝜋𝜋 2⁄ . Similarly, when moving down the 

gradient, the expectancy of the mean projection is:  E(-) = 1
𝜋𝜋 ∫ cos(𝜌𝜌)𝑑𝑑𝑑𝑑 = −2

𝜋𝜋
−𝜋𝜋 2⁄
𝜋𝜋 2⁄ . 

 

Thus, we know the expected mean projection when walking either up or down the gradient and 

are left to find the mean time spent in each state. The number of steps before turning in a 

positive gradient is a geometric random variable as each step has the same 𝑃𝑃+ probability for 

performing a turn (𝑁𝑁+ ∼ 𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃+)). Therefore, the expected number of steps when moving up the 

gradient is 𝐸𝐸(𝑁𝑁+) = 1
𝑃𝑃+

. Similarly, when moving down the gradient we find:  𝐸𝐸(𝑁𝑁−) = 1
𝑃𝑃−

. 

So in total we get:  𝐸𝐸(𝑋𝑋𝑛𝑛
𝑛𝑛

) = 2
𝜋𝜋
⋅ 𝐸𝐸(𝑁𝑁+)−𝐸𝐸(𝑁𝑁−)

𝑛𝑛
= 2

𝜋𝜋
⋅

1
𝑃𝑃+
− 1
𝑃𝑃−

1
𝑃𝑃+
+ 1
𝑃𝑃−

= 2
𝜋𝜋
⋅ 𝑃𝑃−−𝑃𝑃+
𝑃𝑃−+𝑃𝑃+

 

This result indeed matches our simulation results (Supplementary fig. 11). 

 

For other gradient conditions, simulations are needed to find the mean projections. 

 

We first simulated the two strategies in an infinite linear gradient (Supplementary fig. 11a-b).  
The classical biased-random walk strategy behaves as intuitively expected and according to the 

analytical results (Supplementary fig. 11c), where maximal scores are obtained for 𝑃𝑃+ = 0 and 

𝑃𝑃− = 1; Namely, never turn when experiencing positive derivatives, and always make a turn 

otherwise. The worst performance is obtained along the 𝑃𝑃+ = 𝑃𝑃− line, and crossing this line 

means that animals can no longer move up the gradient (Supplementary fig. 11b-c). 
 

In contrast, when simulating the second strategy (allowing adaptation to the first derivative, 

using a memory parameter M=30), we find that the maximal mean projection score is when 

𝑃𝑃+ > 0 , meaning that it is beneficial to occasionally reorient even when moving up the gradient 

(Supplementary fig. 11a). This may be surprising since according to our simulations, in each 

turn, the worm’s new direction is chosen randomly from a uniform distribution, meaning that 

most chances are to turn into a less oriented trajectory. However, we find that for high values of 

P-, when the cost associated with a wrong turn is sufficiently small, taking these ‘risks’ may 

actually become beneficial (Supplementary fig. 11a). 
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When comparing the scores of these two strategies, we find that adapting to the first derivative 

is always superior (or at most the same) to the classical biased-random walk strategy 

(Supplementary fig. 11d). Importantly, we find this principle to hold for a wide range of 𝑃𝑃+ and  

𝑃𝑃− values. 

 

Note that the performance of the two strategies is identical only when 𝑃𝑃+ = 0. This is because 

when 𝑃𝑃+ = 0, the two strategies reduce to the same simple strategy: keep turning until 

experiencing a positive gradient and never turn again, yielding a mean projection score of  2
𝜋𝜋
, as 

predicted. The ratio difference between the two strategies becomes larger around the 𝑃𝑃+ = 𝑃𝑃− 

line. The reason is that around this line the classical biased random walk strategy fails to move 

the animal in the correct positive direction, whereas the first derivative adaptation strategy does 

(Supplementary fig. 11a, 11b, black line). To estimate the difference in the performance of 

these strategies, we used the median of the fold improvement over all values of 𝑃𝑃+ and 𝑃𝑃−, as 

average fold improvement is infinite. Median fold improvement was found to be 30% (fold 

improvement is shown in Fig. 5c and Supplementary fig. 11d). 

