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Supporting Information Text

A conceptual model of multisynaptic learning

The learning rule for multisynaptic connections. In the model, CS (eg. tone stimulus) and US (eg. electric

shock) were represented by binary variables xn ∈ {0, 1} and yn ∈ {0, 1}. At each trial n, CS was delivered with

Pr[xn = 1] = πx, and US was given only when xn = 1, with probability Pr[yn = 1|xn = 1] = vc. For this task, the

update rule for the spine size factor gn+1
k = 1

Kqv(vk)p(vc = vk|x1:n+1, y1:n+1) is given as,

gn+1
k = 1

Kqv(vk)p(vc = vk|x1:n+1, y1:n+1)

∝ 1
Kqv(vk)p(xn+1, yn+1|vc = vk)p(vc = vk|x1:n, y1:n)

∝ p(yn+1|xn+1, vc = vk)
(

1
Kqv(vk)p(vc = vk|x1:n, y1:n)

)
= p(yn+1|xn+1, vc = vk)gnk .

In particular, in our problem setting, vc does not provide any information about yn when xn = 0, thus assuming

Pr[yn = 1|xn = 0] = 1/2 (see the proof of convergence below),

p(yn+1|xn+1, vc = vk) ≈ xn+1 [vkyn+1 + (1− vk)(1− yn+1)] + 1
2(1− xn+1)

∝ 1 + (2vk − 1)xn+1(2yn+1 − 1). [3]

Note that due to normalization, the choice of Pr[yn = 1|xn = 0] does not essentially affect the update rule. Because

the normalization factor is determined by

1 =
∫
p(v′c|x1:n, y1:n)dv′c ≈

1
K

∑
k

p(v′c = vk|x1:n, y1:n)
qv(vk) =

∑
k

gnk ,

the sum of {gn+1
k } should also be normalized to 1. Thus the update rule is given as

gn+1
k = [1 + f(xn+1, yn+1; vk)]gnk∑

k′ [1 + f(xn+1, yn+1; vk′)]gnk′
= 1 + f(xn+1, yn+1; vk)

1 + f(xn+1, yn+1;wn)g
n
k , [4]

where f(x, y; v) ≡ (2v − 1)x(2y − 1) and wn ≡
∑
k w

n
k =

∑
k g

n
k vk. As for the resampling process, at every trial n, if

spine k satisfied gk < gth, unit EPSP was resampled uniformly from [0,1), and the spine size was set to gk = gth.

Proof of convergence. The derived learning rule can be rewritten as

log p(vc = vk|x1:n, y1:n) =
∑
n′

log [1 + (2vk − 1)xn′(2yn′ − 1)] + const,

so in order to prove convergence, we need to show that ϕ(v) ≡ 〈log [1 + (2v − 1)xn′(2yn′ − 1)]〉n′ is maximized at

true vc. By considering Taylor expansion, the above equation is expanded as 〈log(1 + z)〉 =
∑∞
m=1

(−1)m+1

m 〈zm〉. In

this form, the average is calculated as

〈((2v − 1)xn′(2yn′ − 1))m〉 = (2v − 1)m〈xn′yn′ + (−1)mxn′(1− yn′)〉

= (2v − 1)mvcπx + (1− 2v)m(1− vc)πx
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Note that (xn)m = xn if m > 0, because xn = 0 or 1. Thus, by substituting the above equation into the Taylor

expansion form,

ϕ(v) = πxvc log [1 + (2v − 1)] + πx(1− vc) log [1 + (1− 2v)]

= πx [vc log v + (1− vc) log(1− v)] + const.

Therefore, ϕ(v) is maximized at v = vc.

Monosynaptic learning rule. For comparison, we implemented a monosynaptic learning rule. By expanding the exact

solution v̄nc =
∑
n′ xn′yn′ /

∑
n′ xn′ :

v̄nc =
xnyn +

∑n−1
n′=1 xn′yn′

xn +
∑n−1
n′=1 xn′

≈ v̄n−1
c

(
1 + xn(yn − v̄n−1

c )∑n−1
n′=1 xn′yn′

)
.

