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Supplementary Note 1

In this supplementary material, we provide a mean-field description of the µSR depolarisation
signal for the antiferromagnetic stripe-ordered state of artificial dXY spin systems.

The applicability of a mean-field approach is discussed and the mean-field order parameter
determined. Finally, the muon-spin precession and depolarisation is computed for a muon ensem-
ble (distributed in a gold stopping layer as in the experiment) that probes the mean field of the
emergent long-range-ordered stripe phase.

In the following, each macrospin is assumed to generate stray fields equivalent to those
from a point dipole placed at the centre of the nanomagnet, with the magnetic moment given by
M = |M| = VMS , where V is the volume of the nanoscale discs andMS is the bulk magnetisation
of thin-film permalloy.

Applicability of the Mean-Field Approach. The approximation of a static mean-field order pa-
rameter as a source of the muon-spin depolarisation disregards superparamagnetic and correlated
fluctuations. Calculating the muon-spin depolarisation in an averaged mean field is justified only
if the fluctuation rates of the macrospins ωdot are much faster than the muon-spin precession fre-
quency ωµ. In this case, the muon spin does not follow the fast-fluctuating field, and therefore the
magnetic field at the muon site can be approximated by its time-averaged value.

To determine the applicability of the mean-field approach, we establish when ωµ is much
smaller than ωdot for the dXY spin systems: The precession frequency ωµ of a muon at a height
z above the macrospins is determined by the magnetic stray field at position x = (x, y, z) and,
in the point-dipole approximation1, this can be estimated using ωµ = γµBµ ∝ γµ|M|/z3, with
γµ being the gyromagnetic ratio of the muon γµ/(2π) = 135.54MHz T−1. With the assumption
that the macrospins are superparamagnetic, i.e. the interactions are strong enough to ensure TC >
TB, the fluctuation frequency of the macrospins is proportional to the dipolar interaction, ωdot ∝
γPy|M|/a3, where a is the lattice parameter and γPy/(2π) = 29.5GHz T−1 is the gyromagnetic
ratio of permalloy2. Considering

ωµ � ωdot ⇒ γµ
|M|
z3
� γPy

|M|
a3

⇒
(a
z

)3
�

γPy

γµ
≈ 200 . (1)

In our experiment, the lattice parameter a is given by the design of the artificial spin system and z
denotes the height of the muons above the nanomagnets in the 80 nm-thick gold stopping layer. The
muon stopping distribution pµ(z) in the gold layer can be calculated using the program TRIM.SP
(Ref. 3) .

Considering (a/z)3 < 40 = 1
5
· γPy

γµ
as the criterion for the fast-fluctuation limit, and integrat-

ing the stopping probabilities pµ(z) over z values between 0 nm and 80 nm that fulfil this criterion,
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we obtain 60% for a = 70 nm (Sample Set 2). The same criterion yields 71% for a = 55 nm (Sam-
ple Set 3) and 40% for a = 100 nm (Sample Set 1). For muons that fulfil this criterion, the effective
muon-spin depolarisation can be described by a time-averaged mean magnetic field caused by the
antiferromagnetic correlations.

To quantitatively model the muon depolarisation in the time-averaged field caused by the
emerging stripe order, we first establish the thermal average of the order parameter, and then track
the time-dependent precession of the muon spin in this mean field.

Determination of the Effective Mean Field. We assume that each permalloy nanomagnet is de-
scribed by a macrospin (point dipole) Si confined to the xy plane. The Hamiltonian describing a
dipolar-coupled spin system is:

H = D
∑
i 6=j

1

r3ij
[Si · Sj − 3(Si · r̂ij)(Sj · r̂ij)] , (2)

with rij = ri − rj and r̂ij = (ri − rj)/rij . In the mean-field approximation, the single moments
are rewritten as S = 〈Sj〉 + δSj , where 〈Sj〉 denotes the thermal spin average and δSj represents
the thermal fluctuations. Neglecting quadratic terms in δSj , the resulting mean-field Hamiltonian
for the dXY spin system in terms of the spin Si and the thermal average 〈Sj〉 is:

HMF = 2D
∑
i 6=j

1

r3ij
[Si · 〈Sj〉 − 3(Si · r̂ij)(〈Sj〉 · r̂ij)] . (3)

The magnetic unit cell of the dXY model on a square lattice is given by a two-by-two spin
plaquette4 containing four spins. Therefore 〈Sj〉 has four components, and the Hamiltonian can be
rewritten as

HMF =
∑

Plaquettes

∑
ml

∑
µ,ν

SµmM
ml
µν 〈Sνl 〉 , (4)

where µ, ν = x, y and l,m ∈ {1, 2, 3, 4} denote local indices enumerating the spins of a pla-
quette. In the mean-field approach the plaquettes do not interact, and thus the summation over the
plaquettes in Eq. (4) is trivial. Using the Hamiltonian in Eq. (4), the partition function of a single
plaquette can be derived which contains the inverse temperature β = (kBT )

−1 and modified Bessel
functions of the first kind I0(x):

Kν
i =

∑
νj

Mµν
ij 〈Sνj 〉

Z(β) =
4∏
i=1

2πI0

(
β
√

(Kx
i )