 

We next compared the two strategies in a 2D Gaussian gradient that may better resemble 

genuine ecologically relevant point-source gradients that animals encounter in nature. For 

simplicity, the gradient was kept constant during the entire simulation and did not evolve in time 

according to the diffusion equation. In this case, additional parameters need to be considered. 

We used the following parameters: 

The gradient function was: 𝐶𝐶(𝑟𝑟) = 𝑒𝑒
−𝑟𝑟2

2𝜎𝜎 , with 𝜎𝜎= 100 [au^2] 

Speed: 1/simulation step [au] 

Starting distance from source: 300 [au] 

Stop distance: this parameter determines at what distance from the point source the 

simulation will stop: 30 [au]. 

Stop time: this parameter determines after how many time steps the simulation will stop 

if the stop distance was not yet reached: 3000 steps. 

Memory length (M): 30 steps 

 

Of note, the simulation results obtained in the Gaussian gradient are similar to those found in 

the linear gradient: the strategy to adapt to the first derivative outperforms classical biased 
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random walk strategy, and similarly, we find that the maximal mean projection score is when 

𝑃𝑃+ > 0 (Fig. 5). 

 

We next repeated these simulations in the same Gaussian gradient while varying memory 

length (M). We found that increasing M improves chemotaxis directionality and this becomes 

particularly beneficial in regimes where P+ is close to P- . We also found that even a short 

memory length of M=2 steps is sufficient to greatly improve directionality compared to the 

classical biased random walk (Supplementary Fig. 12). 

 

In order to check the robustness of the first adaptation strategy, we added noise to our 

simulations by adding a random noise perturbation at each simulation step. This perturbation 

was drawn from a Gaussian distribution with mean 0 and a constant standard deviation. We 

then repeated our simulations for increasing values of the standard deviation (Supplementary 
Fig. 13). We found that adding low levels of noise (which is small relative to the values of the 

mathematical gradient of the Gaussian at the starting point), has little effects on chemotaxis 

performance, while high noise levels greatly impair performance of both chemotaxis strategies. 

In all cases tested, adding noise does not change the fact that navigating with the ability to 

adapt to the first derivative is superior to the classical biased random walk strategy 

(Supplementary fig. 13). 

 

Importantly, these simulations were not intended to fit C. elegans-specific chemotaxis 

parameters. Instead, we kept the simulations as general as possible with the sole purpose to 

contrast the two chemotaxis strategies, and by this, to extract the understanding for the superior 

performance of one strategy over the other. To provide a reliable comparison, we have 

systematically scanned a wide range of different values for the general motility parameters, 

such as turning probabilities (given a positive or negative gradient), memory times, and noise. 

Our results show that the adaptation to the first derivative strategy is superior to the classical 

biased random walk strategy across all aforementioned parameters. In addition, we simulated 

chemotaxis in a scale-free linear gradient, which allowed us to disregard specific diffusion 

parameters and to analytically solve chemotaxis performance. 

 

In an effort to provide an intuitive understanding of the simulation parameters and their 

relatedness to the typical scales of C. elegans, one may consider the following: A typical 

chemotaxis assay places the worm ~ 5 cm away from the source3. In our simulations we used 
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300 steps as the distance of the virtual animal from the source, implying that each step is ⅙ mm 

~ 200 um. Average worm speed is 0.2 mm/sec4, thus each time step (dt) corresponds to ~1 

second. 
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Supplementary figure 1 

 
Supplementary figure 1| Worms exhibit individuality as each animal has its own pulsatile 
characteristics. Pulses are characterized by amplitude, decay time, and time interval between 

consecutive peaks. All pulses of the same six worms shown in Figure 1g are plotted in the 

amplitude and peak to peak time space. Pulses are color coded by the individual animal they 

were measured from. Pulses from the same worm are significantly more similar than pulses 

from different worms (p≤10-6). 
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Supplementary figure 2 