Hence, by using a single variable vnm, the learning rule is given as vnm = vn−1
m

(
1 + ηxn(yn − vn−1

m )
)
, where η represents

the learning rate. In the optimal learning depicted in Figure 1E, vc was estimated as v̄nc = (1 +
∑
n′ xn′yn′) /

(2 +
∑
n′ xn′).

Uniform and multinomial rewiring . In the model, we assumed that the unit EPSP of a new synapse is drawn uniformly

for biological plausibility. However, such a resampling method is suboptimal as a machine learning algorithm (28,62),

and recent experimental results suggest that synaptogenesis is more frequent in active dendritic branches (32). Hence,

here we consider an alternative rewiring method based on the multinomial sampling (31).

In this multinomial rewiring method, the unit EPSP vk of a new synapse is given as vk = vq + ζU , where index q is

probabilistically chosen as Pr[q = k′] ∝ gk′ , and ζU is a uniform random variable taken from [-0.05, 0.05), added to

prevent degeneration of synapses (31,62). With this modification, indeed the error keeps decreasing even after 105

samples are presented, whereas the performance saturates under a uniform rewiring (Fig. S1A). However, this is

partially because due to the absence of weight normalization after each rewiring. If we introduce an explicit weight

normalization after each rewiring by gk ← gk /
∑
k′ gk′ , the noise due to rewiring is suppressed, and the difference

between two rewiring methods becomes much smaller (Fig. S1B).

Details of the conceptual model. In the simulations, we used πx = 0.3, and vc was randomly chosen from [0,1)

uniformly at each simulation (not at each trial). The number of connections was kept at K = 10 except for Figure 2B

in which K = 2 to 20 were used. Initial value of k-th connection vk was set as vk = (k + 0.5)/K except for Figure

2C in which the initial distribution was biased by choosing vk as vk = − log
(
1−

[
1− e−λB

]
k
K

)
where λB is the bias

parameter. Resampling was performed with the threshold gth = 0.0001, and a new unit EPSP vk was uniformly

sampled from [0,1). In Figure 2B and C, the errors were calculated after learning from 104 trials.
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Detailed single neuron model

Morphology. We constructed a detailed neuron model based on a model of L2/3 pyramidal neuron with active

dendrites (34) using NEURON simulator (33). Here, we used the original reconstructed morphology without scaling.

We distributed 1000 excitatory synaptic inputs from 200 presynaptic neurons randomly on the dendrite. Synaptic

input was modeled as a double exponential conductance change with the rise time τrise = 0.5 ms, the decay time

τdecay = 2.5 ms, and the reversal potential was set to 0mV. For each synapse k from presynaptic neuron j, we first

applied a synaptic input with a constant weight factor γg = 2.5 nS, and then determined the unit EPSP vkj of synapse

k by measuring somatic membrane potential change. The minimum and the maximum value of the unit EPSP of the

given model were vmin = 0.57 mV and vmax = 2.39 mV, respectively. In the simulation of the task, using malleable

spine size factor gkj , we set the weight factor of synapse k as γggkj . Similarly, 200 inhibitory synaptic inputs were

uniformly distributed on the dendrite, and the rise and decay time of conductance was set as 0.5ms and 2.5ms, and

the reversal potential was set to -90mV. The inhibitory weight factor was chosen as γI = 0.75 nS.

Stimulus selectivity. We hypothesized that all excitatory presynaptic neurons are simple cells having direction

selectivity {θj} at receptive field (RF) {(rj , ϕj)}. Here, the position of RF in the visual field was defined by the

relative position to the postsynaptic neuron in the polar coordinate (Fig. 3C). We modeled the mean firing rate of

presynaptic neuron j for a stimulus θ at the RF of the postsynaptic neuron (i.e. at r = 0) as

ρj(θ) =
∫ 2π

0
ρ(θ′; θj)p(θ′ at {rj , ϕj}|θ at r = 0)dθ′.