2 + (Ky
i )

2

)
(5)
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This leads to the following self-consistent equation Eq. (6) for the temperature-dependent spin
components of the four-component mean-field order parameter 〈Sµp 〉, which was solved numeri-
cally:

〈Sµp 〉 = −
∑

lνM
µν
pl 〈Sνl 〉√

(
∑

lνM
xν
pl 〈Sνl 〉)2 + (

∑
lνM

yν
pl 〈Sνl 〉)2

I1

(
β
√

(
∑

lνM
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pl 〈Sνl 〉)2 + (

∑
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)
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∑
lνM

yν
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)
(6)

Here, the mean-field order parameter 〈Sµp 〉 of the dXY model on the square lattice exhibits an
approximate square-root temperature dependence.

Muon-Spin Depolarization at a Fixed Point. A muon at position x with initial moment along x
will precess in a static mean field according to

P (t,x, T ) = cos2 (θ(x)) + sin2 (θ(x)) · cos (γµ |B(x, T )| t) , (7)

where θ(x) denotes the angle between the magnetic field B(x, T ) and the initial direction x of
the muon spin5, i.e. θ(x) = arccos(B(x)x

B(x)
). The stray field B(x, T ) can be factorised into different

contributions B(x, T ) = µ0M ·f(T )·g(x), separating the magnetic pre-factor µ0M (using SQUID
magnetometry a value of 0.44 T was determined for discs with 40 nm diameter, i.e. Sample Set 2)
and spatial dependence g(x) of the dipolar stray field, as well as the temperature dependence
f(T ) ≡ 〈Sµp 〉 of the mean-field order parameter from Eq. (6). With this factorisation, the relative
angle θ(x) in Eq. (7) is a function of g(x) only. Therefore, the time-dependent depolarisation
P (t,x) needs to be calculated for one temperature T < TC only. Results for any other temperature
or magnetisation can be obtained by re-scaling with the pre-factor f(T ) or µ0M , respectively. For
Sample Sets 1 and 3 the value µ0M was estimated from the experimentally-determined values of
TC measured by muon-spin relaxation, using the relationship in Eq. (1) of the main text and the
values of M and TC of Sample Set 2.

Spatial Averaging of Muon-Spin Depolarisation. To estimate the muon-spin depolarization P (t)
measured in the experiment, P (t,x) is averaged over all possible muon locations x. Both the lat-
eral spread in x and y, as well as the implantation profile along z need to be considered. Regarding
the lateral spread in the xy plane, the muon-beam diameter (about 1.7 cm) is orders of magnitude
larger than the lattice parameter (55 nm to 100 nm) of the experimentally investigated artificial
dXY systems. Therefore, we can safely approximate the randomly-distributed lateral stopping po-
sitions of the muons by a uniform distribution of positions in the two-by-two spin magnetic unit
cell. For the vertical averaging over possible stopping positions of the muons, i.e. z, we used the
implantation distribution simulated with TRIM.SP as the weight.

Results and Discussion. Due to the spatial averaging of muons stopping at random positions x,
y, z, the depolarisation function P (t, T ) for a mean-field stripe order does not show oscillatory
behaviour but only decays with time, as the broad field distribution leads to a dephasing of the
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signal. The damping contains (at least) two time scales, and can be fitted with a two-exponential
decay function, i.e.

P (t) = g0 + g1e
−λ1t + g2e

−λ2t , (8)

with fractions gi (with i = 0, 1, 2) and depolarisation rates λi (with i = 1, 2). The fit is performed
leaving all parameters free.

From the fit, a slow dominant contribution g1eλ1t to the depolarisation function is obtained,
and the fraction and relaxation rate for the second contribution are g2 ≈ 0.5g1 and λ2 ≈ 6λ1,
respectively. The temperature dependence of both contributions is the same, following the square-
root increase of the mean-field stripe-order parameter below TC, and the depolarisation rates are
zero above TC [Eq. (6)]. As shown in Figs. 3b,d,f in the main text, the determined magnitude of
λ1(T ) (blue solid line) compares well with the experimentally measured value of λslow(T ) (blue
dots), which, at low temperatures, is of the order of 0.1 µs−1 for the smaller nanodiscs (d ≈ 40 nm)
and onnly deviates by a factor of two for the larger nanodiscs (d = 70 nm). The calculated square-
root-like temperature dependence of λ1(T ), however, matches the experimental temperature de-
pendence of λslow(T ) only roughly.

With the qualitative agreement between the experimental data and the muon-spin depolar-
isation described by a mean-field order parameter of dipolar-coupled XY moments on a square
lattice, we therefore can relate λslow(T ) to the emergence of a static order parameter in a thermally-
active artificial dXY spin system. In contrast, our mean-field model does not explain the contribu-
tion resulting in the λfast(T )-peak around TC seen in the experiments, and therefore λfast(T ) must
originate from fluctuation correlations or other effects that go beyond the mean-field description.
Nevertheless, the mean-field description provides a connection between the slow contribution to
the muon-spin relaxation and the emergent long-range order in our artificial dXY spin systems.
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