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Supplemental Figures 791 

 792 

Fig. S1. Comparison of pKa prediction distributions made by ADMET Predictor, MARVIN, and 793 

SPARC for near-field, far-field, and pharmaceutical compounds, and the entire data set. 794 
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 795 

Fig. S2. Average number of occurrences of the most prevalent atom types per compound for 796 

pharmaceutical near- and far-field environmental chemicals, sorted by the average number of 797 

each atom type that is in pharmaceutical compounds. 798 
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Table S1. Number of predicted neutral chemicals per chemical class for ChemAxon pKa plug-in. 800 

Chemical Class Non-ionizable Chemicals Total Chemicals Percent Neutral 

Pharmaceutical 1015 7766 13% 

Near-field 2575 3888 66% 

Far-field 9051 20759 47% 

 801 

  802 
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Appendix 803 

Several pKa prediction programs exist (Liao and Nicklaus, 2009). Commercial predictors 804 

span a range of mechanisms to predict the protonation state of particular atoms, including linear 805 

free energy relationships (LFER) that use a dictionary of chemical substructures (Lee et al., 806 

2007), quantitative structure-property relationships (QSPR) (Jover et al., 2008; Palaz et al., 807 

2012), and quantum chemical and ab initio methods (Bochevarov et al., 2013; Eckert and Klamt, 808 

2006; Eckert et al., 2009; Klamt et al., 2010; Klamt et al., 2003; Vareková et al., 2011). Semi-809 

empirical models calculate descriptors for each ionizable chemical functional group, after which 810 

pKa values are predicted using machine learning or tree-based models (Jelfs et al., 2007; Xing et 811 

al., 2003). These semi-empirical models are limited by the number of chemicals used (Xing et 812 

al., 2003) and the usage of a proprietary, non-releasable training set (Jelfs et al., 2007). 813 

Empirical methods employ substructure databases and use LFER to predict pKa values based 814 

on the prior assignments for the atomic groups stored in a database. As such, their prediction 815 

accuracy is limited to the substructures contained in their database. If additional training data are 816 

available, many of these tools can be recalibrated to apply to new chemical structures. 817 

Unfortunately, such data are not available for many environmental chemicals. The data 818 

limitations of these methods will improve with the addition of more pKa data and could be aided 819 

by efforts to contribute pKa data that are currently underway 820 

(https://gist.github.com/egonw/5aa53abe480a8625fe81). Such is also the case with predictors 821 

using QSPR. These prediction methods have been developed using machine learning algorithms 822 

along with structural and chemical descriptors to make predictions of pKa values (Fraczkiewicz 823 

et al., 2014; Szegezdi and Csizmadia, 2007; Szegezdi and Czismadia, 2004). 824 
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Quantum chemical methods and ab initio methods offer great promise, but currently both are 825 

computationally intensive and generally do not perform as well as LFER and QSPR methods 826 

(Elyashberg et al., 2010). Due to their computational inefficiency, these methods are 827 

incompatible with high-throughput methodologies.  828 

The majority of pKa prediction programs inspect a particular chemical, including the 829 

interplay between ionizable sites, to predict the pKa value. Calculating the interactions between 830 

sites, however, exponentially increases the computation time. In SPARC (Lee et al., 2007), 831 

chemicals with complex atomic interactions can result in calculations that last weeks to months 832 

for a single chemical, for which SPARC will return an incomplete calculation error (Lee et al., 833 

2007). 834 

 835 
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