The first term ρ(θ′; θj) is the mean response of the neuron with orientation selectivity θj when orientation θ′ is

presented at its own RF, hence using a von Mises distribution (63), the response is approximately given as

ρ(θ′; θj) ≡
ρo

2πIo(κo)
exp (κo cos [2(θ′ − θj)]) .

The second term is the probability of observing a stimulus with orientation θ′ at the position (rj , ϕj) given stimulus θ

at the center. The orientation θ′ at (rj , ϕj) should be similar to the orientation θ at the center if rj ∼ 0, or ϕj ∼ θ

due to continuity and contour statistics (37,38). Hence, we modeled the conditional probability as

p(θ′ at {rj , ϕj}|θ at r = 0) ≡ 1
2πIo(κrj)

exp
(
−rj/ro + κrj cos [2(θ′ − θ)]

)
where κrj(θ) ≡ ro

rj+rmin
exp(κϕ cos[2(ϕj − θ)]). Note that the marginalized probability exp(−ri/ro) is smaller than one

as an explicit stimulus may not exist at (rj , ϕj) if the RF is far away from the center. By calculating the integral, the

mean firing rate is derived as

ρj(θ) = ρoIo(κ̃j)
2πIo(κo)Io(κrj)

exp(−rj/ro)

where κ̃j ≡
√

(κo)2 + (κrj)2 + 2κoκrj cos (2[θj − θo]). In the simulation, we used κo = 2.0, κϕ = 4.0, ρo = 1.5π,

rmin = 0.01 exp(κϕ), and ro = 1.0. The selectivity of each presynaptic neuron was uniformly sampled from the ranges:

0 ≤ rj < 3, 0 ≤ ϕj < 2π, and 0 ≤ θj < π.

Based on the selectivity described above, we modeled the spiking activity of presynaptic neuron j as a Poisson

process with the rate ρ = ρj(θ) under the presence of stimulus θ = θ+ or θ− where θ+ = 0 and θ− = π/2. In addition,
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we assumed that all presynaptic neurons follow a Poisson process with the rate ρ = ρsp in the spontaneous activity.

In the simulation, we set ρsp = 0.01ρo.

Task configuration. We next consider the activity of the postsynaptic neuron. A sensory neuron should decode the

presented stimulus given stochastic spiking spikes of presynaptic neurons. In particular, here we consider decoding of

stimulus orientation θ given spike counts from M presynaptic neurons st1:M = {st1, st2, ..., stM}. As the spikes were

generated from Poisson processes in the model, the log-likelihood ratio of θ = θ+ against the spontaneous activity φ

is given as

log p(θ+|st1:M )
p(φ|st1:M ) =

M∑
j=1

stj log
(
ρj(θ+)
ρsp

)
+

M∑
j=1

(ρsp − ρj(θ+)) =
M∑
j=1

w∗j s
t
j + C., [5]

where w∗j ≡ log (ρj(θ+)/ρsp). Hence, if the synapses projected from presynaptic neuron j learn to represent w∗j jointly,

the somatic membrane potential naturally represents the log-likelihood of the stimulus being θ+, assuming passive

dendritic integration.

In this task configuration, the estimated log-likelihoods are on average the same for two perpendicular stimuli

θ = θ+ and θ− before learning, but the estimated log-likelihood becomes significantly larger for θ = θ+ once the

correct weight structure is acquired. Hence, we evaluated the learning performance by a classification between θ = θ+

and θ−, using θ− as a control.

In the simulation, we first generated the spike counts of each presynaptic neurons {st1, st2, ..., stM} by sampling

from Poisson distributions with the rates {ρ1, ρ2, ..., ρM} where ρj = ρj(θ+) or ρj(θ−) depending on the task.

Based on the spike count stj , spike timings of the m-th spike from presynaptic neuron j at trial t was determined as

tj,tm =
(
m− 1 + ζj,tU

)
∆tstimulus/s

t
j where ∆tstimulus = 20 ms, and ζj,tU is a random variable uniformly depicted from [0,1).