 
Supplementary figure 2 | Pulsatile activity is cell autonomous. Neural activity measured in 

animals defective in (a) neurotransmitter release (unc-13(S69)), and (b) neuropeptide secretion 

(unc-31(e928)). Pulsatile activity in response to increasing linear gradients is evident in animals 

defective in inter-neural communication suggesting that pulsatile activity is a cell autonomous 

process. 
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Supplementary figure 3 
 

 
 
Supplementary figure 3 | Comparison of pulse characteristics between WT and 
transmission defective mutants. Comparison of amplitude (a), peak-to-peak time (b) and 

decay time (c), between animals defective in neurotransmitter release (unc-13(S69), n=13 

worms), neuropeptide secretion (unc-31(e928), n= 13 worms) and wild type animals (n=7 

worms). Pulse amplitudes of unc-13 mutant animals were significantly lower than those of the 

WT animals (p<0.001, Wilcoxon Rank Sum Test; number of pulses analyzed: nwt=123, nunc-

13=199, nunc-31=279). Compared to WT animals, unc-31 mutants had a significantly lower peak-

to-peak time (p<0.03, Wilcoxon Rank Sum Test; number of pulses analyzed: nwt=123, nunc-

13=199, nunc-31=279), and a significantly higher decay time (p< 0.008, Wilcoxon Rank Sum Test; 

number of pulses analyzed: nwt=63, nunc-13=68, nunc-31=104). Blue box marks the 0.25 to 0.75 

quantiles, and whiskers mark values between the 0.1 and 0.9 quantiles. 
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Supplementary figure 4 
 
 
 

 
 
Supplementary figure 4| Worms maintain a run when AWA neurons are optogenetically 
activated. We used optogenetics to study the relationship between AWA activity and behavior. 

For this, we used worms expressing the light-activated channel, Chrimson, exclusively in AWA 

(CX16573, 5). We placed a worm on an agar plate, when we visually inspected that it initiated a 

forward run, we turned on red light (545 nm) for 10 seconds. We then assayed whether it 

stopped the run during the 10 seconds that the light was on. Worms grown on ATR (a cofactor 

necessary for the optogenetic channel) were significantly more likely to maintain a run, 

indicating that AWA activity promotes forward movement (83% ATR+ as opposed to 32% ATR-, 

nATR+=96 trials on 32 animals; nATR- = 81 trials on 27 animals; p < 10-10, Χ2 test). 
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Supplementary figure 5 

 
Supplementary figure 5| Worms perform turns even when sensing increasing chemical 
gradients (a) High-throughput chemotaxis assays demonstrate that animals will make turns 

even if initially directed towards the target. The angular statistics quantifies the probability of an 

animal to make a turn depending on its directionality before the turn. For example, worms 

crawling in a direction 60 degrees to the target have a probability of 0.1/sec to make a turn. (b) 
An exemplary worm trajectory during chemotaxis. The worm performs bouts of turning events 

(pirouettes) even when it moves directly towards the target, and hence sensing only increasing 

concentrations of the attractant. These results are compiled and calculated based on our 

previously reported large-scale chemotaxis assays3. Scale bar = 1 cm. 

  



16 
 

Supplementary figure 6 
 

 
Supplementary figure 6 | Worms sense smooth Gaussian-shaped gradients when 
navigating towards a chemoattractant. Naturally-formed point source gradients are typically 

Gaussian (dictated by diffusion processes), and animals therefore face varying first derivatives 

of the chemical cue when navigating towards them. (a) A typical trajectory (cyan) of a worm 

navigating towards the chemical source. (b) A chemical source forms a Gaussian distribution 

(on a 2D plane) as governed by diffusion processes. (c) During chemotactic navigation in a 

Gaussian-type gradient, worms sense over time a stimulus that resembles a sigmoid function. 

This blue curve shows the concentration sensed by the cyan trajectory in (a) over time, given 

the concentration distribution in (b). 
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Supplementary figure 7 

 
 
Supplementary figure 7 | The higher the magnitude of the first derivative, the higher is 
the amplitude and the frequency of the pulses. Peak-to-peak (P2P) times (a), and 

amplitudes (b) correlate with the magnitude of the first derivative of the gradient. Data extracted 

from nine worms during an exponential gradient with temporally increasing first derivatives. 