In the presence of synaptic failure, we instead defined a spike count at each synapse k by stj,k ∼ Binomial(stj , 1− rsf ),

where rsf is the failure rate. Inhibitory spikes were calculated in the same way, but the spike probability was defined

by the total excitatory inputs as ρtinh =
∑M
j=1 s

t
j/Minh to achieve the E/I balance.

The learning rule for the detailed model. We next derived the multisynaptic learning rule for this task. The optimal

estimation of the weight from presynaptic neuron j at trial t is given as

wtj =
∫ wmax

wmin

w′ · p(wtj = w′|s1:t
j , θ1:t)dw′ =

∫ vmax

vmin

γwv
′ · p(wtj = γwv

′|s1:t
j , θ1:t)dv′. [6]

Here, we introduced a scaling factor γw to represent a dimensionless value w by a unit EPSP v [mV]. In the simulation,

we used γw = wmax/vmax. By importance sampling,

wtj =
∫ vmax

vmin

γwv
′ p(w

t
j = γwv

′|s1:t
j , θ1:t)

q(v′) q(v′)dv′ ≈ 1
K

K∑
k=1

γwvjkp(wtj = γwvjk|s1:t
j , θ1:t)

q(vjk) = γw

K∑
k=1

gtjkvjk,

where gtjk ≡ p(wtj = γwvjk|s1:t
j , θ1:t) / (Kq(vjk)) represents the relative spine size of spine k from presynaptic neuron

j, and K is the total number of synapses per presynaptic neuron. Therefore, considering a Bayesian filtering, the

update of {wtj} is done by the following update of spine size {gtjk}

g̃tjk = gtjk · p(stj |θt, wj = γwvjk), gt+1
jk = g̃tjk /

∑
k′

g̃tjk′ , [7]
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where

p(stj |θt, wj = γwvjk) = δ(θt = θ+)
stj !

exp
(
[γwvjk + log ρsp] stj − ρspeγwvjk

)
+ δ(θt 6= θ+)

stj !
exp

(
stj log ρsp − ρsp

)
[8]

and δ(x) is a function that returns 1 if x is true, but returns 0 otherwise. In particular, if θt = θ+ and stj = 1, then

g̃tjk is multiplied by the factor of ρsp exp (γwvjk − ρspeγwvjk ), that typically causes potentiation. On the other hand,

if θt = θ+ and stj = 0, then g̃tjk is depotentiated by the factor of exp (−ρspeγwvjk ), resembling a Hebbian rule. Note

that gtjk does not change if θ 6= θ+, because the change due to the second term of Eq. 8 is canceled out at the

normalization due to the lack of vk dependence.

At every trial, synapses with spine size gtjk < gth was removed with 20% chance. If a synapse is removed, a new

synaptic contact from the corresponding presynaptic neuron was simultaneously created on one of the dendritic

branches to which the neuron initially had projections. Probability of selecting a branch was set to be proportional to

the length of the branch. Spine size of a newly created synapse was set to gtjk = 1/K. This rewiring procedure is

slightly different from the one in the conceptual model, because rewiring becomes too frequent if we directly apply

the latter.

In addition to rewiring of synaptic connections, we also included an elimination process that is not compensated

by new connections, as the total number of synaptic connections is known to decreases during development (30). In

particular, inactive synapses are expected to be more fragile (64). Hence, we tracked the firing rate of presynaptic

neuron during the training phase by rtj = (1− 1/τr)rt−1
j + stj/τr. At every trial, if the presynaptic firing rate satisfies

rtj < rel-th, we eliminated the synaptic contact with 20% chance. Throughout the simulation, we used gth = 0.001,

τr = 10.0, and rel-th = 0.05.