Each blue dot marks a single pulse. Red line is the linear regression fit. Correlations are: (a) ρ= 

-0.3, (p=0.01, N = 75 pulses); (b) ρ= 0.43 (p<10-4, N=75 pulses). 

 



18 
 

Supplementary figure 8 
 

 
 
Supplementary figure 8 | Pulsatile activity better correlates with adaptation to the first 
derivative (and possibly with the 2nd derivative), rather than with the fold-change of the 
concentration. When presenting the worm with a sigmoidal chemical gradient, AWA pulsatile 
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activity (a-c) is high as long as the first derivative is increasing (positive second derivative, d and 

e). As the first derivative starts to flatten (although still positive), and the second derivative 

reaches zero, neural activity starts to decrease. Note, that the first derivative is symmetric 

around the dashed black vertical line. The fold-change of the concentration (
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

𝐶𝐶
 , red dashed 

curve in (d)) is constantly decreasing throughout the experiment. Thus, while fold-change 

responses may explain step-like functions 5, they are not likely to explain the pulsatile activity 

observed in response to smooth increasing gradients. Adaptation to the magnitude of the first 

derivative of the gradient better explains the observed activity (d,e blue curve). 
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Supplementary figure 9 
 

 
 
Supplementary figure 9 | AWA and AWC sensory neurons differ in their dynamics in 
response to smooth sinusoidal gradients. (a) Shown are the mean activities of AWA neurons 

for the second and third periods of the sinusoidal gradient (of the same neurons shown in Fig. 

4c). Adaptation to the first derivative predicts that AWA activity will be lower during the third 

period when compared to the activity during the second period. However, we found that this 

activity is comparable and not lower, (p > 0.05). This raises the intriguing possibility that AWA 

neurons are actually sensitive to the second derivative of the gradient, as the activity decreased 

with the second derivative (Fig. 3) (b) Mean AWC activity (blue curve; shaded blue is activity 

standard deviation) and the first derivative of the gradient (multiplied by -1, red). It is evident that 

AWC activity follows the first derivative of the gradient with a lag time of 30 seconds. (c) 
Correlations in the neural activity among the different AWC (left panel), or AWA (right panel) 
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neurons, as observed in seven different worms in response to a sinusoidal gradient. 

Correlations were calculated based on neural activity during the 2nd, 3rd, and 4th periods of the 

sinusoidal gradient. In cases where two AWA neurons were recorded in the same worm, the 

neuron that showed a stronger mean activity was chosen for the analysis. While AWC activity is 

well correlated and therefore consistent between worms, AWA activity is poorly correlated. This, 

again, demonstrates the large variability in neural responses between worms (AWA 

correlation=0.11+/- 0.1, AWC correlation=0.83 +/- 0.1, p<10-20, Wilcoxon ranked sum test was 

used to find that AWC paired correlations are significantly higher than those of AWAs, p<10-7).  

Data shown in this figure is taken from the activity plots in figure 4a-c. 
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Supplementary figure 10 
 

 
 
Supplementary figure 10 | Activity of the two bilateral electrically-coupled AWA neurons 
is not correlated, but their joint activity correlates with the activity of the downstream AIY 
interneurons. Shown are traces from all 12 animals assayed.  AIY (black), AWAR (blue) and 

AWAL (red). These neural activities are measured in response to a sigmoidal gradient. Notice 

that the two AWA neurons do not always pulse simultaneously. AIY pulses are shorter compared 

to AWA pulses (p<10e-3), and are positively correlated with the combined activity of AWA 

neurons (<ρ>=0.64, p<10e-20). 
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Supplementary figure 11 
 

 
 

Supplementary figure 11 | The navigation strategy where animals adapt to the first 
derivative of the gradient is more efficient than the classical biased-random walk 
strategy. Chemotaxis performance based on simulations in a linear gradient in two strategies: 

(a) with adaptation to the magnitude of the first derivative. (b) the classical biased-random walk 

strategy. Axes denote turning probabilities when experiencing a positive gradient (x-axis, P+) or 

a negative gradient (y-axis, P-). Color marks chemotaxis score as measured by calculating the 

mean projection of the velocity vector on the optimal trajectory line. Black diagonal line marks 

the P+ = P- line. Black dot in (a) marks the maximal chemotaxis score that can be achieved. 

Notably, the maximal score is obtained when P+ > 0; this means that when incorporating the 

first-derivative adaptation strategy, performance is enhanced when animals occasionally 

reorient (in search of higher slopes) even if continuously sensing an increasing gradient only. (c) 
Results of the analytic solution when obeying the classical biased-random walk strategy in linear 

gradients. Indeed, (c) and (b) provide identical results. (d) The ratio between the two strategies 

defined as 100 ⋅ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑.  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. Note that for the entire 

space where P+ > 0, the strategy of adapting to the first derivative outperforms the classical 
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biased-random walk strategy. When approaching the P+ = P- line (black), this ratio goes to 

infinity as animals obeying the classical strategy never reach the target. 
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Supplementary figure 12 

 
 
Supplementary figure 12 | Increasing memory length slightly improves chemotaxis 
performance. We repeated the described simulations in figure 5 for several values of the 

memory length M. (a) The mean projection for increasing lengths of memory as calculated over 

all values of P+ and P- for which at least a single animal was able to reach the target using the 

classical biased random walk strategy. Red line marks the mean projection calculated for the 

classical biased random walk strategy. It is evident that increasing the memory length somewhat 

improves directionality, but even for M=2, a substantial increase over the classical biased 

random walk strategy is observed. (b) Fold-improvement in the performance between M=32 and 

M=64. Black line marks the P+ = P- line. The fold-improvement is defined as 100⋅( M=64 mean 

projection- M=32 mean projection)/(M=32 mean projection) For most values of P+ and P- fold-

improvement is very small, but at the chemotaxis limit, around the black line, fold improvement 

increases as worms with a shorter memory length can no longer reach the target. 
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Supplementary figure 13 
 

 
 
Supplementary figure 13 | In noisy environments, the strategy of adapting to the first 
derivative outperforms the classical biased random walk strategy. We repeated the 

simulations (as described for figure 5) for various levels of noise. In each simulation step, noise 

was drawn from a Gaussian distribution with mean 0 and standard deviation σ. X axis shows the 

ratio between noise standard deviation and the size of the mathematical gradient at the 

simulation starting point. (a) For each noise level we calculated the success score (SC) for both 

strategies as the fraction of (P+,P-) values for which at least a single simulated animal was able 

to reach the target. The success ratio is defined as: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑆𝑆(𝜎𝜎)
𝑆𝑆𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝜎𝜎=0)

. 

(b) Mean projection was calculated for each strategy and each noise level over all (P+,P-) values 

in which even at the highest noise level simulated at least a single classical biased random walk 

animal was able to reach the target. For both scores and in all noise levels, the 1st derivative 

adaptation strategy is superior to the classical biased random walk. 
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Supplementary figure 14 
 

 
Supplementary figure 14 | Rhodamine, or possible changes in the pressure, do not elicit 
neural responses, and the observed dynamics are solely in response to diacetyl 
gradients.   We measured neural activity in response to a sinusoidal gradient of rhodamine with 

and without diacetyl. (a) The measured shape of the gradient. Diacetyl concentrations varied 

between 0.15 µM and 0.8 mM. Rhodamine concentrations varied between 0 and 1 µM. (b) 
Response of AWA neurons to the gradient in (a) with diacetyl (blue). Shown are 12 neural traces 
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measured from 7 different worms (same experiments as in Fig. 4 a-c). Red, traces to same 

experimental conditions where the stimulus syringe contained rhodamine only (no diacetyl). 