Monosynaptic learning rule for the detailed model. As presynaptic neurons follow stationary Poisson processes, the

learning rule for monosynaptic connection was defined as

gtj = gt−1
j + ηw

(
stj exp[−2γwvj ]− ρsp

)
, [9]

where ηw is the learning rate parameter (17,51), and vj is the unit EPSP of the synaptic connection from neuron j.

To ensure stability, we bounded the spine size between 0 < gtj < 1, and doubled the scaling factor from γw to 2γw.

Presynaptic stochasticity . It is known that presynaptic release probability tends to match with postsynaptic

spine size (44,45), although exact nature of pre- and postsynaptic change in synaptic plasticity is still controversial

(54). Hence, the synaptic factor gk might be cooperatively expressed by presynaptic release probability bk and the

postsynaptic factor ak, instead of the purely postsynaptic representation assumed in the main result. In particular,

under the pre-post matching, bk and ak can be defined as

bk =

bo
√
Kgk (if gk ≤ 1

Kb2
o
)

1 (otherwise)
, ak =


1
bo

√
gk

K (if gk ≤ 1
Kb2

o
)

gk (otherwise)
. [10]

This matching is potentially beneficial for the readout of the uncertainty in the synaptic representation of the decoding

model. The variance in the somatic EPSP caused by the presynaptic stochasticity is written as
〈

(
∑
k ak(Bk − bk))2

〉
=
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∑
k akgk−

∑
k g

2
k, where Bk is a binary random variable. Considering a sublinear dependence of ak on gk, the somatic

variance may show a negative dependence on the synaptic variability
∑
k g

2
k. Importantly, the second moment of

the synaptic factors
∑
k g

2
k increases as the neuron learns the task (Fig. 4K), because small number of synapses are

potentiated while others are depotentiated during learning (see also Fig. 3H). This means that the somatic EPSP

variance due to presynaptic stochasticity tends to decrease during learning, enabling more precise spike generation

and more reliable information transmission.

On the other hand, if the release probability is kept constant for all the synapses (bk = bo) as in Figure 5D, then the

somatic variance is given as
〈

(
∑
k ak(Bk − bk))2

〉
= bo(1− bo)

∑
k g

2
k. Thus, the variability in the somatic membrane

potential linearly increases as the variance of {gk} increases, causing additional noise as the neuron learns the task.

Another interesting scenario is the purely presynaptic representation (bk ∝ gk). In this case, the somatic EPSP

variance is described as ao −
∑
k g

2
k using a constant value ao, but it is unclear if this scenario is biologically relevant.

Implementing it into the detailed neuron model, with the pre-post matching, the Fano factor of the maximum

somatic EPSP height went down as the performance improved (Fig. S2B). On the contrary, the fano factor increased

in the model with a constant release probability, though the performance was somewhat better (Fig. S2A). Here,

we used the Fano factor instead of the variance, because the mean somatic EPSP height typically decreased during

learning due to a shift in the E/I balance. The Fano factor was estimated by presenting a frozen presynaptic spike

pattern while changing the number of transmitted spikes at each synaptic contact stochastically. In addition, we

used the following synaptic update rule by explicitly taking account of the presynaptic stochasticity, whereas a naive

scaling (i.e. bjk = 1) was used in Figure 5D.

p
(
stjk|θ+, wj = γwvjk

)
=

∞∑
sj=st

jk

p
(
stjk|sj

)
p
(
stj |θ+, wj = γwvjk

)
=

∞∑
sj=st

jk

(
sj
stjk

)
(bjk)s

t
jk (1− bjk)sj−st

jk
1
sj !

exp ([γwvjk + log ρsp] sj − ρspeγwvjk )

= 1
stjk! exp

(
[γwvjk + log (bjkρsp)] stjk − bjkρspeγwvjk

)
.