Shown are traces for 11 neurons from 7 different worms. (c) Response of the AWCON neuron to 

the gradient shown in (a) with diacetyl (blue, 7 worms, same experiments as in Fig. 4a-c) and 

with Rhodamin only (red, 9 worms in total). Bold lines marks the mean fold change activity of 

these responses. (d)  Response of AIY neurons to the Rhodamin only gradient (red, 11 worms). 

Bold red curve is the mean fold change activity. The two small peaks in minutes 2.2 and 2.5 

correspond to the two red peaks of AWA shown in (b) as they were recorded from the same 

animal. Note that when AIY genuinely responds to changes in diacetyl concentrations, it 

correlates the activity of AWA neurons (Fig. 4f), and typically reaches 100% increase in neural 

activity (Fig. 4e). Due to the relatively weak neural activity signal in the absence of diacetyl, we 

subtracted from each of the curves in c and d their linear fit to account for bleaching. 
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Supplementary figure 15 
 
 

 
 
Supplementary figure 15 | Neural activity is not affected by possible movement of the 
worm within the microfluidic device. (a-d) Plots corresponding to supplementary movies 1 

(a), 4(b), 5(c), and 7(d) showing neural activity (top panels, blue), and the corresponding 

distance of the neuron compared to the beginning of the movie at t=0 (bottom panels, orange). 

The distance is calculated by the projection of the neuron location on the worm anterior-

posterior axis. The mean correlation between the location of the neuron and its activation across 

n=17 analyzed experiments was not significantly different from 0 (𝜌̅𝜌 = 0.05, Wilkoxon Signed 

Ranksum test, 𝑝𝑝 = 0.17). Thus, minute displacements of the worms throughout the experiment 

do not affect the observed pulsatile responses. 
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Supplementary figure 16 

 
Supplementary figure 16 | Un-anesthetized (awake) worms show similar pulsatile 
responses as anesthetized worms. (a) A raster plot showing neural activity of un-anesthetized 

worms presented with a linear gradient (slope = 2 𝜇𝜇𝜇𝜇
𝑚𝑚𝑚𝑚𝑚𝑚

). This is the same gradient used in figure 

1e bottom, for anesthetized worms. A comparison of amplitude (b) and peak to peak times (c) 
between anesthetized (levamisole+) and un-anesthetized (levamisole-) worms. There are no 

significant differences in the amplitude, nor in the P2P times, between the two populations 

(p=0.37 and p=0.23, respectively, Wilcoxon Rank Sum Test). nlevamisole(+)=123, nlevamisole(-)=66 

pulses, compiled from 7 worms for each condition. The decay time was not compared between 

the two groups as there were not enough pulses in the group of un-anesthetized worms to 

which we could fit exponentials. Blue box marks the 0.25 to 0.75 quantiles, and whiskers mark 

values between the 0.1 and 0.9 quantiles. 
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Supplementary figure 17 
 

 
 
Supplementary figure 17 | Imaging at 1.4 Hz is sufficient to reliably capture the pulsatile 
activity. AWA neural activity was recorded in response to a diacetyl gradient at a frame rate of 

4Hz (blue). The same data was then down-sampled to a frame rate of 1.4 Hz (red). The activity 

captured with the lower under-sampled frame rate is in high agreement with the one captured 

with the higher frame rate including all the fine minute peaks. Since the pulses are on 

timescales of many seconds, measuring at 1.4 Hz faithfully depicts the intricate dynamics so 

that no activity data is lost, overlooked, or under-sampled due to this lower frame rate. 
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Supplementary figure 18 
 

 
 
 
Supplementary figure 18 | The 2D smoothing algorithm smoothens the undulatory tracks 
but faithfully preserves the navigation trajectories. To accurately analyze deviation of worm 

trajectory from the target, we applied a 2D smoothing algorithm6,7. Shown is the same track as 

in figure 2b before (left) and after (right) 2D smoothing. The 2D smoothing eliminated the high 

frequency undulations of the worm movement, but accurately preserved the trajectory. Color 

indicates AWA fluorescence as measured during chemotaxis. Black scale bar = 5 mm. 
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