The surrogate learning rule. In the surrogate rule, each synapse estimates the mean unit EPSP by vojk = (1− gtjk)vo +

gtjkvjk, where vo is the standard unit EPSP. Subsequently, a synapse updates its spine size by

gt+1
jk = gtjk exp

(
stj log

[
ρjk / ρ

o,t
jk

]
− [ρjk − ρo,tjk ]

)
/ Zt,

Zt = exp

 1
MK

∑
j,k

(
stj log

[
ρjk / ρ

o,t
jk

]
− [ρjk − ρo,tjk ]

) , [11]

given a horizontal stimulus, where ρjk = ρsp exp (γwvjk), ρo,tjk = ρsp exp
(
γwv

o,t
jk

)
. The normalization term Zt is global

in a sense that the term is given by the summation over all the excitatory synapses projected to the postsynaptic

neuron. To ensure the stability, we bounded the spine size factor as 0 ≤ gtjk ≤ 1/2, and set vo = 1.5vmin(≈ 0.9mV).

Performance evaluation. During the training phase, only the target (i.e. horizontal stimulus θ = θ+) was presented.

In the test phase, we presented 200 stimuli, of which 100 stimuli were the horizontal stimulus (θ = θ+), while the

other half were the vertical stimulus (θ = θ−). In Figure 3F, 5A, 5B and 5E, we stopped the training at every 10
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trials, and measured the performance. The classification performance was measured by the ratio of horizontal trials

in which the maximum EPSP height exceeded the threshold vθ =
(
mh/σ

2
h +mv/σ

2
v

)
/
(
1/σ2

h + 1/σ2
v

)
, to the total of

100 trials, where mh = E[∆vhn] and σ2
h = Var[∆vhn] were calculated over 100 test stimuli (n=1, 2, ...,100). Although

the evaluations were made solely on false negatives, we also observed significant decrease of false positives during

learning (Fig. 3E). When a postsynaptic action potential was emitted, we used the estimated membrane threshold

∆vth = 25 mV as the maximum EPSP height ∆vn, but such a trial was rare (<1%) in our model setting.

Details of the NEURON simulations. Initial values of spine sizes {gkj } were chosen such that gkj ∼ 1/qv(vkj ) is satisfied.

To this end, we first estimated the unit EPSP density at v = vkj through a sample-based approximation:

qv(vkj ) ∝
M∑
m=1

K∑
i=1

δ
[
vkj − dv/2 ≤ vim < vkj + dv/2

]
≡ q̃v(vkj )

where dv = (vmax−vmin)/10. Then we calculated gkj by gkj = 1/q̃v(vk
j )∑

k′
1/q̃v(vk′

j
)
. In Figure 5A, to generate a biased synaptic

distribution, we randomly sampled a position from the whole dendritic tree with probability 1
10B(λB ,2−λB)

(
L′

Lmax

)λB−1
·(

1− L′

Lmax

)1−λB

, and added a synapse until 1000 synapses are created on the dendritic tree. Here, L′ is the distance

from the soma, Lmax is the maximum distance, λB is the bias parameter, and B(x, y) is the Beta function. Presynaptic

selectivity and initial synaptic contacts were randomly generated for each simulation, while the dendritic morphology

was fixed. Further details of the model are available at ModelDB (http://modeldb.yale.edu/225075).
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Fig. S1. Comparison of uniform and multinomial rewiring. A) Performance curves under large number of samples. Gray and black lines are models without rewiring and

with uniform rewiring, respectively as in Figure 2, whereas the multinomial rewiring was used for the orange line (see uniform and multinomial rewiring in SI). B) Same with A,

but with weight normalization
(
gk ← gk /

∑
k′ gk′

)
after each rewiring.
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Fig. S2. Constant and matched presynaptic release probability A) The development in classification performance (black line), and the Fano factor of the maximum

somatic EPSP height (red line) under a constant release probability (1 − rsf = 0.66). B) The same, but under a model with pre-post matching. In the simulation, we set

bo = 0.75 to keep the average release probability at 〈bjk〉 ≈ 0.66. In both panels, the lines are the means over 50 simulations, and the Fano factor was calculated from

the mean and the variance over 20 presentations of the same spike pattern with variability due to stochastic synaptic transmission.
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